ELEC6214 Advanced Wireless Communications Networks and Systems S Chen

Revision of Lecture Twenty-One

e Previous lecture has introduced important principles of duplexing and multiple access schemes

e We have also introduced concepts of spread sequences or signature codes and direct-sequence
spread-spectrum communications

e \We now concentrate on detection in CDMA systems, and we need to distinguish two scenarios

1. Uplink detection at base station

— BS have to detect all users, and this is the term “multiuser detection” comes from

— Uplink users are not symbol-synchronised in general

— Although quasi-synchronous operation may be achieved with adaptive timing advance control,
to guarantee for example symbol-synchronisation accuracy of within 0.25 bit duration

2. Downlink detection at a mobile handset

— As BS transmits to all users, downlink transmissions are symbol-synchronised
— A mobile is only interested in its data, and this is basically a single-user detection

e Two types of CDMA systems

— Direct-sequence DS-CDMA
— Frequency-hoping FH-CDMA

e As an example, we discuss detection in DS-CDMA systems
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Uplink System Model

e K mobiles: user i code s; = [s;1 Si2- - si,N]T with spreading gain N and k-th bit of user ¢
bi(k) € {£1}, where 1 <i < K

K mobiles ((::wgnrr?éles base station

e Under ideal channel condition, orthogonal codes and symbol-synchronisation, yi(k) is sufficient
statistic for estimating b;(k): b;(k) = sgn(yi(k))

e However, in general, we have multi-user interference, and system model
y(k) = Ab(k) + n(k)

— Matched filter output vector y(k) = [y1(k) ya(k) - - - yK(k)]T, transmitted user bit vector
b(k) = [bi(k) ba(k) - - - bK(k)]T, AWGN vector n(k) = [ni(k) na(k) - - - nK(k)]T

— Code correlation matrix A € R**® with(i, j)-th element «; ; being correlation of s; and
channel impaired s;
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Multiuser Detection

e Maximum likelihood detector provides optimal performance but imposes exponential complexity
— Size of search space for b(k) is N, = 2, and search candidate set B = {l_)l, by, - - - ,BNb}

— ML solution N ,
b(k) = arg min ||y(k) — Ab(k)||
b(k)eB

e Evolutionary algorithms, such as genetic algorithm, can be employed to obtain near optimal ML
solution, with a fraction of full ML search complexity

e Various sphere decoding algorithms, such as K-best sphere decoding and fixed-complexity sphere
decoding, can be employed to provide suboptimal solutions with much lower complexity

e Simple low-complexity linear detectors
v(k) = Wy(k) and b(k) = sgn(v(k))

— Zero-forcing linear detector: Wyp = (AHA)_lAH
— Not surprisingly, one can also have MMSE solution for linear detector weight matrix Wyvsge
e Interference canceller: rank received user powers in order of user 1 has highest, user 2 2nd highest,
..., user K — 1 2nd lowest, user K lowest
— 1st stage, detect user 1 as b; (k) = sgn (y1(k))
— i-th stage, 2 < i < K, use detected b1 (k) to b;_1(k) to cancel users 1 to ¢ — 1 in y;(k) to
yield partial interference cancelled g;(k) and detect user 4 as b;(k) = sgn(¥:(k))
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Downlink System Model

e BS transmits K users' data: user ¢ code s; = [s;1 Siz2- - si,N]T with spreading gain N, and
k-th bit of user i is b;(k) € {:I:l} for1 <i< K

base station chip rate i—th mobile
| —thchannel

n—l

e Chip rate i-th CIR H(z) = Z h;z', and i-th mobile chip-rate received signal r(k) =

(71 (k) ro(k) - - er(k)]T can be expressed as

"SB 0 .- 0 1[ bk 1 T nk)
rky=m| 9 5B . blk=1) | | nalk)
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Downlink Model and Single User Detection

e Channel ISl span L depends on length of CIR ny related to spreading gain N
—-—np=1.L=1,1<n,<N:L=2,N<np,<2N: L =3; andsoon

— User bit vector b(k) = [bi(k) ba(k) - - - bK(k)]_T, diagonal user signal amplitude matrix
B = diag{ A1, Ao, - - - , Ak}, signature sequence matrix S = [s; 82 - - - si|, CIR matrix
 he  hy .- Ry -1 0 . 0o |
0O ho M e hp, -1 " : Nx(NL)
H = h R
0 . 0 =
o ... 0 ho hi S -

e Given received signal of r(k) = Pb(k) + n(k), i-th mobile's task is to detect its data b; (k)

— If no multipath, i.e. n, = 1 and hence L = 1, and user signature codes are orthogonal, then
to detect user ¢ data one only needs to despread r(k) with code s;:

y(k) =s;r(k) and b;(k) = sgn(y(k))

— However, when channel distortion exists, multiuser interference becomes serious and the above
matched filter detection is no longer adequate

e A widely used detector is the linear detector given by
y(k) =w'r(k) and b;(k) = sgn(y(k))

— This linear detector basically is a linear equaliser, combating both ISI and MUI
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Linear Detector

e MMSE detector: recall linear equalisation result of slide 247, we readily have MMSE detector with
weight vector

~1
WMMSE = (PPT + aiI) 8%

— where p; is i-th column of P, o7 = E[(b;(k))*] = 1, E[n(k)n" (k)] = oI
— Adaptive implementation can be realized with LMS or RLS

e MBER detector: recall linear equalisation result of slides 253 to 255, we readily have MBER
detector

e Detector bit error rate can be derived similarly, with r(k) = Pb(k) + n(k) = v(k) + n(k):
- E(k) has N, = 2% combinations, {B(j), 1 <5< Nb}, with i-th element of b(%) being BEJ)
— Obviously ¥(k) can only take values from finite channel state set:
r(k) € {r; =PbY, 1 <j < N;}
— Define signed decision variable y,(k) = sgn(b;(k))y(k), then

ys(k) = sgn(bi(k))y(k) + e(k)

where e(k) = sgn(b;(k))w' n(k) is Gaussian with variance w’ wo?>, and (k) can only take
values from scalar set:
g(k) € {y; =w'r;, 1<5 < Ny}
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Minimum Bit Error Rate Solution

e The probability density function of the signed decision variable ys(k) is a Gaussian mixture

= ex — sen (Bz('j))yj)2>
py(ys) = \/—Jn\/—z p < 202wTw

e The bit error rate of the linear detector is given by:

sgn (b)) y,

o, VWIiw

Pe(w) = [ pyu)du. = 33 QUos(w)) with g(w) =

e [The MBER solution is defined as

V/‘\’MBER — arg min PE(W)
w

Note that the BER is invariant to a positive scaling of w, and there are infinite many WyggR
e The gradient of Pg(w) is

U p ( ) 1 ww! — wliwl o yf (B(j))
w) = E exp | ———=—=— ] sgn(b,”’)r
" Nyv2mo, (WTW)% : 202wTw . ’

J=1

The steepest descent algorithm for example can be used to find a WyBER
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Least Bit Error Rate Algorithm

e The key in deriving the MBER solution is the PDF p,(ys) and, since p,(ys) is unavailable, using
a sample time average, called the Parzen window or kernel density estimate, to estimate p,(ys)

o Given {r(k), b;(k)},_,, a Parzen window estimate of p,(y) is

) = — L S e <_<ys—sgn<bz-<k>>y<k>>2>
T KV2mp, 203,

e Like in the derivation of the LMS, take to the extreme and use one-sample estimate:

1 ~ (ys — sgn(bi(k)y(k))’
py(ys,k)—mp exp 202

e Using the instantaneous or stochastic gradient

S 1 y° (k) |
VPg(k) = _\/ﬁpn exp (— 202 > sgn(b;(k))r(k)

leads to the LBER algorithm:

il +1) = w(k) + pE N e <—y2(]§)) £ (k)

n

where 1 and p,, are adaptive gain and width
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An lllustration

Two equal-power users with two chip codes (+1,41) and (41, —1)

Chip rate CIR H(z) =1+ 0.827 ' + 0.6z~

User 1 is desired user, and SNR for user 1 is 25dB

The MMSE solution has log;,(BER) = —3.88 but the MBER solution has log;,(BER) = —5.56
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Back to Adaptive Signal Processing

e \We have observed adaptive filtering is an enabling technology for communications
— Traditionally, this has been developed based on Wiener or MMSE approach
— In communication applications, it is BER, not MSE, that really matters
— MMSE approach is optimal, if probability density function of adaptive filter output is Gaussian
— However, PDF of adaptive filter output in communication applications is often non-Gaussian: in
fact, often it is a mixture of Gaussian distributions

e \We have also observed adaptive MBER approach is a generic technique for communications

— We have seen adaptive MBER equalisation and adaptive MBER detection for downlink CDMA
— We have seen how stochastic gradient approach can be employed to derive adaptive algorithms
for various designs

e Although we mainly concentrate on adaptive linear filtering, such as linear equaliser and linear
detector, the approach can be extended to adaptive nonlinear filtering

y(k) = f(u(k); w)

— u(k): filter input vector, w: parameter vector that defines nonlinear filtering mapping
— Given training data {u(k), d(k)};_,, the task is to estimate w, based on for example MMSE
criterion or MBER criterion

e S. Chen, “Adaptive minimum bit-error-rate filtering,” IEE Proc. Vision, Image and Signal Processing,
Special Issue on Non-linear and Non-Gaussian Signal, 51(1), 76-85, 2004
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Summary

e DS-CDMA uplink

— Uplink system model
— Multi-user detection: ML multi-user detector, linear multi-user detector

e DS-CDMA downlink

— Downlink system model
— Single user detection: linear MMSE detector, linear MBER detector

e Adaptive signal processing: enabling technology for communications

— Minimum mean square error design
— Minimum bit error rate design

. University
]
! ! Electronics anld of Southampton
= . & Computer Science
Bl 299



