Chapter 1

Summarising Data

In statistical data analysis, the number of experimental or observational units (and the
number of variables) is often large. For presentation purposes, it is impractical to present
the whole data. Furthermore, the data are often not particularly informative when presented
as a complete list of observations. A better way of presenting data is to pick out the important

features using summary measures or graphical displays.

1.1 Summary Measures

The data in the file silt2.dat were collected as part of an investigation into soil variability.
Soil samples were obtained in each of 4 sites in the province of Murcia, Spain, and the
percentage of clay was determined. At each site, 11 observations were made (at random
points in a 10mx10m area). The eleven observations for each of the first four sites are

presented in the dotplot below.
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Clearly there are some differences in the distributions of the observations at each of the

sites. These differences can be described in terms of the location and spread of the data.



1.1.1 The Mean

Any summary measure which indicates the centre of a set of observations is a measure of
location or a measure of central tendency. Perhaps the most often used measure of
location is the mean of the observations.

Suppose that we have n observations of a variable X, and the values of the observations

are denoted by x1, 2o, ..., x,, then we denote the mean by Z, and

_ 1 1+ T+ T3+ 0+ 2,
r = — x;
n; ’ n

Q Example 1.1.
For the data in the file si1t2.dat, the mean percentage clay for the first site is given by

30.3+27.64-40.94-32.2+33.74+26.64-26.1434.2+25.44-35.44-48.7
11

T =

611 — 32.83

Similarly, the mean percentages of clay for sites 2, 3 and 4 are 34.80, 34.05 and 45.77
respectively. Clearly, presenting the mean conveys the information that the distributions of
observations for sites 1,2 and 3 have similar locations while the observations for site 4 are

generally larger.
In MINITAB

MTB > mean ci
Calc—Column Statistics

Stat— Basic Statistics—Display Descriptive Statistics

1.1.2 The Median

An alternative to the mean as a measure of location is the median of the observations. The
median is the ‘middle’ value.
For example, the eleven observations of the clay percentage for the first site are, when

placed in order

254 26.1 26.6 27.6 30.3 32.2 33.7 34.2 354 409 48.7
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Similarly, the median percentages of clay for sites 2, 3 and 4 are 35.9, 34.5 and 44.5 re-
spectively. Again, the median conveys the information that the distributions of observations
for sites 1,2 and 3 have similar locations while the observations for site 4 are generally larger.

If there are an even number of observations, then there isn’t a single ‘middle observation’
and the median is defined to be half way between the ‘middle two’ observations.

In general:

if we have an odd number of observations, then the median is the value of the "T“th

largest.

if we have an even number of observations, then the median is the mean of (half way
between) the Zth largest and the (3 + 1)th largest.

In MINITAB

MTB > median ci
Calc—Column Statistics

Stat— Basic Statistics—Display Descriptive Statistics

Why use the median rather than the mean?

The mean is the summary of location which is most often calculated and quoted. However,
there are situations where the median provides a better summary of location.

The median is much less sensitive (more robust) in situations where there are a small
number of extreme observations. It is a better measure of a ‘typical observation’. (Indeed,
it often is the value of an actual observation). However, the mean has many nice ‘statistical

properties’ which we shall discuss later.

1.1.3 Measures of Spread

Any summary measure which indicates the amount of dispersion of a set of observations is
a measure of spread.

The easiest measure of spread to calculate is the range of the data, the difference between
the smallest and largest observations. For example, consider the eleven observations of the

clay percentage for the first site.



The range for the percentages of clay for sites 2, 3 and 4 are 11.4, 11.3 and 21.4 re-
spectively. This conveys the information that the observations for sites 2 and 3 have a very
similar spread, which is somewhat smaller to that for sites 1 or 4.

However, the range is not a very useful measure of spread, as it is extremely sensitive to
the values of the two extreme observations. Furthermore, it gives little information about
the distribution of the observations between the two extremes.

A more robust measure of spread is the interquartile range (or quartile range). This
is the difference between the lower quartile and upper quartile.

The lower and upper quartiles, together with the median, divide the observations up into
four sets of equal size.

For example, for the eleven observations of the clay percentage for the first site

In general:
the upper quartile is the value of the 3(n + 1)th largest.
the lower quartile is the value of the i(n + 1)th largest

If n + 1 is not divisible by 4 then some interpolation is required. However, MINITAB does
this for us.

The interquartile range may be interpreted as the range in which the ‘middle half’ of the
observations lie.

For the sets of observations of clay percentages for the four sites, the interquartile ranges
are 8.8, 4.9, 6.5 and 8.7, which again illustrates the difference in spread between the obser-
vations for sites 1 and 4, and those for sites 2 and 3.

Although the range and the interquartile range are easy to calculate and interpret, they
do not have nice statistical properties. For future use, we shall define a further measure of
spread called the standard deviation.

Recall that we denote the n observations by 1, zs,...,z, and the mean of the sample
by Z. Then for each observation x;, i = 1,2,...,n, x; — T is the difference between that

observation and the mean.



MATH2041/2042 Stats for Engineering Year: 0607 Dr S. K. Sahu 9

Some values of z; — T are positive and some are negative.

However, all values of (z; —T)? are positive, and the larger values of (z; — T)? correspond
to values which are further away from the mean.

We define the variance of the observations to be the sum of the values of (z; — T)? for
all observations, divided by n — 1. (If we divide by n here, we would have the mean value
of (z; — Z)?, but this does not have such nice statistical properties). Hence the variance,

1
2 N2
s—n_lg(:rZ T)

i=1

denoted by s? is given by

The standard deviation of the observations, which we denote by s, is the square root of
the variance.

If the observations are more highly spread out, then in general they will be a greater
distance from the mean (which indicates the ‘centre’ of the observations) and therefore the
standard deviation will be greater.

Therefore, the standard deviation is a measure of spread.

For the sets of observations of clay percentages for the four sites, the standard deviations
are 7.07, 3.66, 3.55 and 6.17, which again illustrates the difference in spread between the
observations for sites 1 and 4, and those for sites 2 and 3.

Measures of spread in MINITAB

Calc—Column Statistics

Stat—Basic Statistics—Display Descriptive Statistics

1.1.4 Accuracy

Summary statistics such as means and standard deviations may often be produced with a
large number of decimal places.
There is no ‘golden rule’ as to how many decimal places should be reported, but a number

of points should be taken into consideration.

1. Consider the accuracy to which the data have been measured.

If summaries are presented containing many more decimal places, then this provides

‘spurious’ accuracy which is not justified by the data collection process.
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If summaries are presented containing many fewer decimal places, then important

information may be lost.

. For continuous data, consider the variability of the data.

For example, if all the observations are the same up to and including the first decimal
place, with variability occuring in the second decimal place and beyond, then clearly
at least two, and probably more decimal places, are required.

. For discrete data, there is no need for summaries to be reported on the same scale as

the data.

For example, it is perfectly reasonable that the mean of a set of counts may not be a

whole number.

. Do not truncate trailing zeros.

Once you have decided on a certain number of decimal places to report, then report

them all, even if the last one is a zero. Otherwise you are throwing away information.

1.2 Graphical Displays of Data

Often, a simple graphical display provides a more easily interpretable summary of the dis-

tribution of the observations than a collection of summary statistics.

One graphical display, which is easy to construct, and incorporates many of the fea-

tures of the summary measures introduced in §1.1 is the box-and-whisker plot (or simply

boxplot).

1.2.1 The Boxplot

We will illustrate this using data in the file quake.dat which represent the time in days

between successive serious earthquakes worldwide, between 16th December 1902 and 4th
March 1977.

Constructing a boxplot involves the following steps:

1. Draw a vertical (or horizontal) axis representing the interval scale on which the obser-

vations are made.

2. Calculate the median, and upper and lower quartiles (Q;, Q3) as described in §1.1.

Calculate the interquartile range (or ‘midspread’) H = Q3 — Q.
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3. Draw a rectangular box alongside the axis, the ends of which are positioned at (); and
@3- (The box covers the ‘middle half’ of the observations). () and Q3 are referred to
as the ‘hinges’.

4. Divide the box into two by drawing a line across it at the median.

5. The whiskers are lines which extend from the hinges as far as the most extreme

observation which lies within a distance 1.5 x H, of the hinges.

6. Any observations beyond the ends of the whiskers (further than 1.5x H from the hinges)
are outliers and are each marked on the plot as individual points at the appropriate
values. (Sometimes a different style of marking is used for any outliers which are at a
distance greater than H from the end of the whiskers).

From a boxplot, you can immediately gain information concerning the centre, spread, and
extremes of the distribution of the observations.

2000 —

1000 —

Interval (days)

In MINITAB
Graph—Boxplot

1.2.2 The Time Series Plot

Often, the data collected are observations of the same quantity at different points in time
(the units are time points). For example, weekly mean precipitation, monthly maximum sea
level ...

Where the time points at which the data have been collected are evenly spaced (or
approximately so) then a time series plot may be used to illustrate the variation in the
observations.
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A time series plot is simply a plot of each observation z;, 7 = 1,2,...,n on the y-axis
against its index 7 on the z-axis, in other words a plot of the points (4,z;), 1 =1,2,...,n.

Consecutive points are joined together to illustrate the way in which the observations
vary over time.

For example, the data in the file flow.dat represent the mean monthly flow (in cms) of
the Fraser River at Hope, B.C., Canada between January 1981 and December 1990.
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In MINITAB
Graph—Time Series Plot
Time series plots may be used to detect trend or seasonal behaviour (or both).
Note that in many practical examples, there is no natural time ordering of the observa-
tions (for example, observations where the units are individuals). In such examples, time

series plots are meaningless.

1.2.3 The Histogram

Histograms have the following properties.

1. The horizontal axis represents the scale on which the observations are measured, and
the bars of the histogram adjoin each other with the boundaries between bars repre-

senting the boundaries between the categories.

2. If bars are not of equal width, then care must be taken when determining the height
of each bar (particularly with MINITAB ) to ensure that the area of each bar is

proportional to the number of observations in each category.
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3. The best choice of boundaries between bars is the one which best illustrates the dis-
tribution of the observations. This usually requires some experimentation (trial and

error).
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Figure 1.1: A histogram of the earthquake data (quake.dat) introduced in §1.2.1.

In MINITAB
Graph—histogram

There are a number of features of the distribution of a set of observations which are not
summarised by the summary measures described in §1.1. but which are illustrated by a

histogram.
For example, we can determine if the distribution of the data is symmetric or skew.
The data in the file snow.dat represent the annual snowfall (in inches) in Buffalo, NY,
for the years 1910 to 1972.

A histogram can also be used to determine if the distribution of the observations is
unimodal (a single ‘largest’ category with categories generally becoming ‘less common’,

above or below this category) or multimodal.

The data in the file acidity.dat are the measurements of an acidity index for each of
155 lakes in the Northeastern USA.
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1.3 Summarising the Joint Distribution of a Pair of
Variables

Many interesting problems in statistical data analysis concern the relationship or associ-
ation between a pair of variables. When observations are made of two or more variables, on
the same set of units, we can examine such relationships by investigating the joint distri-
bution of pairs of observations.

The simplest way of summarising the joint distribution of a pair of variables is by a
scatterplot. Suppose that we have observed n units and we denote the measurements of
one variable by x1, s, ..., 2, and the measurements of the other variable by y1,vs2,..., ¥n-
Then a scatterplot is a plot of the points (z1,¥1), (Z2,%2), - - -, (Tn, Yn)-

We consider two examples here, and in each case the question of interest is what, if any,
is the relationship between the two variables?.

The data in the file 1level.dat record the level of Lake Victoria Nyanza for the years
1902-1921 (relative to a fixed standard) and the number of sunspots in the same years.

The data in the file paving.dat are the compression strength (Nmm™2) and percentage
dry weight of 24 paving slabs. In each case the question of interest is what, if any, is the
relationship between the two variables?

In MINITAB
Graph—Plot

The strength of the association between the variables may be summarised by a single

summary measure called the correlation coefficient.
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To calculate the correlation coefficient, we first need to calculate the mean and standard
deviation of the observations z1, xs, ..., z, of the first variable (call these T and s;), and the
mean and standard deviation of the observations y1,¥s, - .., y, of the second variable (call

these ¥ and s,). The correlation coefficient (denoted by r) is given by

The correlation coefficient, which must lie between —1 and 1, measures the strength of
the linear (straight line) relationship between the variables. It determines to what extent
values of one variable increase as values of the other variable increase, and how close this
relationship is to being a perfect straight line.

Hence, the correlation coefficient provides a measure of the extent of linear association.
For example, the correlation coefficients for the two examples illustrated by scatterplots on
the previous page are 0.526 between ‘strength’ and ‘dry weight’ and 0.879 between ‘lake
level” and ‘number of sunspots’. Therefore, both data sets show positive linear association,
stronger between lake level and number of sunspots.

In MINITAB
Stat—Basic Statistics—Correlation
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Scatterplot of Number of Sunspots vs Level of Lake

Percentage dry weight
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