Chapter 2

Probability and Probability

Distributions

2.1 Introduction

Most of us have an idea about probability from games of chance, from the lottery and from
general statements about the likelihood of a particular event occurring. The probability of it
raining in Southampton tomorrow might be given or the chance that a particular team will
win a given match. It will be necessary to clarify ideas about probability a little in order to
tackle the kind of problems that we shall meet later, but you will not be required to delve
very deeply into the theory of probability.

Firstly, we shall identify a probability of zero with some event which cannot happen and
a probability of unity for something which is certain to occur. All other probabilities will be
between zero and one and will reflect the “chance” of an event occurring. For a repeatable
event, the probability may be interpreted as the proportion of times the event will occur in
the “long run”. For other kinds of event, probability may be interpreted as a measure of
subjective belief reflecting the likelihood of the event occuring.

In this chapter, we consider tightly controlled situations, where it is possible to calculate
probabilities precisely. More generally, we cannot know probabilities precisely, but we can
use observed data to learn about probabilities — this is statistical inference and is the subject
of later chapters.

For example, suppose that electronic resistors of a similar appearance are either 5 ohms
or 10 ohms, and we put 100 of the 5 ohm resistors in a box together with 50 of the 10 ohm
resistors. A resistor is then chosen from the box. What is the probability that it is a 5 ohm
resistor?

It is not immediately possible to answer this question since we are not told enough about
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the conduct of the experiment. If we are told that the 150 resistors are shaken up in the
box and that the resistor is chosen “at random” from the box, then we can argue that each
of the resistors has an equal probability of being selected. Since there are now 150 resistors
in total and they are all equally likely to be chosen, the probability that a 5 ohm resistor is
chosen will be given by 100/150 = 2/3. Thus the probability of choosing a 5 ohm resistor is
formally given by

Number of 5 ohm resistors in the box 2

p L ) . h _ _2
(5 ohm resistor being chosen) Total number of resistors in the box 3

Similarly, P(10 ohm resistor being chosen)= 50/150 = 1/3
Suppose now we take out a second resistor at random from those left in the box. What

is the probability of getting two 5 ohm resistors?
To answer this, consider the experiment in two stages.

(a) Select the first resistor. The probability of a 5 ohm resistor is 2/3.

(b) Now, assuming that a 5 ohm resistor has been selected, choose the second resistor.
There are only 149 resistors left and 99 of them are 5 ohm resistors, so the probability
of a 5 ohm resistor being selected is 99/149.

The probability of getting two 5 ohm resistors is now given by
2 99 66

— X — = —— =0.443.

3149 149 4
Similarly, the probability of two 10 ohm resistors is

1 49 49

The other possibility is that we choose one 5 ohm and one 10 ohm resistor. The probability
of this is slightly more involved since we could choose the 5 ohm first and then the 10 ohm

resistor or the 10 ohm first and then the 5 ohm resistor. The probability is given by

2 50 1 100 200

Note that 0.443 + 0.110 + 0.447 = 1, i.e. P(two 5 ohm) + P(two 10 ohm) + P(one of each)
= 1. Since these are the only possible outcomes, the probabilities must sum to 1.

The above example illustrates sampling without replacement, in that the first selected
resistor was not replaced in the box before the second was selected.

If we had decided to replace the first resistor, whatever its resistance, before selecting the

second, then the probabilities of two 5 ohm, two 10 ohm or one of each would be given by

P(two 5 ohm) =2x2=2=0.444
P(two 10 ohm) =1 x1=1=0.111
P(one of each) = (2 x 1)+ (3 x ) =5 =0.444.
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These probabilities for the with replacement scheme are slightly different but, as before,
these three situations include all possibilities so the three probabilities must sum to 1.
Notice that we have multiplied probabilities together where considering events occurring
together, such as choosing a 5 ohm resistor on the first selection and a 5 ohm on the second
selection. We have added together probabilities when a situation could arise in two different
ways, such as “one of each” could be obtained either as a 5 ohm selected first and a 10 ohm

second or a 10 ohm selected first and a 5 ohm resistor selected second.

N 7X7/

More generally, if we have events A and B, then
P(Aor B)=P(AUB) =P(A)+ P(B) — P(A and B)

and
P(A and B) = P(AN B) = P(A) x P(B given that A has occured).

If the occurence, or otherwise, of A does not affect the probability of B, then we say that A
and B are independent events, and we can write P(B given that A has occured) = P(B).
In this case

P(A and B) = P(ANB) = P(A) x P(B).

These simple multiplication and addition rules for probabilities are very important for
most problems. The rest of this Section is devoted to a series of examples illustrating the
calculation of probabilities using these rules. We shall consider conditional probability in

more detail in Section 2.2.

O Example 2.1. Ten items are available and 4 are defective and 6 are satisfactory. A
random sample of 3 items is taken from these 10, what is the probability that exactly one is
defective?

One way to tackle a problem like this is to construct a probability tree diagram to see
what is going on. Consider selecting one item at a time until all three are selected and
illustrate the results and the associated probabilities in each case. (D = defective, S =
satisfactory).

So the probability for DDD will be: % X g X % = %. All the remaining probabilities can

be found similarly.
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DDD

DDS

DSD

DSS

SDD

SDS

SSD

SS8S

There are eight possible sequences with the probabilities as given in the table above.
Note that the sequences DSS, SDS and SSD all have one defective, so the probability of

obtaining one defective is given by

4 6 5 6 4 5 6 5 4 6xdx4 1
— XX+ | XX+ | XX o) =3 X ————— =
10 9 8 10 9 8 10 9 8 10x9%x8 2

Similarly, the probability of two defectives is

P(DDS) + P(DSD) + P(SDD) = (15 x 3 x §) + (& x §x ) + (& x 2 x §)

4
=3 X 160>§<9>§<38
_ 3
10°
the probability of no defectives is
6 5 4 1
P(SSS) = — x - X - =~
(555) =165 5
and the probability of three defectives is
4 3 2 1
P(SSS) = — X = x - = —.
(558)= 16255 = 30
Note that these four probabilities must sum to 1, i.e.
1 1 3 1
P(0 defectives) + P(1 defective) + P(2 defectives) + P(3 defectives) = 6 + 371030 =
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In fact, we can calculate these probabilities without constructing a probability tree dia-
gram. To do this, we need to know something about combinations.

Suppose that we have n items from which we select » without replacement. The order in
which the items are selected does not matter, just which r items comprise the final selection.
We denote by (:f) the number of such distinct combinations of r items which can be selected.
It can be shown that

(n) - n! _onx(n-1)x---x(n—-r+1)

r n—r) I1Xx2x---xr

where a! (“a factorial”) is defined to be al =a x (a — 1) X (a —2) X --- x 3 x 2 x 1. Hence,

(1) =mn
(g) = n(nz_l)
(g) _ n(n—lg(n—Q) )

in particular

As we have a total of 10 items, 4 defective and 6 satisfactory. The number of possible ways
of selecting 3 items from 10 is

10 :10><9><8:120
3 6

In order to get one defective and two satisfactory in the sample, the defective must be
selected from one of the four defectives and the two satisfactory ones from the six which

are satisfactory. Therefore, the number of different selections of one defective and two

4 6 6 x5
() () =522 -0

Therefore, the probability of choosing one defective in the sample of three is

satisfactory is

P(one defective) — Number of ways of choosing 1 defective and 2 satisfactory
o Number of ways of choosing 3 items

_ ()6

Similarly
6
P(two defectives) = ( )::)(1)

Either method will produce the answer, but the tree-diagram method can get a bit cumber-

some with larger problems.
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QO Example 2.2. The National Lottery In the National Lottery, the winning ticket
has six numbers from 1 to 49 exactly matching those on the balls drawn on a Wednesday
or Saturday evening. The ‘experiment’ consists of drawing the balls. The ‘randomness’, the
equal probability of any set of six numbers being drawn, is ensured by the Lottery machine,
which mixes the balls during the selection process.

The probability associated with the winning selection is given by

P(Jackpot) Number of winning selections
ackpot) =
P Number of possible selections

The total number of possible selections is given by

6) = = 13983816

49 _49><48><47><46><45><44
1x2x3x4x5x%x6

(i.e. nearly 14 million). Since there is only one winning selection, the probability of matching
the jackpot sequence is 1/13 983 816 = 0.0000000715.

Other prizes are given for fewer matches. The corresponding probabilities can be evalu-
ated as follows:

_ Number of selections with 5 matches
P(5 matches) = Number of possible selections
_ @)
6_!( S)ﬂ
— BHIZ 1141
13983816
6x43
13983816

= 0.00001845

~ 1

54200

Similarly,

_ @x(%)
(5)

_ _15x903

T 13983816

= 0.0009686

~ 1

1032

P(4 matches)

6 43
P(3 matches) = %
20x19341
13983816

= 0.01765

L
57

¢

~

There is one other way of winning, using the bonus ball. Matching five of the selected

six balls plus matching the bonus ball gives a share in a prize substantially less than the
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jackpot. The probability of this is given by

. Number of selections of this type
P(Matching 5 and the bonus ball) - = Number of possible selectiogsp

%)
.000000429

1
2331000

o

I
O/-\

~

Adding all these probabilities of winning some kind of prize together gives
1
P(Winning) = 0.0188 ~ 53

so that a player buying one ticket each week would expect to win a prize about once a year.
Without further information, it is not possible to work out the expected return on this kind
of investment since this involves the amounts of the prizes as well as the probabilities of
winning. In the National Lottery, the prize money, (except for the $10 prize), depends on
the number of winners and the number of tickets sold.

One of the most common applications of probability calculations in Engineering is in

evaluating reliability. The remaining examples focus on this area.

QO Example 2.3. If a communications satellite is to be launched and positioned in space
to receive and transmit telephone and data transmissions, various stages of the process are
said to succeed or fail with certain probabilities. For example, it may be that the launch will
be successful with a probability of 0.9. The reliability, which is the probability that it works,
is therefore 0.9 or 90%. Obviously, the probability that the launch will fail is 1 — 0.9 = 0.1.

Suppose such a satellite has a successful launch with a probability of 0.9 and after launch,
the satellite is to be positioned in a suitable orbit with a probability of 0.8. Small retro-
rockets on the satellite can then be used to adjust the position, if this is not initially correct,
and the probability of success here is 0.5. Once in position, the solar powered batteries are
expected to last at least a year with probability 0.7. What is the probability that a satellite
due to be launched will still be working in a year’s time?

In order to work out this probability, it is necessary to assume that all the different ways
of failing are acting independently of each other. This might not be so, of course. if the
batteries were used to power the retro-rockets. A simple tree-diagram helps here.

Let L represent a successful launch and L represent a failure, with P, R and B representing
successful position, retro-rocket adjustment and battery life, respectively.

The probability of overall success is given by

(0.9 x 0.8 x0.7) + (0.9 x 0.2 x 0.5 x 0.7) = 0.504 + 0.063
= 0.567.

The overall reliability is 56.7%.
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B Overall success

B  Overall success

w]|

Note that whenever a system is affected by a series of different reasons for failure, the

overall reliability of the system is reduced. Another example of this follows.

O Example 2.4. A sonar-buoy dropped from an aircraft to monitor submarines has to
deploy its antennae and switch on its transmitter to send signals. If the reliabilities of both
the deploying mechanism and the transmitter switch are 90%, what is the reliability of the

sonar-buoy?

The following simple diagram will help here.

S Sonar-buoy functions

wnl
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P(sonar-buoy functions) = P(deploys antennae) x P(switch works)
=0.9x0.9
=0.81

Therefore the reliability of sonar-buoy is 81%. Although 9 out of 10 of the deploying
mechanisms work and 9 out of 10 of the switches work, only 4 out of 5 sonar-buoys work.

To achieve a 90% reliability for the buoys, we need to have individual reliabilities of
v/0.9 = 0.9487 for the switches and deployment mechanisms.

The more components which are required to function to make a system work, the lower
the overall reliability. For example, a set of four elements, each with reliability 90%, produces
a system with reliability 0.9* = 65.6%.

Standby redundancy can be used to improve the reliability of a system. It is common
practice, when high reliability is required to introduce parallel systems which ‘cut-in’ if the
initial system fails. Some aircraft systems can have as many as three parallel systems, any

one of which would be sufficient to fly the plane safely.

QO Example 2.5. Suppose a system consists of two independent switches S; and S,, each
with reliability 90% and is arranged so that the system operates if either of the switches, S;
or Sy, operates. What is the reliability of this system?

This can be represented as below.

S

S2

This diagram indicates that the system operates if there is a link from A to B created by
the switches operating. The system operates if either or both of the switches are operating.

In other words, the system fails only if both switches fail.

P(system fails) = P(switch S fails) x P(switch S, fails)
=0.1x0.1
= 0.01

Therefore, the reliability of the system is 99%.
By introducing a ‘spare’ switch, the reliability has increased from 90% to 99%, a sub-

stantial gain for the potentially small cost of an extra switch.
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O Example 2.6. Systems can be made up of components in ‘series’ and in ‘parallel’,

including standby redundancy where necessary. Consider the following system.

S1 S2

Ss S4

Here the system consists of four components S;,5,,53,54 and it functions if S; and S,
operate or S3 and S, operate. If the individual reliabilities are 0.9 and the switches all
operate independently, what is the reliability of the system?

The system fails if both the upper part (S1, So) and the lower part (Ss, S;) fail. We have
already seen, in Example 2.4, that the reliability of the upper part is given by

P(S; and S, operate) = P(S; operates) x P(S, operates)
=0.9x%x0.9
=0.81

so that the probability that the upper part fails is 0.19. Similarly, the probability that
the lower part fails is also 0.19. The probability that the system fails is now given by

P(system fails) = P(upper part fails and lower part fails)
= P(upper part fails) x P(lower part fails)
=0.19 x 0.19
= 0.0361

so its reliability is 1 — 0.0361 = 0.9639 or 96.4%.
In general, if the probabilities of working for S;,52,53,5, are p;, p2, p3, ps respectively, the

reliability of such a system is given by

1= (1= pip2)(1 — p3ps)
and, if p; = py = p3 = py = p, the reliability is 1 — (1 — p?)%

Q Example 2.7. An engineer has designed a storm water sewer system so that the yearly
maximum discharge will cause flooding on average once every 10 years. This means that the
probability each year that there will be a discharge which causes flooding is 0.1. If it can
be assumed that the maximum discharges are independent from year to year, what is the

probability that there will be at least one flood in the next five years.
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Whenever we require “the probability of at least one”, it is simpler to determine “the
probability of none” and then subtract this from 1. In this case, the probability of no flood
in any particular year is 1 — 0.1 = 0.9, so that the probability of no flood in 5 years is

P(No flood in 5 years) = P(No flood in year 1 and no flood in year 2 and - - -
- and no flood in year 5)
= P(No flood in year 1) x P(No flood in year 2) x - --
-++x P(No flood in year 5)
=0.9%0.9x0.9x0.9x0.9=0.9"=0.59

and therefore
P(At least one flood in 5 years) = 1-0.59 = 0.41

Although the sewer system has been designed to withstand a flood which occurs on
average once every 10 years, the probability that this will occur within the next 5 years is
just over 0.4.

The ideas of design life, reliability and return period will be covered in more detail

in a later chapter.

2.2 Conditional Probability and Bayes Theorem

2.2.1 Conditional Probability

The probability of an event B occurring when it is known that some event A has already
occurred is called a conditional probability and it is denoted by P(B|A). The symbol
P(BJA) is usually read as “the probability that B occurs given that A has already occurred’,
or simply, the probability of B given A.

The formula for finding the conditional probability is:
P(ANB)

P(BA) = =55

, provided P(A) > 0. (2.1)
O Example 2.8.  The probability that a plane departs on time is P(D) = 0.83; the
probability that it arrives on time is P(A) = 0.82; and the probability that it arrives and
departs on time is P(D N A) = 0.78.
The probability that a plane departed on time given that it arrived on time is:
P(DNA) 0.78
P(4) 082
The probability that a plane arrives on time given that it departed on time is:
P(DNA) 0.78
P(D) 083

0.95.

P(D|A) =

P(A|D) = = 0.94.
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2.2.2 Theorem of Total Probability

Two events B; and B, are called mutually exclusive if they cannot occur simultaneously.
For example, let A denote the event that head turns up and B denote the event that tail
turns up when a coin is tossed. Here P(B; N By) = 0.

Sometimes we partition (i.e. divide) the sample space by mutually exclusive events. Often
a set of such events covering the entire sample space, called a set of exhaustive events,
are considered. For example, suppose that Bi,..., By denote a set of mutually exclusive
and exhaustive events. So B1 U Bo U ---U By = S where S is the sample space. In the coin

tossing example, B; and B, provide a set of mutually exclusive and exhaustive events.

To find the probability of another event A (other than the By, ..., By), intuition suggests
that we can find the intersection probability of A with each of By, ..., By and add them up.
The theorem of total probability is exactly that and is as follows:

If the events By, ..., By form a partition of the sample space such that P(B;) #=0,i =
1,...,k, then for any event A in the sample space S:

P(A) = zk: P(B;N A).

However, using the definition of conditional probability in (2.1) we have:
P(B;n A) = P(B;)P(A|By).

Hence we have:
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Q Example 2.9. In a certain assembly plant, three machines B;, B,, and Bs make 30%),
45%, and 25%, respectively of the products. It is known from past experience that 2%, 3%
and 2% of the products made by each machine, respectively, are defective. Now suppose
that a finished product is randomly selected. What is the probability that it is defective?

Consider the following events:

A: the product is defective,
By: the product is made by machine B,
B,: the product is made by machine Bs,

Bs: the product is made by machine Bs,

Using the theorem of total probability:

P(A) = P(B1)P(A|Bi) + P(B2)P(A|Bs) + P(B3) P(A|Bs).

0.02
0.006

0.03 0.0135

0.02

0.005

But we have:
P(B;) =0.30, P(A|By) =0.02
P(By) =0.45, P(A|B;) =0.03
P(B3) =0.25, P(A|B3) =0.02

Hence
P(B;) P(A|B;) = (0.30)(0.02) = 0.006
P(B;) P(A|Bs) = (0.45)(0.03) = 0.0135
P(Bs) P(A|B3) = (0.25)(0.02) = 0.005.
and hence:

P(A) =0.006 + 0.00135 + 0.0005 = 0.0245.

If instead, we wanted to find the inverse probability that P(B;|A), i.e. the probability
that a randomly selected product was made by machine B; given that it is defective? We

apply the Bayes the theorem to find the inverse probability.
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2.2.3 Bayes Theorem

Let By, Bs, ..., B be a set of mutually exclusive and exhaustive events. For any new event
A

’ _P(B.N4) __PAB)PB)  _
P(B,|A) = =55 = S PGy 1,....k. (2.2)

QO Example 2.10. For the above example with three machines:
P(B1)P(A|B;) _ (0.30)(0.02)
P(A) -~ 0.0245

So, although there was a 30% chance that a randomly selected product was made by machine

P(Bi|A) = = 0.2449.

By, the probability that a randomly selected product was made by machine B; given that the
product was defective reduces to 24.49%. This is to be expected since machine B; produces
less defective products than some others.

If, instead, we suppose that machine B; produces 5% defective items. Then

P(A) = (0.30)(0.05) 4 0.00135 + 0.0005 = 0.01685, and
P(By)P(A|B;)  (0.30)(0.05)
P(By]A) = = = 0.471.
(BilA) P(A) 001685~ 04

Here the probability that a randomly selected product was made by machine B; given that

the product was defective increases to 47.10%.

P(B;) and P(B;|A) are called the prior and posterior probability, respectively.

Q Example 2.11. Consider a disease that is thought to occur in 1% of the population.
Using a particular blood test a physician observes that out of the patients with disease 98%
possess a particular symptom. Also assume that 0.1% of the population without the disease
have the same symptom. A randomly chosen person from the population is blood tested and
is shown to have the symptom. What is the conditional probability that the person has the
disease?

Let B; be the event that a randomly chosen person has the disease and B, is the com-
plement of B;. Let A be the event that a randomly chosen person has the symptom. The
problem is to determine P(B;|A).

We have P(B;) = 0.01 since 1% of the population has the disease, and P(A|B;) = 0.98.
Also P(B;) = 0.99 and P(A|By) = 0.001. Now

. P(A|By) P(B
P(disease | symptom) = P(B;|A) = P(A|Bl)p((B‘l)iL)P((AEZ)P(BQ)
0.98x0.01
0.98x0.01+0.001x0.99

= 0.9082.

So the unconditional probability of disease, P(B;) = 0.01 = 1%, has increased to 90.82%
when the symptom is present, P(B;|A).




