Chapter 4

Estimation and Hypothesis Testing

4.1 Introduction

A probability model for the distribution of variable of interest will usually depend on one
or more unknown parameters. For example, if we propose a normal distribution for a par-
ticular variable, then we need to know the mean u and standard deviation o of that normal
distribution, in order to use our model to make predictions about future observations.

Just as we used sample data in §3, to assess whether a particular distributional model is
appropriate for a variable of interest, we can also use sample data to estimate the parameters

of our model.

4.2 Estimating a mean

The most straightforward situation is where the parameter of interest is the mean of the
population distribution, for example the normal parameter y or the exponential parameter
. There are also cases where it may be sufficient to estimate the mean of a population
without necessarily specifying a complete distributional model for the population.

Suppose that we have a sample of size n, z1,...x, from a population of interest. It
seems obvious that we should use the sample mean (Z) to estimate the population mean px.
This procedure, estimating a population quantity using a sample quantity, is called point
estimation.

When we calculate a point estimate, it is important that we have some idea how accurate
that estimate is likely to be. So how accurate are we, when we use the mean of a sample of
size n to estimate the mean of a population distribution?

Samples from a population are variable, and therefore estimates calculated using sample

data are also variable, and we can consider their distribution. When a sample of size n is
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observed from a distribution, the sample mean 7 is a single observation from the distribution
of 7 for all such samples. An important question is ‘What does the distribution of  look like?’
and in particular ‘How does it compare with the distribution of the original observations
T1,T2,y. . e

The following example is artificial, but serves to illustrate the point

Q Example 4.1. Suppose that the distribution of interest consists of the integers from 1 to
49, each with probability 1/49. Twice a week a ‘sample’ of six observations is taken from this
distribution in the National Lottery. From §2, we know that there are 13983 816 possible
samples of size 6. We can illustrate the distribution of Z across these possible samples by a

histogram.

We can also calculate the mean and standard deviation of this distribution, 25 and 5.7735
respectively.

Note that the mean and standard deviation of the original distribution (the numbers 1
to 49, each with probability 1/49) are 25 and 14.1421 respectively.

We immediately notice three facts about the distribution of

1. It has the same mean as the original distribution.
2. It has a smaller standard deviation than the original distribution.

3. The histogram seems ‘bell-shaped’ suggesting that the distribution may be close to a

normal distribution, even though the original distribution is far from normal.

In general Suppose also that xi,...,x, is a sample of size n from a distribution with
mean g and standard deviation o.

Then the distribution of z, the sample mean has the following three properties.
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1. It also has mean p.

2. It has standard deviation i.

NG

For larger sample sizes n, the distribution of sample means has smaller standard devi-

ation, so the sample means for larger samples are less variable and generally closer to

L.

3. It is approximately normally distributed if n is large, regardless of the shape of
the original distribution.

e This is surprising and remarkable. It is the Central Limit Theorem, and one of the

reasons why the normal distribution is so important for data analysis.

How large must a sample be before we can assume that the sample mean 7 is from a
normal distribution?

There is no ready answer to this question. If the original distribution is ‘close to normal’,
then quite small samples may be adequate. Indeed if the original distribution is exactly
normal, then this assumption is appropriate for any size of sample. However, for highly
non-normal distributions (very skew or multimodal) larger samples will be required.

What remains true for all distributions is that the larger the sample size, the closer the
distribution of sample means is to a normal distribution.

Now, when we use a sample mean 7 to estimate the mean p of the underlying distribution,
we know that = can be considered as a single observation from the distribution of sample
means for samples of size n.

We know that the mean of this distribution is also u, but that its standard deviation is
o/+/n. Therefore, ‘on average’, T is equal to u, the quantity which we want to estimate, so
7 is a sensible estimate. (This property, being ‘correct on average’, is called unbiased).

Furthermore, o/4/n, the standard deviation, is a measure of the spread of possible sample
means around y, and gives an indication of the error involved when we use a single sample
mean T to estimate pu.

Unfortunately, o/+/n, the standard deviation of the distribution of Z, is not known, as it
depends on the o, the standard deviation of the original distribution, which is an unknown
quantity. However, if we use the standard deviation, s, of the sample to estimate o, we can
use s/4/n as a measure of the accuracy of T as an estimate of p.

The quantity s/y/n is called the standard error of the mean and should be quoted
whenever a sample mean 7 is used to estimate a population mean p, as an indication of the
accuracy of the estimate.

In MINITAB
Stat—Basic Statistics— Display Descriptive Statistics
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4.3 Confidence interval for a mean

A better approach to estimating p than using a single point estimate T, together with the
standard error s/y/n as a measure of precision, is to combine the two quantities to give a
range of plausible values for ;. A confidence interval provides this.

Suppose that 7 is the mean of a sample of observations z1,...,z, from a distribution

with mean p and standard deviation o.

Furthermore, suppose that either the sample size n is ‘large’, or the distribu-

tion of interest is close to normal.

Then we know that T is a single observation from (approximately) a normal distribution
with mean p and standard deviation o/4/n. We can standardise the variable T by subtracting
p and dividing by o/4/n. The standardised sample mean will have a standard normal

distribution. We can write

T~ p

o/vn

However, as o is not known, we need to estimate it by the sample standard deviation s.
Then,

T - p

s/v/n

t =

is an observation from a t distribution ‘with n — 1 degrees of freedom’.

The t distribution is a known distribution, with a density curve which looks similar to
the standard normal distribution, but has a standard deviation larger than 1. The mean
of a t distribution is always zero, but the standard deviation depends on the degrees of

freedom, and is larger if the degrees of freedom is small.

When the degrees of freedom is large, the t distribution is very similar to the standard

normal distribution, and its standard deviation is very close to one.

To distinguish between different t distributions (with different degrees of freedom), we

denote the t distribution with k£ degrees of freedom by ;.
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Because the t distribution is well understood, we can make statements about observations

from a t distribution. As

t

T - p

s/v/n

is an observation from a ¢, ; distribution. then we can (in principle), by calculating areas

under the density curve of the t,_; distribution, find the value ¢ such that

P<—c <

T - p

sV = )

= 0.95.

ghaded area=0.95
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Therefore

r(

S

T—c—

N

< pu<7T+ec

N

8) — 0.95.

or, in other words, for 95% of samples of size n, drawn from a distribution with mean p,

the interval between

will include p.

S
T —C—F—=

NG

and

. S
T+ c—

Hence, we can calculate the endpoints of an interval, which will, for 95% of samples,

include the population mean pu.

(The endpoints of the interval are often written as T + ¢s/4/n).

We call this interval a 95% confidence interval for p.

It is an interval within which we can be ‘95% certain’ that y lies. It provides a suumary

of the ‘most plausible’ values for the population mean p in light of the observed data.

Statistical tables can be used to find ¢ for any sample size n.

Because the t;, distribution is similar to the standard normal distribution for large values

of k, then if the sample size n is large, in which case n — 1, the degrees of freedom will also

be large, then ¢ can be calculated using a standard normal distribution.

Table gives values of ¢ for some P(t; < c)

E

0.9

3.08
1.89
1.64
1.53
1.48
1.44
1.41
1.40
1.38
1.37
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0.95

6.31
2.92
2.35
2.13
2.02
1.94
1.89
1.86
1.83
1.81

Pty <c¢)
0.975  0.99
12.71  31.82

4.30 6.96

3.18 4.54

2.78 3.75

2.57 3.36

2.45 3.14

2.36 3.00

2.31 2.90

2.26 2.82

2.23 2.76

0.995

63.66
9.92
5.84
4.60
4.03
3.7
3.50
3.36
3.25
3.17

11
12
15
20
25
30
40
50
60
100

0.9

1.36
1.36
1.34
1.33
1.32
1.31
1.30
1.30
1.30
1.29
1.28

0.95

1.80
1.78
1.75
1.72
1.71
1.70
1.68
1.68
1.67
1.66
1.64

Pty < c¢)

0.975  0.99
2.20 2.72
2.18 2.68
2.13  2.60
2.09 253
2.06 2.49
2.04 2.46
2.02 2.42
2.01 240
2.00 2.39
1.98 2.36
1.96 2.33

0.995

3.11
3.05
2.95
2.85
2.79
2.75
2.70
2.68
2.66
2.63
2.58
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The area upto the point ¢ in this graph is 0.975 and we use ¢ to find the 95% CI. Hence
1. For 90% confidence, use the 0.95 values in the table above.

2. For 95% confidence, use the 0.975 values in the table above.

3. For 99% confidence, use the 0.995 values in the table above.

Notes

1. A confidence interval for u is only a statement about the population mean y. It does
not say anything about other properties of the distribution of interest. In particular, we
should not expect 95% of observations from a distribution to lie in the 95% confidence

interval. They are likely to be much more variable.

2. If the exact value of k required is not in the table, then use the nearest value that is,

or interpolate.

© Example 4.2. Lottery example [This is used purely as an illustration of how confidence
intervals behave. The sample size of 6 is not really large enough to be happy with, but we
do know in this case that the distribution of sample means is approximately normal. The

confidence intervals and the sample means are plotted in the figure below.]



60

Date Sample T

7/3/98 4 11 14 39 43 44 25.83
4/3/98 6 28 30 34 41 45 30.67
28/2/98 1 7 15 18 30 31 17.00
25/2/98 9 21 27 36 42 48 30.50
21/2/98 2 16 25 27 37 45 25.33
18/2/98 1 5 10 13 25 32 14.33
14/2/98 8 13 14 17 20 28 16.67
11/2/98 11 32 38 42 46 49 36.33
7/2/98 9 25 27 31 42 45 29.83
4/2/98 13 17 32 35 42 45 30.67
31/1/98 17 22 30 40 46 48 33.83
28/1/98 4 12 15 31 32 47 23.50
24/1/98 1 4 6 14 24 49 16.33
21/1/98 5 12 24 35 36 38 25.00
17/1/98 14 31 33 38 46 48 35.00
14/1/98 20 27 28 31 33 41 30.00
10/1/98 3 10 11 27 47 49 24.50
7/1/98 7T 14 25 32 36 38 25.33
3/1/98 1 13 26 28 35 45 24.67
31/12/98 8 13 18 21 23 29 18.67

50

40

30

20

10

20
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In MINITAB
Stat—Basic Statistics— 1-sample t

Real examples

O Example 4.3. The file concrete.dat contains the compression strength (Nmm?)
of 180 concrete cubes. Suppose that we are interested in the mean of the distribution of
compression strength of all such cubes. The sample size of 180 is large, so there is no
problem here.

The sample mean is T = 61.098, the sample standard deviation is s = 3.963, and therefore,
as the sample size n = 180, the standard error s/ /n = 0.295. The value of the constant ¢
for a t179 distribution is 1.9733 (approximately the same as for a standard normal).

Therefore, a 95% confidence interval for p, the mean compression strength of all such
cubes is (60.515,61.681).

This interval may also be presented as

60.515 < i < 61.681 or 61.098 + 0.583

A 99% confidence interval for u is (60.329, 61.867).

A 90% confidence interval for y is (60.609,61.586).

O Example 4.4. Consider the data in the file latent.dat (also presented on the intro-
ductory handout), which are measurements of the latent heat of water using two methods.

Measurements subject to error are often assumed to be normally distributed with mean p
equal to the ‘true’ value. Normal probability plots of the sample data produce straight lines
for both samples, we can assume that the distribution of measurements is approximately
normal, and calculate a confidence interval for the true value p without any concerns.

Using sample data for method A, the sample mean is T = 80.021, the sample standard
deviation is s = 0.024, and therefore, as the sample size n = 13, the standard error s/y/n =
0.007, and ¢ = 2.18 using the tables. Therefore, a 95% confidence interval for pu, the true
latent heat of water is (80.006, 80.035).

Using sample data for method B, the sample mean is T = 79.979, the sample stan-
dard deviation is s = 0.031, and therefore, as the sample size n = 8, the standard error
s/y/n = 0.011. Therefore, a 95% confidence interval for yu, the true latent heat of water is
(79.953, 80.005).

4.4 Estimating other parameters

When estimating the mean p of a distribution, a sample mean is an obvious estimator.
However, for other parameters, a convenient estimator may not be quite so obvious. For

example, how should we estimate the parameters o and 3 of a Weibull or EVG1 distribution?
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The answer is that there exists a flexible estimation procedure, applicaable in simple
or complex models, which can be proved theoretically to produce estimators with good
properties. The method is called maximum likelihood estimation.

To discuss this method in general is betyond the scope of this course. However, we shall
attempt to give a flavour of the method, by considering estimating the parameter g of the
exponential distribution (See §3 for details).

Suppose we have observations zi,Zs,...,x, from an exponential distribution with pa-

rameter 5. The probability density evaluated at each of these observations is

1 _21 1 _= 1 _z

—e B, —e B, ..., e B,
B p p
As the observations are assumed to be independent we write their joint probability density
as
1 -4 X 1% X ... % Loz _ 1 oy LIS > g2
—e —e ..o X —e = —¢ = —¢ =1,
g g g s p"

This function reflects how likely the observed data are in terms of how great the probability
density is at each of the observed data values. The method of maximum likelihood estimates
[ by the value which makes the observed data more likely than any other value of 8 would.

In other words, we maximise
IS5 BY
ﬁn

as a function of 3.

Differentiating this expression with respect to 3, we get

% /Bf’ne*/j*l Z?:l T — _nﬁ*ﬂfle*/jfl Z?:l T; + /Bfnﬁ72z?:1 $i€7ﬁ71 2?21 @i
= [-nf+ Y ] B2 i
=0 if ﬁ:%Z?lei:f'
Therefore, setting 8 equal to the sample mean Z makes the observed data zi,...,z, more

likely than any other value of 3, so the sample mean is the maximum likelihood estimate
for . [Recall that § is the mean of an exponential distribution, so estimating it by a
sample mean seems intuitively sensible. Similarly, the maximum likelihood estimate for the
mean g of a normal distribution os also the sample mean, although the maximum likelihood
estimate for the standard deviation o is not the sample standard deviation s. It is \/HTTIS]
In practice, maximum likelihood estimates can be calculated for any parameter.
MINITAB provides maximum likelihood estimates for model parameters using
Graph—Probability plot, along with the probability plot to check whether the model

is appropriate.
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Ideally, we would also like to be able to get standard errors or (even better) confidence
intervals for these parameters but MINITAB does not provide these in general. However,
what MINITAB does provide are estimates of the distribution function F(z) = P(X < x)
based on the parameter estimates.

In particular, for a number of values of p (and more can be specified using Options),
estimates of the value of z for which P(X < z) = p are given. Furthermore, the uncertainty

in these estimates is represented by confidence intervals.

Q Example 4.5. Consider the data in file stress1.dat relating to the stresses resulting
from wave action on the joints of an off-shore oil-drilling platform. In §3 we used a Weibull
distribution as a model for this variable, and estimated the parameters as a = 0.98 and
B = 21.8. Suppose, for design purposes we want to estimate the value of stress which is
exceeded with probability 0.01. Then the relevant MINITAB output is as follows.

Percentile Estimates

95% CI 95% CI
Approximate Approximate

Percent Percentile Lower Limit Upper Limit

1 0.203 0.0374 1.104
2 0.413 0.0950 1.796
98 87.508 52.2537 146.548
99 103.300 59.5150 179.299

Hence, although the stress value exceeded with probability 0.01 is estimated to be 103.3,

there is considerable uncertainty, as the 95% confidence interval (59.5,179.3) is very wide.

4.5 Hypothesis Tests for the Mean of a Population

Sometimes, sample data are collected with the purpose of examining a conjecture or hy-
pothesis concerning a distribution. For example, data may be collected to ensure that
certain standards are being satisfied, or a change may have been made to a process and
data is collected on an output of that process to see if its distribution has changed from the

(known) previous distribution.
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We will focus on hypotheses which concern the (unknown) distribution mean p, although
in principle a hypothesis may concern any property of the distribution which might be of
interest (for example, any parameter of the distribution).

Again, we suppose that T is the mean of a sample of n observations zi,...,z, from a
distribution with mean g and standard deviation o. Let the hypothesised value of p be
denoted by pp.

A confidence interval gives a range of plausible values of 1, based on the observed data,
so a sensible procedure would seem to be to reject the hypothesis that p = pg if the value of
1o does not lie inside our confidence interval.

For example, if we have a 95% confidence interval, and the mean of the distribution is
indeed equal to pg, then for 95% of samples, the confidence interval will include pg. If it
does not then, either we have been unlucky, and observed one of the 5% of samples with
erroneous confidence intervals, or the mean of the distribution is not, in fact, equal to py.

Therefore, if the hypothesised value, 1o does not lie in the 95% confidence interval, we
use this fact as evidence against the hypothesis that y = g and reject the hypothesis at
the 5% level of significance. Another way of saying this is that the evidence against the
hypothesis p = pq is statistically significant at the 5% level.

More generally, the significance level for the test is 1— the confidence level of the associ-
ated interval. Smaller significance levels correspond to wider confidence intervals, so require
greater evidence in order to reject.

Recall that, for large samples, or distributions which are close to normal, we calculate
confidence intervals based on the fact that
T — W

s/v/n

is an observation from a ¢,,_; distribution. Hence, if our hypothesis that y = p is true, then

~

T — Mo

b= S

is an observation from a t,_; distribution.

The hypothesised mean pg will fall inside the confidence interval if

T—c < w £ THcec—

Vn

T — o
= —e < T H0
©= s/v/n = ¢
= —c<T <c¢

where c is the relevant value calculated using the t,_; distribution

If |T| > ¢, then pyq is outside the confidence interval and the hypothesis is rejected.
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Therefore, a hypothesis test involves calculating the test statistic 7" and seeing if it
falls in the rejection region |T'| > ¢ evaluated using the ¢, i distribution together with the
significance (confidence) level for the test. This is intuitively sensible. The test will reject
when the sample mean T and the hypothesised distribution mean p, are far apart.

Sometimes we calculate a p-value for a hypothesis test. A p-value is the highest sig-
nificance level at which the hypothesis would not be rejected. Therefore the p-value is
the significance value of the test for which T lies right on the edge of the rejection region
i.e. |T| = c. Hence the p-value is the probability that an observation from a ¢,_; distribution
is greater than |T'| or less than —|T°|.

Recall that smaller significance levels require greater evidence, so if the p-value is small,
the data are providing strong evidence against the hypothesis, because the hypothesis is
rejected, even at small significance levels.

Usually, we reject the hypothesis if the p-value p < 0.05. In other words, we tend to use
a 5% significance level. Other values of significance which are commonly used are 1% and
0.1%. These imply even stronger evidence against Hy.

If the hypothesis is not rejected, then that is exactly what has happened — we have not
rejected it. This does not mean that we have accepted it. Try to avoid using the word
‘accept’” when talking about statistical hypotheses. The reason that we have not rejected
the hypothesis may be simply that we have not observed a sufficiently large sample for the
evidence against it to be statistically significant.

Another issue to be aware of is the difference between statistical and practical significance.
We reject a hypothesised mean pg because the data provide strong evidence that the true
distribution mean p is not equal to pg. However, this does not necessarily mean that there
is a large discrepancy between p and pg. Indeed, in practical terms it is possible for the
discrepancy between y and g to be of a magnitude which is relatively unimportant in the
application concerned. What constitutes a practically significant discrepancy depends on
the application and is not a statistical issue. A confidence interval is a particularly useful
summary, as it enables you to assess both statistical significance (is the hypothesised value
in the interval) and practical significance (how far is the interval away from the hypothesised

value).

O Example 4.6. The file concrete.dat contains the compression strength (Nmm=2) of
180 concrete cubes. Suppose that the cubes are required to be manufactured with a mean
compression strength of 62 Nmm™2. Test the hypothesis that the process is manufacturing
cubes to the required standard.

Here we are required to test the hypothesis that y = 62 (cubes are of the required
standard).
Recall that a 95% confidence interval for p is (60.515,61.681). As this interval does not
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include 62, we reject the hypothesis that u = 62 at the 5% level of significance. Furthermore,
as a 99% confidence interval for u is (60.329,61.867), and this we also reject the hypothesis
that u = 62 at the 1% level of significance.

The test statistic for this test is

T — 62 1. — 62
T:uzwz_g_%

s/\/n 0.295

which gives a p-value of 0.003. This is a very small p-value, indicating that these data provide

extremely strong evidence against the hypothesis that y = 62.

On the other hand, if the required standard for the mean of the distribution is 61.5
Nmm~2, this value falls inside the 90% confidence interval so, even at the 10% level of
significance, there is no evidence that p is not equal to 61.5. The test statistic for this test
is

T — 61.5 61.098 — 61.5

T = ——— = = —1.36
s/\/n 0.295

which gives a p-value of 0.175. This is quite a moderate p-value, indicating that these data

provide no significant evidence against the hypothesis that u = 61.5.
In MINITAB

Stat—Basic Statistics—1-sample t

4.6 Comparing Two Distributions

Often, the most interesting hypotheses arise when we are comparing two (or more) distribu-
tions. Usually, we are interested in whether the observations of one distribution are larger
than those of the other.

To investigate this, we again focus on the distribution means, and use samples from each
of the distributions concerned to test a hypothesis concerning the distribution means.

Suppose that we observe a sample of n observations z1, ..., z,, from the distribution of
variable X and a sample of m observations y1, ..., 4, from the distribution of variable Y.

We assume that the distribution of X has mean u, and standard deviation o,, and that
the sample 1, ..., x, has sample mean T and sample standard deviation s,. Similarly, the
distribution of ¥ has mean p, and standard deviation oy, and the sample yi,...,yn has

sample mean ¥ and sample standard deviation s,,.

Two cases arise depending on whether we can assume that o, = o,.
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4.6.1 Case 1: The Two Sample t Test under equal variance as-

sumption

Suppose we can assume that o, = o0,. We can check this assumption by considering a
normal-probability plot. We need to see if the slopes of the two probability plots are roughly
same or not. (Recall that the slopes are standard deviations in a normal probability plot.)

We calculate the following to test if the two means are equal,
T—y
1 1 [(Ds3t(m-1)s3
R

n m+n—2

T =

follows the t— distribution with m + n — 2 degrees of freedom.
In MINITAB
Stat—Basic Statistics— 2-sample t
and check the box for equal variances. For the latent.dat we get 7" = 3.47 on 19 degrees
of freedom. The 95% confidence interval for p, — 1, is (0.0167, 0.0673). Since this does not

include zero we reject the hypothesis that the mean are equal at 5% level of significance.

4.6.2 Case 2: An approximate two Sample t-test when variances

are unequal

If we cannot assume that o, = o, we do not have an exact general solution. However,
provided that either

(a) the sample sizes n and m are large, or

(b) the distributions of X and Y are approximately normal, (this may need to be checked
using normal probability plots)

it can be shown that

T =
2 2
L Sy
n+m

is an observation from a distribution which has (approximately) a t distribution with &

(5-2)
o (s3/m)? | (sp/m)T
n—1 m—1

degrees of freedom where

Hence, using the ¢, distribution, we can find ¢ such that
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s2 s2 s2 82
= PlZ—g—c\| 2+ < pg—py <T-F+cy\/=2+-2] = 0.95.
mn m n m

so the endpoints of a 95% confidence interval for the difference between the means, p1, — p,

are
2 g2

_ _ S s

T—ytey/E+-2

n o m

where c is evaluated using the ¢, distribution, with k£ calculated as above.

Most commonly, we are interested in whether the distributions of X and Y are the
same, or whether the data provide significant evidence that they differ. Hence a common
hypothesis of interest is p; = p,, or equivalently p, — p, = 0. To test this hypothesis at
the 5% level of significance, all that is required is to check whether or not zero falls in the
confidence interval for i, — p,, or equivalently whether the test statistic 7" given above falls
in the rejection region |T'| > c¢. Again, a p-value for the test gives the largest significance
level at which the hypothesis is not rejected, and small p-values indicate strong evidence

against the hypothesis.

Q Example 4.7. Consider the data in the file latent.dat, which are measurements of the
latent heat of water using two methods. As measurements subject to error are often assumed
to be normally distributed, and normal probability plots of the sample data produce straight
lines for both samples, we assume that the population of measurements are approximately
normal, for both methods.

A question of interest is whether there is a systematic difference between the measuring
methods. We might conclude that there is a systematic difference if p,, the mean of all
possible measurements made using method A was different from ,, the mean of all possible
measurements made using method B. To determine this we test the hypothesis i, = p,.

Here, 7 = 80.021, s, = 0.024, n = 13, ¥ = 79.979, s, = 0.031, m = 8, so T' = 3.25 and
k =12 (rounded), and a 95% confidence interval for p1, — p,, is (0.0138,0.0702), which does
not include zero. Therefore, we reject the hypothesis that the means are equal at the 5%
significance level.

The p-value for this test is 0.007 so there is highly significant evidence of a systematic
difference between the measurement methods.

Recall that the 95% confidence interval for p, — p,, in under the equal variance assumption
is (0.0167, 0.0673) and this is wider than the interval (0.0138, 0.0702). This is expected since
we get tighter inferences under more assumptions (the equality of variances).

In real life problems the choice between the two tests depends on which assumptions we

can justify, i.e. can we assume that the variances are equal? Are the sample sizes large?
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4.6.3 The paired t Test

The two sample t test is carried out under the assumption that the samples from the two
distributions are independent of one another. In some situations this assumption is

clearly violated. For example, consider the data in the file 1abs.dat.

QO Example 4.8. In the USA, municipal wastewater treatment plants are required by
law to monitor their discharges into rivers and streams on a regular basis. Concern about
the reliability of data from one of these self-monitoring programs led to a study in which 11
volumes of effluent were divided and set to two laboratories for testing. One half of each
volume was sent to the Wisconsin State Laboratory of Hygiene and one half was sent to
a private commercial laboratory routinely used in the monitoring program. The data in
the file 1abs.dat are measurements of biochemical oxygen demand (BOD — c1; commercial
laboratory, c3; state laboratory) and suspended solids (SS — ¢2; commercial laboratory, c4;
state laboratory) for each of the 11 volumes.

To investigate whether there is a systematic difference between the state and commercial
laboratories we can test whether p,, the mean of the distribution of X, the BOD as measured
by the commercial laboratory differs from p,, the mean of the distribution of Y, the BOD
as measured by the state laboratory.

However, we have not observed independent samples from these two distributions, as
the 11 volumes analysed by each of the two laboratories were not obtained as 22 independent
volumes, but by splitting 11 larger volumes.

The observations of one sample are paired with the observations of the other sample.
Therefore, we ought to expect x1, the first measurement from the commercial laboratory, to
be more closely related to y;, the first measurement from the state laboratory, than to any
other measurement, as these measurements were made on (essentially) the same volume of
effluent.

In general, assume that we have n observations from each of the two populations, and
that these observations have been collected in such a way that they are clearly paired, so
that the samples are not independent. Denote the pairs of observations (1, y1), ..., (Tn, Yn)-

In this situation, we consider the variable D = X —Y | the difference between a pair
of observations. This distribution has mean p4 and standard deviation o4. We rewrite our
hypothesis of interest p; = p,, as pg = 0, a hypothesis concerning the distribution of D.

A sample of differences dy, .. .d, from the distribution of D is calculated using the paired

observations.

di=z1— Wy dy=29—ys ... dp=2Ty— Y.

We can test a hypothesis about the mean pg4, of the distribution of D using a sample

dy,...d,, from that population, using the methods of §4.5.
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Q Example 4.9. Consider the data in 1labs.dat. Is there a systematic difference between
the laboratories in the way in which they measure biochemical oxygen demand?

To examine this, we test the hypothesis that p4, the mean of the distribution of D, the
difference between BOD measurements of a volume of water split and analysed by the two
laboratories is zero (ug = 0; no difference between laboratories).

We have a sample

-19 -22 —-18 -2t -4 —-10 —14 17 9 4 —-19

of differences (values of D). Here d = —9.36, s/\/n = 4.26, and T = —2.20. A 95%
confidence interval for 4 is (—18.85,0.12). This includes the hypothesised value, pg = 0 so
we do not reject the hypothesis at the 5% significance level.

The p-value is 5.2% so the evidence of a difference between the laboratories is very close

to being significant, but not quite. Is there a systematic difference between the laboratories

in the way in which they measure suspended solids?

To examine this, we test the hypothesis that u4, the mean of the distribution of D, the
difference between SS measurements of a volume of water split and analysed by the two
laboratories is zero (ug = 0; no difference between laboratories).

We have a sample

12 10 42 15 -1 11 -4 60 -2 10 -7

from the population of differences. Here d = 13.27, s/y/n = 6.17, and T = 2.15. A 95%
confidence interval for g4 is (—0.47,27.02). This includes the hypothesised value, pug = 0 so
we do not reject the hypothesis at the 5% significance level.

The p-value is 5.7% so, again, the evidence of a difference between the laboratories is

close to being significant, but not quite. In this example, it seems clear that collecting more

data might lead one to conclude that there was a difference but, with the data available, we
have not observed significant evidence of a difference.
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