ELEC6214 Advanced Wireless Communications Networks and Systems S Chen

Revision of Lecture Seventeen

e Previous lecture introduces generic structure of adaptive equalisation

— Adaptive signal processing/filtering: enabling technology for communications
— Adaptive equalisation is just a particular example
— Concepts of cost function and optimisation, adaptive FIR filter

e Communications technology is about “Shannon meets Wiener”

e This lecture looks into optimal FIR filter design known as Wiener filter or
minimum mean square error solution

— This Wiener design embodies most important ideas of adaptive filtering
— It is most widely used design principle in communication applications
— It has important influence on new designs
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Wiener Filters

e Wiener filter is the optimal FIR filter in the MMSE sense
Define the FIR filter weight vector desired

output response
w = [wo wi -+ wy]’ input u(k) FIR filter y(k) d(k)
WoW1 * * * W _ +
and the filter input vector
T
u(k) = [u(k)u(k—1)---u(k—M)] error e(k)

The actual filter output and the error signal are given by
M
y(k) =D wiu(k —i) =w'u(k) e(k) =d(k) —y(k) = d(k) — w" u(k)
i=0

e Assuming the desired signal d(k) and the filter input w(k) are wide-sense stationary, the optimal
Wiener solution w minimises the MSE

J(w) = E[le(k)|"] = Ele(k)e" (k)]

e Define the desired signal power o5 = E[|d(k)|?], the autocorrelations v(1) = E[u(k)u*(k — )]
for 0 < 1 < M, and the crosscorrelations p(1) = E[d"(k)u(k — )] for 0 <1 < M
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Wiener Filters (continue)
Since the square error |e(k)|* = d(k)d* (k) —d(k)u” (B)w—wu(k)d* (k) +w u(k)u” (k)w,

J(w) =E[le(k)]’ ] =0 —p"'w—w'p+w'Rw

where C p(0) [ ~v(0) (1) e Y(M) ]
b — p(il) and R — 7*5(1) 7(50) V(Mi— 1)
| p(M) Ly (M) (M —=1) - v(0) ]
For w to be a minimum point of J(w):
0*J(w)

VJ(W)|w=w = 0 (necessary) is positive definite (sufficient)

Oow?2

W=wW

that is, —2p + 2Rw = 0 (necessary), and R is positive definite (sufficient)

Necessary condition — Wiener-Hopf equations: Rw = p, which gives the Wiener solution
~ —1
w=R p

Since this is the only minimum, it is a global minimum. Note that the correlation matrix R is
always nonnegative definite. When R is positive definite, the inverse R~ exists
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Orthogonal Principle and MSE surface

e The Wiener filter error (k) = d(k) — w' u(k) is orthogonal to the filter input vector:
— E[e*(k)u(k)] = 0, and as a consequence, the MMSE filter output 7(k) = wu(k) is
orthogonal to its error: E[e™(k)y (k)] = O

e The MSE is a bowl-shaped (2(M + 1) 4+ 1)-dimensional surface ((M 4+ 1) + 1 in real case)
J(w) =0, — p’w —w'p +w'Rw
and has a unique minimum at w = w. Since the MMSE
Jmin = J(W) = 03 — pHR_lp = 03 — 05
where E[|7(k)|?] = 05 = E[w"u(k)u” (k)w] = p”’R'p, the MSE for w can be written as

J(w) = Jpin + (W — W) 'R(w — W)

e The eigenvalues of R are the solutions Ao, A1, - - - , Ajs of det(R — AI) = 0, and the condition
number is the ratio of largest eigenvalue to smallest eigenvalue

‘)\Illil)(

>\min

xX(R) =
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Eigenvalue Spread

e The ratio x(R) is called eigenvalue spread, and it determines the performance of an adaptive
algorithm
x(R) > 1: If R is singular, Apmin = 0 and x(R) = oco; R is ill conditioned if x(R) is large.

e Example of real channel and modulation with the channel »(k) = 0.5s(k) 4+ 1.0s(k—1) +n(k),
the equaliser y(k) = wor(k) + wir(k — 1) 4+ war(k — 2), and the desired response d(k) =
s(k — 1), where n(k) is white Gaussian with zero mean and variance o> = 0.25, and s(k) is
BPSK taking value from {£1}

e [ he auto-correlation matrix and the cross-correlation vector are:

1.5 0.5 0.0 1.0
R= | 05 1.5 0.5 p=| 0.5
0.0 0.5 1.5 0.0

The eigenvalues and the MMSE error solution are

A= 1.5+ 0.5 0.6190
A1 = 1.5 W = 0.1429
Ao = 1.5 —1+/0.5 —0.0476

The MMSE is Jyin = 0.3095, and the eigenvalue spread is x(R) = 2.7836
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Steepest Descent Algorithm

e There are many reasons for not computing R~ directly — gradient descent for the MMSE solution

e For function of a scalar variable f(x), noting that negative gradient points “downhill” and starting

from an initial guess x(0), we can use: f (%)
of
r(l+1) ==z() + Az(l) = z(l) + —Ho le=)
This iteration loop will leads to x(I) — Z at which point
0
_f o=z = 0 X
ox

e For the FIR filter y(k) = wu(k) with e(k) = d(k) — y(k),
J(w) = 0621 —p'w—w'p+w'Rw and w =R 'p

e lteration procedure based on gradient so that w(l) — w, with Algorithm:
1. Initial value w(0)
2. VJ() =VJ(w(l)) = —2p + 2Rw(])
3. w(l+ 1) = w(l) +30(=VJ(1) = w(l) + u(p — Rw(l))
4. Go back to step 2
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Analysis of Steepest Descent Algorithm

e Note that the steepest descent algorithm involves feedback e(k) — stability consideration and the
value of u is critical. Also the underlying system is characterised by the eigenvalue spread

e Stability analysis: Necessary and sufficient condition for

llim w(l) =w
IS 2
0< <

;)\Illfi)(
e Time constant of the algorithm 7, defines how quickly the algorithm converges to a steady-state

solution on average. It can be shown that

1 —1
<7, <
1Og(|1 - ,U')\max|) 10g(|1 - ,U)\min|)

Note 1
T, ~
,u>\min
But
]- ')\ﬁrrlEi)(
pooc S = Tq X = x(R)

This clearly shows that the eigenvalue spread influences rate of convergence
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Example

e Example as in Slide 190: The steepest-descent algorithm is used. The step-size
parameter i should satisfy

2 2
Amax 1.5 ++0.5

0< < or 0<u<0.9

0.8 1 &
0.9 Jmn ——
() ES 25 ) \ f11J ::(). :Z ——
' = 0.8 ¢t \mu=0.5 ——
m o \mu=0.8 —=—
= 0.4 ) 0.7
o> § 0.6 |
2 0.2 & 0.5
0| S 0.4t
777777777777 = = = n g 0 3 . ¥ & &—=
-0.2 ' ' ' ' 0.2 ' ' ' '
0 2 4 6 8 10 0 2 4 6 8 10
iteration iteration
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Sample-by-Sample Adaptation

e Recall that the steepest descent algorithm can be used to obtain the Wiener (MMSE) solution

U It requires ensemble averages R and p, usually not available. These statistics may be
approximated by time-averaging

30 = > ulkyu (k= 1) p(l) = = > d" (kyulk — 1)

I} But w(k) and d(k) can be nonstationary, and it would be better to update the filter as each
new data sample is taken

|} Many practical applications require extremely fast computation per sample, as sampling rate can
be very fast
e These considerations — a stochastic gradient-based method
— Steepest descent method: VJ(w(l)) = —2p + 2Rw(l) with R = E[u(k)u’ (k)] and
p = E[u(k)d"(k)]. All the quantities are deterministic
— Stochastic gradient-based method: instantaneous “estimates” R(k) = u(k)u’? (k) and p(k) =
u(k)d* (k) are used to provides gradient of instantaneous squared error J(k) = |e(k)|?

VJ(k) = —2u(k)d* (k) + 2u(k)u” (k)w(k) = —2u(k)e* (k)

— where e(k) = d(k) — w (k)u(k). All the quantities are noisy or stochastic
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Least Mean Square Algorithm

e This is probably the simplest adaptive algorithm, involving three steps per cycle:

1. Compute the filter output o
y(k) = w" (k)u(k)

2. Compute the estimation error
e(k) = d(k) — y(k)
3. Update the tap weights

Wk + 1) = (k) + pV T(K) = W(k) + pu(k)e’ (k)
e The step size . must be properly chosen, the mean of w(k) is:
E[w (k)
and the mean square error is:
J(k) = E[le(k)|"] = E[|d(k) — " (k)u(k)|’]

e Note w(k) is stochastic and we have to talk about convergence in mean and/or mean square error

e Surprisingly, this LMS algorithm actually works, but its convergence analysis is extremely difficult
— Stochastic gradient descent method is a widely used low-complexity optimisation approach
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Analysis in Stationary Environment

e Assuming u(k) and d(k) are jointly wide sense stationary and some other simplified assumptions:

— Convergence in mean:

2
lim E[w(k)] = w provided that 0 < pu <

k— o0 >\max

— Convergence in mean square: where J(00) (> Jmin) is finite,

2 M U
d : <1
>\max o ; 2(1 - :LLAZ)

khm J(k) = J(oco) ifandonly if 0 < pu <

e Steady state mean square error is given by
Jmin

1 — %Ei\io pAi/ (1 — pX)

J(o0) =

® Excess mean square error is defined as
M
52 im0 M/ (1 — )
M
1 - % i=0 pA /(1 — pA)

Jex(oo) — J(OO) — Jmin = Jmin X

e Misadjustment is defined by
a2 Jex(00) 3 ¥img rAi/ (1 — i)
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Influence of Eigenvalue Spread

e Define the average eigenvalue

1 M
Aav = A
DEap
and the average time constant of the LMS algorithm
—1 1

Tmse,av

"~ 2log(|1 — pAa]) | 20

e If step size is chosen as pu << /\riax, condition for convergence in mean square becomes:

O< u< M2 . With this choice of u, the misadjustment is approximately by

=0 "

+ DAavy M +1

2 4'7-rnse,aw

M
MZ p(M
23

e Noting that M oc p and Tiseav X % a careful trade off is required in choosing @: small o leads

to small M but large © leads to fast convergence
1

e Noting that Tipge av = ™y x x(R), the rate of convergence is determined by the eigenvalue

spread: in general, when H)%%R) is large, the LMS converges slowly
— LMS works well if x(R) is small, and if x(R) = 1 its convergence performance is as good as

recursive least squares algorithm
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Example

e Example as in Slide 190 but the LMS is used is used. In computer simulation, E[w (k)] and J (k)
are approximated using sample averages over 500 different runs

po<< P and p < M, i | Theoretical Jox(0o) | Simulation Jex(o0)
=0 0.10 0.1162 0.10
— p << 0.45 and p < 0.44 0.05 0.0435 0.04
0.01 0.0073 0.01
1 - 1
0.9} J_mn 0.9 J_mn -
) aver age/ 500 runs,\nmu=0.1 —— ) aver age/ 500 runs,\nmu=0.01 ——
= 0.8 - 0.8}
(] (D)
s 0.7 o O0.7F
§ 0.6 | § 0.6 |
& 0.5} & 0.5}
S 0.4¢ S 0.4}
g 0.3 ¢ g 0.3 F
0.2 ' ' ' ' ' 0.2 ' ' ' ' '
0 50 100 150 200 250 300 0 50 100 150 200 250 300
iteration iteration
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Least Squares Estimate

e MMSE estimate is based on ensemble average, while least squares estimate relies only on available
samples {u(k), d(k)};—,: From slide 230, we can express desired output as

d*(k) = u” (k)w + " (k)

C a1 7 | W) T e (1)
'@ | _ | 0@ || €@ | L g Cpwae
e | | wik) | e ]

— From UZd* = U”Uw 4 U e*, since input data are uncorrelated with noise, U?e* =~ 0, LS
estimate is given by

wis = (UU) 'ufar
e Recursive least squares algorithm with forgetting factor A and initial covariance matrix P(0)

B A'P(k — Du(k)
k(k) 14+ 2 H(k)P(k — Du(k)

e(k) =d(k) — W (k — Du(k)
W(k) =w(k — 1) + k(k)e* (k)

P(k) =A""P(k — 1) — A 'k(k)u” (B)P(k — 1)
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Summary

e Wiener (MMSE) solution: w = R™'p
— MSE surface J(w) = o3 — p’w — w'p + w'Rw = Jpum + (W — W)'R(w — W) is
quadratic with the MMSE given by Juim = 05 — p"R ™ 'p
— Steepest-descent algorithm and convergence analysis
e The LMS algorithm:

y(k) = W (k)u(k), e(k) =d(k) —y(k), %(k+1)=w(k)+ pu(k)e (k)

— Sufficient conditions for stationary convergence of the LMS

2
<< and 0 < p < ————
max SN
— Misadjustment and convergence rate of the LMS:
M

K 1 : 1
M=~ — Z ANi—> M x u Tmse,av ~ —> convergence time o< —
2 1=0 2,U'>\av v

— Effect of eigenvalue spread: the larger eigenvalue spread, the slower convergence rate of LMS

e least squares estimate and recursive least squares algorithm
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