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Revision of Lecture Seventeen

• Previous lecture introduces generic structure of adaptive equalisation

– Adaptive signal processing/filtering: enabling technology for communications
– Adaptive equalisation is just a particular example
– Concepts of cost function and optimisation, adaptive FIR filter

• Communications technology is about “Shannon meets Wiener”

• This lecture looks into optimal FIR filter design known as Wiener filter or
minimum mean square error solution

– This Wiener design embodies most important ideas of adaptive filtering
– It is most widely used design principle in communication applications
– It has important influence on new designs
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Wiener Filters

• Wiener filter is the optimal FIR filter in the MMSE sense

Define the FIR filter weight vector

w = [w0 w1 · · ·wM ]T

and the filter input vector

u(k) = [u(k) u(k−1) · · ·u(k−M)]
T

- FIR filter
w0w1 · · ·wM

-
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��

?

�Σ− +

input u(k)
output
y(k)

desired
response

d(k)

error e(k)

The actual filter output and the error signal are given by

y(k) =
M

X

i=0

w∗
i u(k − i) = w

H
u(k) e(k) = d(k) − y(k) = d(k) − w

H
u(k)

• Assuming the desired signal d(k) and the filter input u(k) are wide-sense stationary, the optimal

Wiener solution ŵ minimises the MSE

J(w) = E[|e(k)|2] = E[e(k)e
∗
(k)]

• Define the desired signal power σ2
d = E[|d(k)|2], the autocorrelations γ(l) = E[u(k)u∗(k − l)]

for 0 ≤ l ≤ M , and the crosscorrelations p(l) = E[d∗(k)u(k − l)] for 0 ≤ l ≤ M
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Wiener Filters (continue)

• Since the square error |e(k)|2 = d(k)d∗(k)−d(k)uH(k)w−wHu(k)d∗(k)+wHu(k)uH(k)w,

J(w) = E[|e(k)|2] = σ2
d − p

H
w − w

H
p + w

H
Rw

where
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γ∗(1) γ(0) · · · γ(M − 1)
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• For bw to be a minimum point of J(w):

∇J(w)|w=bw = 0 (necessary)
∂2J(w)

∂w2

˛

˛

˛

˛

˛

w=bw

is positive definite (sufficient)

that is, −2p + 2Rbw = 0 (necessary), and R is positive definite (sufficient)

• Necessary condition → Wiener-Hopf equations: Rbw = p, which gives the Wiener solution

bw = R
−1

p

Since this is the only minimum, it is a global minimum. Note that the correlation matrix R is

always nonnegative definite. When R is positive definite, the inverse R−1 exists
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Orthogonal Principle and MSE surface

• The Wiener filter error be(k) = d(k) − bwHu(k) is orthogonal to the filter input vector:

– E[be∗(k)u(k)] = 0, and as a consequence, the MMSE filter output by(k) = bwHu(k) is

orthogonal to its error: E[be∗(k)by(k)] = 0

• The MSE is a bowl-shaped (2(M + 1) + 1)-dimensional surface ((M + 1) + 1 in real case)

J(w) = σ2
d − p

H
w − w

H
p + w

H
Rw

and has a unique minimum at w = bw. Since the MMSE

Jmin = J(bw) = σ2
d − p

H
R

−1
p = σ2

d − σ2
by

where E[|by(k)|2] = σ2
by = E[bwHu(k)uH(k)bw] = pHR−1p, the MSE for w can be written as

J(w) = Jmin + (w − bw)
H
R(w − bw)

• The eigenvalues of R are the solutions λ0, λ1, · · · , λM of det(R−λI) = 0, and the condition

number is the ratio of largest eigenvalue to smallest eigenvalue

χ(R) =
λmax

λmin
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Eigenvalue Spread

• The ratio χ(R) is called eigenvalue spread, and it determines the performance of an adaptive

algorithm

χ(R) ≥ 1: If R is singular, λmin = 0 and χ(R) = ∞; R is ill conditioned if χ(R) is large.

• Example of real channel and modulation with the channel r(k) = 0.5s(k)+1.0s(k−1)+n(k),

the equaliser y(k) = w0r(k) + w1r(k − 1) + w2r(k − 2), and the desired response d(k) =

s(k − 1), where n(k) is white Gaussian with zero mean and variance σ2
n = 0.25, and s(k) is

BPSK taking value from {±1}
• The auto-correlation matrix and the cross-correlation vector are:

R =

2
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The eigenvalues and the MMSE error solution are

λ0 = 1.5 +
√

0.5

λ1 = 1.5

λ2 = 1.5 −
√

0.5

ŵ =

2

4

0.6190

0.1429

−0.0476

3

5

The MMSE is Jmin = 0.3095, and the eigenvalue spread is χ(R) = 2.7836
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Steepest Descent Algorithm

• There are many reasons for not computing R−1 directly → gradient descent for the MMSE solution

• For function of a scalar variable f(x), noting that negative gradient points “downhill” and starting

from an initial guess x(0), we can use:

x(l + 1) = x(l) + ∆x(l) = x(l) +

„

−µ
∂f

∂x

˛

˛

x=x(l)

«

This iteration loop will leads to x(l) −→ bx at which point

∂f

∂x
|x=bx = 0

∆

f (x)

^
x

x

x(l) x

• For the FIR filter y(k) = wHu(k) with e(k) = d(k) − y(k),

J(w) = σ
2
d − p

H
w − w

H
p + w

H
Rw and bw = R

−1
p

• Iteration procedure based on gradient so that w(l) −→ bw, with Algorithm:

1. Initial value w(0)

2. ∇J(l) = ∇J(w(l)) = −2p + 2Rw(l)

3. w(l + 1) = w(l) + 1
2µ(−∇J(l)) = w(l) + µ(p − Rw(l))

4. Go back to step 2
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Analysis of Steepest Descent Algorithm

• Note that the steepest descent algorithm involves feedback e(k) → stability consideration and the

value of µ is critical. Also the underlying system is characterised by the eigenvalue spread

• Stability analysis: Necessary and sufficient condition for

lim
l→∞

w(l) = bw

is
0 < µ <

2

λmax

• Time constant of the algorithm τa defines how quickly the algorithm converges to a steady-state

solution on average. It can be shown that

−1

log(|1 − µλmax|)
≤ τa ≤ −1

log(|1 − µλmin|)

Note
τa ≈ 1

µλmin

But

µ ∝ 1

λmax

⇒ τa ∝ λmax

λmin

= χ(R)

This clearly shows that the eigenvalue spread influences rate of convergence
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Example

• Example as in Slide 190: The steepest-descent algorithm is used. The step-size
parameter µ should satisfy

0 < µ <
2

λmax
=

2

1.5 +
√

0.5
or 0 < µ < 0.9
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Sample-by-Sample Adaptation

• Recall that the steepest descent algorithm can be used to obtain the Wiener (MMSE) solution

⇓ It requires ensemble averages R and p, usually not available. These statistics may be

approximated by time-averaging

γ̄(l) =
1

N

N
X

k=1

u(k)u∗(k − l) p̄(l) =
1

N

N
X

k=1

d∗(k)u(k − l)

⇓ But u(k) and d(k) can be nonstationary, and it would be better to update the filter as each

new data sample is taken

⇓ Many practical applications require extremely fast computation per sample, as sampling rate can

be very fast

• These considerations → a stochastic gradient-based method

– Steepest descent method: ∇J(w(l)) = −2p + 2Rw(l) with R = E[u(k)uH(k)] and

p = E[u(k)d∗(k)]. All the quantities are deterministic

– Stochastic gradient-based method: instantaneous “estimates” eR(k) = u(k)uH(k) and ep(k) =

u(k)d∗(k) are used to provides gradient of instantaneous squared error eJ(k) = |e(k)|2

∇ eJ(k) = −2u(k)d∗(k) + 2u(k)uH(k)ew(k) = −2u(k)e∗(k)

– where e(k) = d(k) − ewH(k)u(k). All the quantities are noisy or stochastic
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Least Mean Square Algorithm

• This is probably the simplest adaptive algorithm, involving three steps per cycle:

1. Compute the filter output
y(k) = ew

H(k)u(k)

2. Compute the estimation error
e(k) = d(k) − y(k)

3. Update the tap weights

ew(k + 1) = ew(k) +
1

2
µ∇ eJ(k) = ew(k) + µu(k)e

∗
(k)

• The step size µ must be properly chosen, the mean of ew(k) is:

E[ew(k)]

and the mean square error is:

J(k) = E[|e(k)|2] = E[|d(k) − ew
H(k)u(k)|2]

• Note w̃(k) is stochastic and we have to talk about convergence in mean and/or mean square error

• Surprisingly, this LMS algorithm actually works, but its convergence analysis is extremely difficult

– Stochastic gradient descent method is a widely used low-complexity optimisation approach
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Analysis in Stationary Environment

• Assuming u(k) and d(k) are jointly wide sense stationary and some other simplified assumptions:

– Convergence in mean:

lim
k→∞

E[ew(k)] = bw provided that 0 < µ <
2

λmax

– Convergence in mean square: where J(∞) (> Jmin) is finite,

lim
k→∞

J(k) = J(∞) if and only if 0 < µ <
2

λmax

and
M

X

i=0

µλi

2(1 − µλi)
< 1

• Steady state mean square error is given by

J(∞) =
Jmin

1 − 1
2

PM
i=0 µλi/(1 − µλi)

• Excess mean square error is defined as

Jex(∞) = J(∞) − Jmin = Jmin ×
1
2

PM
i=0 µλi/(1 − µλi)

1 − 1
2

PM
i=0 µλi/(1 − µλi)

• Misadjustment is defined by

M =
Jex(∞)

Jmin

=
1
2

PM
i=0 µλi/(1 − µλi)

1 − 1
2

PM
i=0 µλi/(1 − µλi)
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Influence of Eigenvalue Spread

• Define the average eigenvalue

λav =
1

M + 1

M
X

i=0

λi

and the average time constant of the LMS algorithm

τmse,av =
−1

2 log(|1 − µλav|)
≈ 1

2µλav

• If step size is chosen as µ << 1
λmax

, condition for convergence in mean square becomes:

0 < µ < 2
PM

i=0 λi
. With this choice of µ, the misadjustment is approximately by

M ≈ µ

2

M
X

i=0

λi =
µ(M + 1)λav

2
≈ M + 1

4τmse,av

• Noting that M ∝ µ and τmse,av ∝ 1
µ, a careful trade off is required in choosing µ: small µ leads

to small M but large µ leads to fast convergence

• Noting that τmse,av ≈ 1
µλmin

∝ χ(R), the rate of convergence is determined by the eigenvalue

spread: in general, when χ(R) is large, the LMS converges slowly

– LMS works well if χ(R) is small, and if χ(R) = 1 its convergence performance is as good as

recursive least squares algorithm
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Example

• Example as in Slide 190 but the LMS is used is used. In computer simulation, E[ew(k)] and J(k)

are approximated using sample averages over 500 different runs

µ <<
1

λmax

and µ <
2

PM
i=0 λi

=⇒ µ << 0.45 and µ < 0.44
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Least Squares Estimate

• MMSE estimate is based on ensemble average, while least squares estimate relies only on available

samples {u(k), d(k)}K
k=1: From slide 230, we can express desired output as

d∗(k) = u
H(k)w + e∗(k)

or
2

6

6

4

d∗(1)
d∗(2)

...

d∗(K)

3

7

7
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=

2

6

6

6

4

uH(1)

uH(2)
...

uH(K)

3

7

7

7

5

w +

2

6

6

4

e∗(1)
e∗(2)

...

e∗(K)

3

7

7

5

⇒ d
∗ = Uw + e

∗

– From UHd∗ = UHUw + UHe∗, since input data are uncorrelated with noise, UHe∗ ≈ 0, LS

estimate is given by

bwLS =
`

U
H
U

´−1
U

H
d
∗

• Recursive least squares algorithm with forgetting factor λ and initial covariance matrix P(0)

k(k) =
λ−1P(k − 1)u(k)

1 + λ−1uH(k)P(k − 1)u(k)

e(k) =d(k) − bw
H(k − 1)u(k)

bw(k) =bw(k − 1) + k(k)e
∗
(k)

P(k) =λ−1
P(k − 1) − λ−1

k(k)uH(k)P(k − 1)
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Summary

• Wiener (MMSE) solution: bw = R−1p

– MSE surface J(w) = σ2
d − pHw − wHp + wHRw = Jmin + (w − bw)HR(w − bw) is

quadratic with the MMSE given by Jmin = σ2
d − pHR−1p

– Steepest-descent algorithm and convergence analysis

• The LMS algorithm:

y(k) = ew
H
(k)u(k), e(k) = d(k) − y(k), ew(k + 1) = ew(k) + µu(k)e

∗
(k)

– Sufficient conditions for stationary convergence of the LMS

µ <<
1

λmax

and 0 < µ <
2

PM
i=0 λi

– Misadjustment and convergence rate of the LMS:

M ≈ µ

2

M
X

i=0

λi =⇒ M ∝ µ τmse,av ≈ 1

2µλav

=⇒ convergence time ∝ 1

µ

– Effect of eigenvalue spread: the larger eigenvalue spread, the slower convergence rate of LMS

• Least squares estimate and recursive least squares algorithm
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