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1 Introduction
In recent years there has been a tremendous growth in the statistical models and tech-
niques to analyze spatio-temporal data such as air-pollution data. Spatio-temporal data
arise in many other contexts e.g. disease mapping and economic monitoring of real estate
prices. Often the primary interests in analyzing such data are to smooth and predict time
evolution of some response variables over a certain spatial domain. Typically, such pre-
dictions are made from data observed on a large number of variables which themselves
vary over time and space. These spatio-temporal data sets can be very large, for instance,
air pollution measurements are often observed every day at over one hundred locations
in the UK and the last ten years’ data may be available. There are many other important
areas where spatio-temporal data are used to detect recognizable and meaningful patterns
as well as to make predictions. Examples include hydrology, ecology, geology, social
sciences, many areas of medicine such as brain imaging, wildlife population monitoring
and tracking, and machine vision.

In order to obtain a high degree of accuracy in analysis and predictions of a response
variable, such as the amount of air pollution, mathematical models are employed which
explicitly include the underlying uncertainty in the data. Such models are statistical in
nature and, if appropriately chosen, allow accurate forecasting in future time periods and�
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interpolation over the entire spatial region of interest. In addition, they allow us to esti-
mate the size of possible errors associated with our forecasts. Essential to this process
is the use of modern statistical modeling techniques. Such statistical modeling of spatio-
temporal data is a challenging task which requires the manipulation of large data sets
and the ability to fit realistic and complex models. Often, the required solutions are not
available in closed mathematical form and computer intensive methods are needed. In
addition, various associated questions have to be addressed: Is the model adequate for the
data? Can a better model be found? Can data values that are outliers relative to the model
be identified? How accurate are the predictions? Will the model be able to cope with
future, possibly more complex, data sets?

The ideas behind the spatio-temporal modeling can be broadly cross-classified ac-
cording to: (a) their motivation, (b) their underlying objectives and (c) the scale of data.
Under (a) the motivations for models can be classified into four classes: (i) extensions
of time series methods to space (ii) extension of random field and imaging techniques to
time (iii) interaction of time and space methods and (iv) physical models. Under (b) the
main objectives can be viewed as either data reduction or prediction. Finally, under (c)
the available data might be sparse or dense in time or space respectively, and the mod-
eling approach often takes this scale of data into account. In addition, the data can be
either continuously-indexed or discretely-indexed in space and/or time. Based on these
considerations, especially (i) – (iii), statistical model building and their implementation
take place.

The plan of this review is as follows. In Section 2 we discuss key text books, mono-
graphs and review articles. Section 3 discusses three basic spatio-temporal data types.
We describe the basic modeling elements and techniques for point reference data in Sec-
tion 4. The main application areas are listed in Section 5. We conclude with a discussion
in Section 6.

2 Key References

2.1 Text Books and Monographs
There is a huge number of textbooks, edited volumes and monographs discussing model-
ing and analysis of spatial data. For example, Cressie (1993) discusses various concepts
in spatial statistics including kriging using a high level of mathematics, but it does not do
hierarchical modeling using modern computing methods. The book by Stein (1999) also
provides a theoretical treatise on kriging. There are several texts in theoretical geostatis-
tics, see for example Wackernagel (1998) and Chiles and Delfiner (1999). Schabenberger
and Gotway (2004) discuss statistical methods for spatial data analysis. For environmen-
tal data monitoring and modeling, deterministic interpolations and conditional stochastic
simulation and many other related topics, see for example, the books by Barnett (2004)
and Kanevski and Maignan (2004). Some recent texts and monographs in spatial cluster
modeling and analysis of spatial point processes include the book by Diggle (2003), the
edited volume by Lawson and Denison (2002), and M � ller and Waagepetersen (2003).
For modeling and computation using Gaussian Markov random fields see the book by
Rue and Held (2005). Christakos (2000) promotes the view that a deeper understanding
of a theory of knowledge is an important prerequisite for the development of improved
mathematical models of scientific mapping.
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The recent text book by Banerjee, Carlin and Gelfand (2004) provides an excellent
starting point for researchers in this area. Although the book primarily covers hierar-
chical modeling and analysis of spatial data with an emphasis towards making Bayesian
inference, it discusses spatio-temporal modeling in some detail and discusses a range of
topics including multivariate modeling, spatial epidemiology, areal data modeling and
many more.

2.2 History and Review Articles
Cressie (1994) and Goodall and Mardia (1994) are among the very early authors who
obtained statistical models for spatio-temporal data. In a discussion paper Mardia et al.
(1998) have introduced a combined approach which they call kriged-Kalman filter (KKF)
modeling. Motivated by particular applications, the field has adopted various modeling
strategies. There are many monographs and review articles on the related areas of spatial
statistics and point process modeling. See for example the edited volume by Mardia et al.
(1999). Recent thinking in the field has been surveyed by Brown et al. (2001), Haslett and
Raftery (1989), Kyriakidis and Journel (1999), Kent and Mardia (1994, 2002), Mardia et
al. (1998), Sahu and Mardia (2005), Stroud et al. (2001), Wikle and Cressie (1999), and
Wikle et al. (1998).

See Mardia (1988) for multivariate conditionally autoregressive models for multivari-
ate random fields and Gelfand et al. (2005) for spatio-temporal modeling using dynamic
models. In this proceedings Fontanella et al. (2005) unify various techniques related to
generalized eigenvalue decomposition, and a particular spatio-temporal model is high-
lighted.

3 Types of Data
In order to model spatio-temporal data there is an obvious need to keep track of the spatial
location, denoted by � in a region � say, and the time point, ���	� of an observation, say
�� ������ . There may be additional covariate information available which we denote by� � ������ . Different data types arise by the ways in which the points � are observed in � .

Typical point reference data arise when � varies continuously over a fixed study region� . For example, we may have observed the response

�� ������ and the covariates at a set

of � locations denoted by ��� , ��� ����������� and at � time points so that ��� ����������� .
The set of spatial locations can either be fixed monitoring stations, like in an air pollution
example, or can vary with time for example data obtained from a research ship measuring
ocean characteristics as it moves about in the ocean. We shall discuss modeling these
type of data in some detail in Section 4. We discuss two other important and often used
data types in Sections 3.1 and 3.2 before discussing models for point reference data in
Section 4.

3.1 Areal Data
The data are often called areal or block level data where the fixed region � is partitioned
into a finite number of areal units with well defined boundaries, e.g. postcodes, counties
or districts etc. Here an observation is thought to be associated with an areal unit of
non-zero volume rather than a particular location point, e.g. a latitude-longitude pair on
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the map, see for example the often quoted Scottish lip cancer data (Clayton and Kaldor,
1987) as analyzed by the GeoBUGS software (Spiegelhalter et al., 1996) available from
mrc-bsu.cam.ac.uk.

Typical areal data are represented by a choropleth map which uses shades of color
or grey scale to classify values into a few broad classes, like a histogram. Such a map
provides adjacency information of the areal units (blocks or regions). Some statistical
issues here are spatio-temporal smoothing, inference and predictions for new areal units.
Gaussian Markov random fields (GMRF) and conditional auto-regressive (CAR) models
are appropriate here. See, for example Besag et al. (1991) and the book by Rue and Held
(2005) and the references therein for more details and many related applications.

Recently there has been a particular interest in the joint spatial analysis of area-specific
rates of several potentially related diseases, see for example, Gelfand and Vounatsou
(2003), Held et al. (2005), Hogan and Tchernis (2004), Knorr-Held and Best (2001),
Knorr-Held (2000), Schmid and Held (2004), Sun et al. (2000) and Wang and Wall
(2003). The purpose here is to detect common spatial patterns in the underlying disease-
specific risk surfaces. Models have either been based on a multivariate extension of the
widely used CAR model or on spatial generalizations of a factor analysis type model.
Best and Tzala (2005) extend the factor analysis approach to consider the joint analysis of
spatial-temporal variations in area-specific rates of several diseases over time. They adopt
a Bayesian hierarchical modeling framework, and consider various prior formulations for
the latent spatial and temporal factors reflecting the shared pattern of risk. The model
is motivated by an analysis of age standardized annual mortality rates of 17 cancer sites
across the 51 administrative districts in Greece for the years 1981 to 1999.

3.2 Point Processes
Spatial point pattern data arise when an event of interest, e.g. outbreak of a disease, occurs
at random locations, that is, � is random and its index set gives the spatial point pattern;
the notion of a response variable is not meaningful here, but there can be additional co-
variate information at the event locations. See the books by Diggle (2003) and M � ller and
Waagepetersen (2003) for many examples and theoretical developments.

Spatio-temporal point process data are naturally found in a number of disciplines,
including (human or veterinary) epidemiology where extensive data-sets are also becom-
ing more common. One important distinction in practice is between processes defined
as a discrete-time sequence of spatial point processes, or as a spatially and temporally
continuous point process. Recently Peter Diggle and his coauthors have developed sev-
eral approaches to the analysis of spatio-temporal point process data, each motivated by
a particular application. These include discrete-time modeling, exemplified by annual
records of the spatial distribution of bovine tuberculosis cases in Cornwall (Diggle et al.,
2005); empirical modeling, exemplified by a log-Gaussian Cox process model for real-
time monitoring of gastro-enteric disease in Hampshire (Brix and Diggle, 2001); mecha-
nistic modeling, exemplified by a model published as Keeling et al. (2001) for the 2001
UK foot-and-mouth epidemic. Diggle et al. (1995) develop a test to determine if there is
space-time interaction as a general phenomena in a data set.

4



4 Modeling Point Reference Data
The general aim is to model and analyze the spatio-temporal random variable


�� ������
indexed by spatial coordinates � and by time �!�"� . In most applications



will be

univariate, the spatial coordinate will be continuous and two dimensional describing the
latitude-longitude pair (or its equivalent easting and northing coordinates), and the time
coordinate will be discrete and univariate. Often, the response


�� ������ is observed at
a number of fixed monitoring sites ��� , �#� ���������$� , say at � time points so that �%���������&�� .

Here we discuss some key concepts in modeling spatio-temporal data. See Baner-
jee, Carlin and Gelfand (2004, Chapter 2) for a fuller description and many exploratory
analysis methods.

The modeling strategies begin by assuming the hierarchical structure:
�� ���'����(�*) � �&�'����,+.- � ���'����&/�0�1��������&$�/2�3�1�����������4 (1)

where ) � ���5���� is a space-time process and the error term - � ���'���� is a white noise process
and specifically assumed to follow 6 �87 $9;:< � independently. In principle, 9,:< could evolve
in time but in many applications it can be treated as a constant for the sake of parsimony.

The space-time process ) � ���5���� is expressed as

) � ���5����3�>= � �&�'����,+@? � �&�'���� (2)

where = � ���A���� is a mean process driven by observed covariates � � ���'���� and ? � ���A���� is a
zero mean spatio-temporal process. A particular covariance structure must be assumed
for the ? � ���'���� process. The pivotal space-time covariance function is defined asB � �DC&E� :�F �$CG�� : �3� Cov HI? � �DCG��$C��&J? � � : �� : �LK8�
The zero mean spatio-temporal process ? � ������ is said to be covariance stationary ifB � �DCGE� :�F �$C&�� : �M� B � �NCPO@� :�F �$CPOQ� : �(� B �SR F�T �G
where

R �>�UC0OV� : and T �W�$CPOX� : . The process is said to be isotropic ifB �SR F�T �M� B �GYZY[R\Y]Y F Y T Y �&
that is, the covariance function depends upon the separation vectors only through their
lengths

Y]Y[R\YZY
and
Y T Y . Processes which are not isotropic are called anisotropic. In the

literature isotropic processes are popular because of their simplicity and interpretability.
Moreover, there is a number of simple parametric forms available to model those.

A further simplifying assumption to make is the assumption of separability see for
example, Mardia and Goodall (1993). The process ? � �U���� is said to be separable ifB �GY]Y R\Y]Y F Y T Y �P� B_^ �GYZY[R\Y]Y � Ba` �EY T Y �&�
Now suitable forms for the functions

Bb^ �Lc � and
Ba` �Lc � are to be assumed. A very general

choice is to adopt the Matèrn covariance function (Matèrn, 1986) given by:B �Sd �3�*9 : �eUf�g Cih �Aj � � elk jmdon � f�p f � elk jqdon �G n	rs7  j%t �� d2rs7 (3)
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where
p f �Lc � is the modified Bessel function of second kind and of order

j
, see e.g.

Abramowitz and Stegun (1965, Chapter 9). Popular special cases of the Matèrn fam-
ily are: (i)

j � �Nu e corresponding to the exponential model
B �Sd �V� 9 :wv&xmy � O nzd �

and (ii)
j � {�u e which leads to

B �Sd �X� 9,: � ��+ nwd � v&xmy � O nzd � and (iii) Gaussian,B �Sd �3�*9 :zvGxmy � O n : d : � when
j�| }

.
There is a growing literature on methods for constructing non-separable and non-

stationary spatio-temporal covariance functions that are useful for modeling. See for ex-
ample, Gneiting (2002) develops a class of non-separable covariance functions. A simple
example is: B �EY]Y[R\YZY F Y T Y �/� � �~+ Y T Y � g C vGxqy�� O Y]Y R\Y]Y u � �(+ Y T Y �L��� :D� 
where � is a space-time interaction parameter. There are many other methods, for ex-
ample Schmidt and O’Hagan (2003) construct non-stationary spatio-temporal covariance
structure via deformations. There are other ways to construct non-separable covariance
functions, for example by mixing more than one spatio-temporal processes, see e.g. Sahu
et al. (2004) or by including a further level of hierarchy where the covariance matrix
obtained using

B �EY]Y R,YZY F Y T Y � follows a inverse-Wishart distribution centered around a sep-
arable covariance matrix, see e.g. Brown et al. (1994) and also Gelfand et al. (2004b).
Section 8.3 in Banerjee, Carlin and Gelfand (2004) also lists some more strategies.

One well-known non-separable covariance function in Physics is obtained from Tay-
lor’s frozen field hypothesis which states that

Cov �N? �87  7 �&$? ��� �G 7 �E��� Cov �N? �87  7 �&$? �87 ����G�
for some vector

�
(velocity) so that the space vector

�
in the left hand side leads to time

component on the right hand side. Wheater et al. (2000, p.586, Figure 5) have given one
application of this for modeling a rainfall data .

The spectral domain can be used as an efficient and interpretable framework for com-
paring and contrasting many of these methods, including the deformation approach, ker-
nel convolutions, spatially varying anisotropic kernels and spatially adaptive spectra, see
e.g. Fuentes (2002). Pintore and Holmes (2005) review these methods and show how they
relate to one another. They also point to generalizations which result in spatially adaptive
covariance functions with standard forms, such as the Gaussian or the Matèrn, but now
with “localised” parameters.

4.1 The Bayesian kriged-Kalman Filter Model
This model is developed by using what are known as principal kriging functions, see
Mardia et al. (1998) and Sahu and Mardia (2005) for full details. Here we only provide a
brief outline. Suppose that the mean process in (2) is the sum of two processes

= � ���'����3� �� � � C\���8�
��� ` � + � � ���A����5�w� `

where the first term is the kriged-Kalman filter term described below and the second term
is the regression term with time varying regression parameters � ` .

Let � be the matrix of order ����� with elements �z�S���
�
. Assume that the fist column of� to be the unit vector, denoted by � . The other columns are obtained as follows: First,

obtain � �>� g C� O ���� � g C� � � g C� �w� � � g C� �
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Now perform the spectral decomposition of
�

, so that
� � ¡�¢�¡ � and

��£ ���¥¤�� £ �5
where ¡ � � £ C&������� £,¦ � and ¢ � diag

� ¤UC&�������E¤ ¦ � , and we assume without loss of
generality that the eigenvalues are in non-decreasing order, ¤lC§� 7	¨ ¤ :L© C«ª c�c�c ª¬¤ ¦ .
Finally, the matrix � is taken as � � � �JE¤ : � � £ : ������&E¤ � � � £ � �G� For Kalman filtering
Sahu and Mardia (2005) assume the dynamic time series model  ` �¬ ` g C/+¯® `  where® `,° 6 �S± G�~²�� .
4.2 A Kernel Convolution Approach
A general class of stationary processes can be built using a kernel convolution approach
initially discussed by Ver Hoef and Barry (1998). In a series of papers Higdon and his
co-authors has popularized the approach by adopting a discrete version of the approach,
see for example Higdon (1988). See Sahu and Challoner (2005) for some recent develop-
ments and an interesting application on joint modeling of ocean temperature and salinity.

The spatio-temporal process ? � ������ , is thought to be induced by kernel convolution
effects of a single latent spatio-temporal process ³ �µ´·¶ ��5¸a� where

´¹¶
denotes a spatial

location and �L¸ denotes a time point.
Let
p �SR ^  R ` � denote the joint kernel in space and time where

R ^
and
R `

are the dis-
tances in space and in time, respectively. Let

´·¶ Eº��»���������E¼ denote the grid locations
where the spatial smoothing kernels will be centered; similarly let ��¸§�½ � ���������E¾
denote the equi-spaced time points where the temporal kernels will be centered. Now we
write: ? � ������3�À¿ÂÁ¶ � C ¿ÀÃ¸ � C p �GYZY �_O ´Ä¶5Y]Y  Y �ÅOX�5¸ Y �q³ ��´Æ¶ ��5¸a�
where

Y]Y �_O ´¹¶5YZY denotes the distance between the locations � and
´·¶

.
A simple form of p �8R ^  R ` �M� p ^ �8R ^ � p ` �SR ` �

where
p ^ �SR ^ � is a kernel in space and

p ` �SR ` � is a kernel in time. The kernels
p ^

and
p `

can be chosen to be any valid covariance function, for example belonging to the Matèrn
family (3).

5 Application Areas

5.1 Environmental Pollution Monitoring
Space-time modeling of pollutants has some history including, e.g., Guttorp et al. (1994),
Haas (1995) and Carroll et al. (1997). In recent years, hierarchical Bayesian approaches
for spatial prediction of air pollution have been developed (Brown et al., 1994). Zidek
et al. (2002) developed predictive distributions on non-monitored PM CSÇ concentrations
(a type of air pollution particles with diameters less than 10 = m) in Vancouver, CA. They
noted the under-prediction of extreme values in the pollution field, but their methodology
provided useful estimates of uncertainties for large values. Cressie et al. (1999) com-
pared kriging and Markov-random field models in the prediction of PM CSÇ concentrations
around Pittsburgh, PA. Kibria et al. (2000) developed a multivariate spatial prediction
methodology in a Bayesian context for the prediction of PM :�È É in Philadelphia, PA. This
approach used both PM :�È É and PM CSÇ data at monitoring sites with different start-up times.
Shaddick and Wakefield (2002) propose short term space-time modeling for PM CSÇ .
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Smith et al. (2003) propose a spatio-temporal model for predicting weekly averages
of PM :�È É and other derived quantities such as annual averages within three southeastern
states. The PM :�È É field is represented as the sum of semi-parametric spatial and temporal
trends, with a random component that is spatially correlated, but not temporally. These
authors apply a variant of the expectation-maximization (EM) algorithm to account for
high percentages of missing data. Sahu and Mardia (2005) present a short-term forecast-
ing analysis of PM :�È É data in New York City during 2002 using a Bayesian KKF model.

Sahu et al. (2004) address a frequent criticism of spatial prediction using air pollution
data from large-scale monitoring networks. Many of these networks were designed to cap-
ture peak pollution levels within urban, highly populated areas. For this situation, there
is a potential for over-prediction within sparsely monitored rural areas with misleading
prediction errors. Their paper presents a hierarchical space-time model that introduces
two spatio-temporal processes, one capturing rural or background effects, the second
adding extra variability for urban/suburban locations. They also consider the relation-
ship of population density to fine particulate matter and incorporate non-stationary spatial
and temporal covariance structure. Estimates of the probabilities of non-compliance with
the proposed air quality standard for annual PM :�È É are also provided, based on the weekly
predictions of PM :�È É for 2001. This spatial information is useful for determining where to
place new sites to judge future compliance with air quality standards with measurements.

5.2 Climate and Other Environmental Applications
A fast growing field is on fusing geophysical deterministic models with data. The field is
of combining observations with a deterministic model is known as data assimilation. It
is critical in understanding and predicting geophysical systems such as in climate mod-
eling and weather prediction. For example, Navier-Stoke equations are well known for
describing turbulence but given a data how to input summary statistics such as princi-
pal components is one of the challenges. There have been emerging various Bayesian
methods of data assimilation and ”ensemble” filtering, see for example Bengtsson et al.
(2003) Nychka (2000), Hoar et al. (2003), Kalnay (2003), Lorenc (2003) and Goldstein
and Rougier (2005) The thesis advanced in the last article has a great deal of potential in
many applications.

In a recent paper Glasbey and Allcroft (2005) develop a spatio-temporal auto-regressive
moving average (STARMA) model for the solar radiation microclimate in Edinburgh.
Knowledge of the statistical characteristics of solar radiation over space and time are
needed for the design and evaluation of solar energy systems. Solar radiation was recorded
at a pair of sites in Edinburgh every 30 seconds for two years, with the sites changed each
month (Glasbey et al., 2001). Although STARMA models can be computationally expen-
sive, they show that by working on a torus in space, the order of dimension of calculations
can be substantially reduced. They overcome the spatial sparsity of the data by assum-
ing that space and time are interchangeable, and consider issues of model identification,
estimation and validation.

Spatio-temporal modeling of rainfall and precipitation is currently receiving a great
deal of attention. Recent articles on rainfall modeling include Brown et al. (2001), Sansó
and Guenni (1999, 2000) and Allcroft and Glasbey (2003). See Isham et al. (2005) for
space-time simultaneous modeling of rainfall and soil mixture.

Sahu et al. (2005) reconstruct rainfall fields by combining two data sources: rainfall
intensity as measured by ground raingauges (rain mm to the nearest 10th of one millime-
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ter) and radar reflectivity. Radar raingauges are increasingly used to reconstruct rainfall
fields since they are able to provide spatially continuous images of precipitation for short
and regular time intervals; ground raingauges, on the other hand, provide more accurate
and direct estimates of rainfall intensity. They compare two spatio-temporal models in
order to enhance the predictions. Jona Lasinio et al. (2005) provide further examples on
rainfall modeling using a Bayesian KKF model.

5.3 Social Sciences
Sociological and socio-economic phenomena usually co-vary over time and space and the
empirical study of them generally involves analysis of complex data sets obtained from
complex sample surveys. Multilevel multiprocess models for survey data that include
longitudinal, event history and/or spatial information have the potential to reveal greater
insight into social processes than methods that model one process at a time or investigate
the association structure across processes at a single time. Furthermore, they permit the
investigation of individual changes over space and time rather than changes at an aggre-
gate level.

Cohort or panel studies provide a rich source of longitudinal information. Investiga-
tion using models that allow temporal and spatial information from such studies with other
covariates including geographical information can lead to very fruitful research. However,
there are still concerns regarding the release of spatial information and confidentiality of
the data providers.

There are research articles where confidentiality is not an issue or those have been
dealt with using appropriate methods before modeling is considered. For example, Gelfand
et al. (2004a) model house price data in the city of Baton Rouge, Lousiana, USA. They
propose a rich class of spatio-temporal models under which each property is point refer-
enced and its associated selling price modeled through a collection of temporally indexed
spatial processes.

In a discussion paper Gelfand et al. (2004b) further develop methodologies using a
computationally manageable class to build valid cross covariance functions referred to
as the linear model of coregionalization (LMC). They also propose the notion of a spa-
tially varying LMC (SVLMC) providing a very rich class of multivariate non-stationary
processes with simple interpretation. They illustrate the use of the SVLMC with applica-
tion to more than 600 commercial property transactions in three quite different real estate
markets, Chicago, Dallas and San Diego.

Spatio-temporal models are also useful for analyzing spatial interaction of crime in-
cidents, for example Kakamu et al. (2005) analyze the development of eighteen types of
criminal records in Japan for the period 1990 to 2001 across 47 prefectures with spatial
lag and spatio-temporal heteroscedasticity. They explore the hypothesis that crime data
are related to socio-demographic variables in Japan.

5.4 Geostatistics and Hydrology
Many concepts in spatial statistics originated from their use in geostatistics. See Diggle
et al. (1998) for a recent review in model based geostatistics. Kent and Mardia (2002)
provide a unified approach to spatio-temporal modeling through the use of drift and/or
correlation in space and/or time to accommodate spatial continuity. For drift functions,
they have emphasized the use of so called principal kriging functions, and for correlations
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they have discussed the use of a first order Markov structure in time combined with spatial
blurring.

In a recent article Dryden et al. (2005) consider non-stationary spatio-temporal mod-
els in an investigation into karst water levels in western Hungary. A strong feature of the
dataset is the extraction of large amounts of water from mines, which caused the water
levels to reduce until about 1990 when the mining ceased, and then the levels increased
quickly. They discuss some traditional hydro geological models which might be consid-
ered appropriate for this situation, and various alternative stochastic models. In particu-
lar, a separable space-time covariance model is proposed which is then deformed in time
to account for the non-stationary nature of the lagged correlations between sites. Suit-
able covariance functions are investigated and then the models are fitted using weighted
least squares and cross-validation. Forecasting and prediction is carried out using spatio-
temporal kriging. They assess the performance of the method with one step ahead fore-
casting and make comparisons with naive estimators. Various other relevant references
are given in this paper and also how it relates to the previous methodology.

5.5 System Biology
The idea is to look at dynamics in a range of bioinformatics areas. In very broad terms, this
would involve developing/extending and applying statistical/reverse-engineering tools to
time series. Much of the data on protein structure and gene expression is limited to snap-
shots in time. However, since the data are typically very partial and noisy, their analysis
is often limited in its success and in its power. Access to time series, where available, and
extension of the analysis to dynamics should yield important insight. Possible applica-
tions areas include protein dynamics, gene-protein interaction, gene network dynamics,
etc. There are other challenges in spatio-temporal modeling in this field, see for example
Costas (2002).

”One of the greatest related challenges will be combining all genetic, molecular, ge-
ometrical and environmental effects into a model with a coherent set of spatiotemporal
dynamics, and how to estimate experimentally the involved parameters...... While it is
important to bear in mind that evolution will very likely not be explained as the devel-
opment of optimal shapes for performing specific tasks implied by the environment, the
shape-function paradigm will still essentially be involved with adaptation and fitness. In
this sense, powerful approaches are required not only to characterise biological morphol-
ogy, but also to estimate the degree of fitness of specific morphologies with respect to
specific tasks. This important possibility involves the whole range of spatial and temporal
scales, from proteins to environment, passing through cells, organs, members and indi-
viduals. Such endeavours will imply the application of concepts and tools from physics,
image and shape analysis and dynamical systems.”

5.6 Archaeology
Spatio-temporal problems in archaeology and palaeo-environmental research (including
climate change) cannot be tackled readily using standard models because of the presence
of uncertainty on both the temporal and the spatial scales. Typically, the temporal infor-
mation arises from chronometric dating methods, such as radiocarbon or uranium-series
dating, which lead to estimated rather than exactly known calendar dates. Along side
this, past landscapes were often very different from modern ones in important and poorly
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understood ways. This means that in order to reliably make inferences on either or both
of the space and time scales, we need carefully devised models that take account of the
uncertainty and provide probabilistic solutions to the questions posed.

Until recently, researchers working on such problems have taken one of two ap-
proaches. Some, like the famous work by Ammerman and Cavalli-Sforza (1973), use
deterministic models to represent the spread of populations across landscapes without
formally fitting them to real data. Others use stochastic models, but have not attempted to
represent changes in space and time in the same model. Blackwell and Buck (2003), for
example, illustrated the use of a fully Bayesian model in which the uncertainties arising
from the radiocarbon dating evidence are formally accounted for, but the spatial informa-
tion is not explicitly modeled at all.

6 Discussion
In this review we have discussed the recent developments in the models for spatio-temporal
data. The associated issues of model fitting, choice, diagnostics, validation and prediction
have not been touched upon at all, though they are very important. The Bayesian frame-
work together with the Markov chain Monte Carlo methods are becoming increasingly
popular, see Chapter 4 of Banerjee, Carlin and Gelfand (2004) for a broad overview.

We have not discussed many areas like brain imaging, modeling wildlife and tracking
wild animals, tree defoliation in space and time, river flows, disease epidemic and many
more. A book of abstract giving a recent snapshot of activities has been edited by Sahu
(2005). There is also a growing literature on modeling mis-aligned data, see, for example
the references in Banerjee, Carlin and Gelfand (2004, Chapter 6).

At present there is no general purpose software for model fitting and prediction, al-
though the BUGS (Spiegelhalter et al., 1996) software (Bayesian inference Using Gibbs
Sampling, available from mrc-bsu.cam.ac.uk) can handle some of the problems.
Clearly more research on unification is needed before such a tool can be developed. The
development we have presented in Section 4 is one such attempt as it presents three dif-
ferent modeling strategies unified through hierarchical models.
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