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Abstract11

The reconfigurable intelligent surface (RIS) is a promising new technology for Terahertz12

(THz) massive multiple input multiple output (MIMO) communication systems. However, due13

to the cascaded channel structure and its lack of signal processing ability, it is difficult for RIS14

to obtain the high-dimensional channel state information (CSI) and optimize the active/passive15

beamforming. Therefore, in this paper, we propose a DL-based transmission scheme for RIS-16

aided THz massive MIMO systems over hybrid far-near field channels, where a channel estima-17

tion scheme with low pilot overhead and a robust beamforming scheme are conceived. Specifi-18

cally, we first propose an end-to-end deep learning (DL)-based channel estimation framework,19

which consists of pilot design, CSI feedback, sub-channel estimation, and channel extrapolation.20

Specifically, we firstly only turn on a fraction of all the RIS elements and estimate a sub-sampling21

RIS channel, and then design a DL-based scheme to extrapolate the full-dimensional CSI from22

the partial one. Moreover, to maximize the sum rate of all users under imperfect CSI, we develop23

a DL-based scheme to simultaneously design the hybrid active beamforming at the BS and pas-24

sive beamforming at the RIS. Simulation results show that our proposed channel extrapolation25

scheme has better CSI reconstruction performance than conventional schemes while imposing a26

much reduced pilot overhead and our proposed beamforming scheme has superior performance27

over conventional schemes in terms of robustness to imperfect CSI.28
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(MIMO), deep learning (DL).32

1 Introduction33

Over the past few years, the demand for wireless data traffic has increased significantly due34

to the explosive growth of mobile devices and multimedia applications [1]. To accommodate these35

demands, Terahertz (THz) communications have attracted great interest from both industry and36

academia. However, there exists strong atmospheric attenuation and extremely high free-space37

losses in the THz band. These disadvantages may severely degrade the service coverage of THz38

communication systems. The deployment of massive multiple input multiple output (MIMO) or39

even ultra-massive MIMO has been recognized as an achievable solution to provide high array gain,40

so as to overcome the high propagation loss [2]. However, conventional massive MIMO systems41

with fully-digital architecture require a dedicated radio frequency (RF) chain for each antenna,42

which results in excessive power consumption and extremely high RF hardware costs. In order to43

circumvent this technical hurdle, the hybrid analog-digital massive MIMO architecture has been44

widely adopted to achieve large array gains with a much lower number of RF chains [3].45

Besides, the emerging technology of reconfigurable intelligent surface (RIS) has also been consid-46

ered as a promising technique to enhance communication performance [4]. The RIS can manipulate47

both the phase and amplitude of the incident electromagnetic (EM) signals so as to passively reflect48

them towards the desired directions and provide significant beamforming gain. More importantly,49

RIS does not need power-hungry RF chains, which is beneficial for developing green and cost-efficient50

communications. Therefore, the application of RIS and massive MIMO techniques is expected to51

overcome the limitations of THz communications and realize its full potential.52

Generally, a simplified planar-wave channel model is appropriate in the case that the user equip-53

ment (UE) works in the far-field of the base station (BS). However, since severe path loss will reduce54

the effective coverage while the increasing array size in THz band will increase the Rayleigh distance55

[5], both far-field and near-field need to be considered for THz massive MIMO systems. Therefore,56

the spherical-wave is necessary to accurately analyze the propagation of THz waves under near-field57

conditions, where the distance from each antenna of the BS to the UE needs to be considered [6]. On58

the other hand, in THz massive MIMO systems, the number of channel parameters is proportional to59

the number of massive antennas, which indicates that directly applying the spherical-wave channel60

model is unrealistic. To this end, a hybrid-field (hybrid spherical- and planar-wave) channel model61

characterized by a smaller number of parameters while maintaining high accuracy has been proposed62

for THz massive MIMO systems [7]. For such a channel model, given the subarray structure, the63

inter-subarray is modeled as spherical-wave and the intra-subarray is modeled as planer-wave. Al-64

though the application of RISs has been widely investigated recently [8, 9, 10, 11, 12], the utilization65

of RIS for THz massive MIMO communications over hybrid-field channels is still at its early study66

stage.67
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1.1 Related Work68

Acquiring accurate channel state information (CSI) is critical in establishing RIS-aided commu-69

nication systems. However, it is challenging to accurately estimate high-dimensional channels with70

a few pilots [8]. By exploiting the sparsity of the channels in the angular and/or delay domains,71

compressive sensing (CS)-based solutions have been proposed to reduce the pilot overhead [9, 10].72

Nevertheless, since the dimension of the CSI to be estimated is extremely large, the involved matrix73

inversion operations and the iterative nature of CS-based techniques result in prohibitively high74

computational complexity and storage requirements. With the development of artificial intelligence,75

the application of deep learning (DL) in RIS-aided communication systems has attracted extensive76

attention. In [11], the authors designed a twin convolutional neural network (CNN) to estimate the77

direct (BS-UE) and the cascaded (BS-RIS-UE) channels. In [12], the authors proposed a hybrid78

passive/active RIS architecture with a few RF chains, where the orthogonal match pursuit (OMP)79

algorithm and denoising CNN are applied to reconstruct the complete channel matrix. However,80

the deployment of RF chains at the RIS defeats the original purpose of reducing hardware cost and81

power consumption by deploying the RIS.82

In fact, due to the highly-dense placement of RIS elements, there is a strong correlation between83

the different elements of the CSI matrix, which makes it possible to extrapolate the complete channel84

from a partial one, i.e., channel extrapolation [13]. Recently, there are some initial attempts to utilize85

the channel extrapolation for further reducing the pilot overhead. In [14], the authors proposed an86

antenna domain extrapolation network to perform channel extrapolation, where an antenna selection87

network is designed to choose the optimal antennas for the extrapolation. In [15], the neural network88

structure modified by ordinary differential equation was used to describe the latent relations between89

different data layers and improve the performance gains of antenna extrapolation. Besides, the90

authors of [16] adopted the element-grouping strategy to reduce the pilot overhead and the CNN-91

based channel extrapolation network to extrapolate the full-dimensional cascaded channels from the92

partial one. However, the above extrapolation schemes only consider the extrapolation process from93

the known sub-channels, while ignoring how to estimate the sub-channel. Moreover, the hybrid-94

field channel modeling of RISs has more complex propagation characteristics, which will hinder the95

sub-channel acquisition and the following extrapolation of complete channels.96

How to properly and effectively design the hybrid beamforming and RIS phase according to the97

CSI is one of the major engineering challenges in the design of RIS-aided communication systems.98

Recently, some work has been conducted to investigate hybrid beamforming and RIS design problems99

[17, 18, 19, 20]. The authors in [17] proposed a geometric mean decomposition-based beamform-100

ing for RIS-assisted mmWave hybrid MIMO systems. The authors in [18] focused on the hybrid101

beamforming and RIS phase design for RIS-aided multi-user mmWave communication systems and102

aimed to minimize the mean squared error (MSE) using the gradient-projection method. In [19],103

the authors proposed an iterative algorithm to jointly optimize the RIS phase and the hybrid beam-104

forming for maximizing the sum rate. Furthermore, the DL-based beamforming methods have also105

been studied in RIS-assisted wireless communication systems. In [20], a DL-based approach was106

proposed to jointly optimize the active beamforming at the BS and the passive beamforming at the107
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RIS for achieving rate maximization. However, a further adaptability analysis of the aforementioned108

schemes is desired because the current analysis only assumes the idealized perfect CSI condition.109

1.2 Motivations110

In the current research, RIS is mainly constructed to have two modes: reflective mode [17, 18, 19]111

and transmissive mode [21, 22, 23]. At present, more researches focus on RIS-assisted communication112

in reflective mode. The RIS in reflective mode is mainly used to solve the blind coverage problem113

and enhance the network coverage. By contrast, the transmissive RIS is mainly used to enhance114

the spectral and energy efficiency of the networks. Since the transmissive mode does not change115

the propagation direction of EM waves, it is suitable to deploy transmissive RIS in the case that116

a line-of-sight (LoS) path exists but the propagation attenuation is high, e.g., the case that the117

outdoor BS serves indoor UEs, to improve the energy of the received signals. Therefore, we consider118

the transmissive RIS for indoor signal enhancement service.119

Considering the hybrid-field channel model, the authors of [24] proposed a two-stage channel120

estimation mechanism, where a CNN-based network is designed to estimate the parameters of the121

reference subarrays and the complete channel is reconstructed by channel extrapolation based on ge-122

ometric relationships of channel parameters. However, this parametric-based extrapolation method123

needs to obtain a large number of accurate channel parameters as labels before training. In [25], the124

authors proposed a sensor-based channel estimation and beamforming for RIS-aided THz systems,125

where a LoS MIMO architecture is considered in hybrid-field. However, the channel estimation in126

[25] is mainly based on the awareness of sensors, and it is difficult to obtain accurate CSI. Therefore,127

similar to [14, 15, 16], we adopt a DL-based channel extrapolation method to address the perfor-128

mance limitations of conventional channel estimation methods for indoor hybrid-field propagation129

environments. Besides, in this paper, we consider the LoS MIMO architecture under the assump-130

tion of the hybrid-field channel model, where the LoS MIMO architecture can support multi-stream131

transmission in the pure LoS BS-RIS channel.132

Most existing works assume that the CSIs between BS and RIS as well as between RIS and UEs133

are perfect [17, 18, 19, 20]. However, this assumption is impractical. Therefore, it is imperative134

to take the channel estimation error into consideration when designing RIS-aided communication135

systems. Recently, there have been some works on beamforming with imperfect CSI [26, 27]. Specif-136

ically, in [26], the authors exploited the penalty-based alternating optimization to design secure137

wireless communications assisted by RIS under the imperfect CSI. In [27], the authors exploited a138

gradient projection-based alternating optimization algorithm to jointly optimize transmit beamform-139

ing, RIS placement, and reflect beamforming of the RIS under the imperfect CSI. Currently, there140

are extensive DL-based methods for the optimization of RIS phase with the perfect CSI, but to our141

best knowledge, there exists only few DL-based methods considering imperfect CSI [28]. Therefore,142

this work aims to provide a DL-based hybrid beamforming and RIS phase design with imperfect143

CSI in RIS-aided communication systems.144
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1.3 Contributions145

This paper proposes a DL-based spatial-frequency domain channel extrapolation (SFDCEtra)146

network as well as the DL-based hybrid beamforming and RIS phase design (HBFRPD) scheme for147

RIS-aided downlink multi-user THz massive MIMO systems over hybrid-field channels. The main148

contributions of this paper are summarized as follows.149

• We deploy the transmissive RIS on the window of a building to reduce the penetration loss150

and thus achieve indoor enhanced communication. In addition, due to the negligible non-LoS151

(NLoS) component energy in the THz band, the BS-RIS channel is dominated by the LoS152

path. To achieve multi-stream transmission in the LoS case, we consider an LoS MIMO archi-153

tecture under hybrid-field channel modeling, where the BS and RIS adopt the same subarray154

structures, and the subarray spacing is optimized to satisfy the LoS MIMO condition.155

• Since the BS and the RIS are fixed and only the LoS path exists, the BS-RIS channel can be156

considered to be quasi-static and it is known. The RIS-UE channel by contrast is time-varying157

due to the mobility of the UEs. Therefore, we only need to estimate the RIS-UE channel,158

which significantly reduces the pilot overhead.159

• To further reduce the pilot overhead for estimating the RIS-UE channel, we propose a DL-based160

channel extrapolation scheme, where the RIS only activates part of its elements at the channel161

estimation stage. Unlike the existing extrapolation schemes [14, 15, 16] that only focus on the162

CSI extrapolation process, we design a complete channel extrapolation framework, including163

the pilot design network, CSI feedback network, sub-channel estimation network, and channel164

extrapolation network. By adopting the end-to-end (E2E) training strategy, the proposed165

channel estimation scheme can reduce the pilot overhead while maintaining high reconstruction166

performance. Specifically, the UE-side feeds the quantized pilot information back to the BS167

using the CSI feedback network, and the BS estimates the sub-channel and then extrapolates168

the complete RIS-UE channel using the channel extrapolation network. In addition, for the169

RIS element selection, we discuss the impact of three different strategies, uniform selection,170

random selection and learning-based selection, on the final channel estimation performance.171

• To solve the multi-user interference problem under imperfect CSI, we propose a DL-based172

hybrid beamforming and RIS phase design scheme, which consists of the analog beamformer173

design, DL-based RIS phase design network, and knowledge-data dual-driven digital beam-174

forming network. By adopting the sum rate as the loss function to perform E2E training,175

the proposed scheme can realize higher performance and better robustness than the existing176

state-of-the-art methods.177

Notations: This paper uses lower-case letters for scalars, lower-case boldface letters for vectors,178

and upper-case boldface letters for matrices. Superscripts (·)∗, (·)T, (·)H, (·)−1 and (·)† denote179

the conjugate, transpose, conjugate transpose, inversion, and Moore-Penrose inversion operators,180

respectively. The operators diag(·), blkdiag(·), ⊗ and � represent the diagonalization, block di-181

agonalization, Kronecker product and Hadamard product, respectively, while ‖A‖F denotes the182
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Frobenius norm of A. In denotes the identity matrix with size n × n, while 1n (0n) denotes the183

column vector of size n with all the elements being 1 (0). <{·} and ={·} denote the real part and184

imaginary part of the corresponding argument, respectively. {A}m,n denotes the m-th row and n-th185

column element of A, and {a}m is the m-th entry of a, while A[:,m:n] is the sub-matrix containing186

the m-th to n-th columns of A. The expectation is denoted by E(·), and N (µ, σ2) (CN (µ, σ2)) de-187

notes the real (complex) Gaussian distribution with mean µ and variance σ2, while Tr{·} represents188

the matrix trace operator.189

2 System Model190

We first describe the RIS-assisted downlink THz multi-user MIMO system over frequency-191

selective fading channels, and then introduce the transmission channel model of this system.192

BS

RIS

UE UE

UE

UE

(a)

sub-connected
phase shifter 

network

BS
RIS

LoS

LoS

NLoS

NLoS

UE

Control link

Multi-
subarray

...

...

...

...

...

...

RFC

RFC

...
RFN
...

...

...

...

...

x

y

z
Multi-

subarray

(b)

Figure 1: Model of RIS-aided THz massive MIMO system: (a) multiple indoor UEs are served by
the BS with the help of a transmissive RIS deployed on the window, and (b) hardware architectures
at the BS, RIS, and UEs.

2.1 System Description193

As shown in Figure 1, we consider a downlink transmission scenario in an indoor environment, where194

a transparent RIS is attached to the window surface to refract outdoor THz signals from the BS195
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into the room for serving U single-antenna UEs. Thus, the transparent transmissive RIS helps to196

enhance indoor coverage. Let the BS (RIS) have MB = MB
y ×MB

z (MR = MR
y ×MR

z ) uniformly197

spaced subarrays, where MB
y (MR

y ) and MB
z (MR

z ) are the numbers of subarrays along the azimuth198

and elevation directions, respectively. Each subarray of the BS (RIS) is a uniform planar array199

(UPA) with NB
sub = NB

y ×NB
z (NR

sub = NR
y ×NR

z ) isotropically radiating elements, where NB
y (NR

y )200

and NB
z (NR

z ) are the numbers of antennas along the azimuth and elevation directions, respectively.201

Therefore, the complete antenna dimension of the BS is NB = MBNB
sub, and the element dimension202

of the RIS is NR = MRNR
sub. Without loss of generality, we assume that the normals of the central203

elements of both the BS and RIS are coaxial, i.e., meeting the parallel symmetric array arrangements,204

with a distance of D, as illustrated in Figure 1(b).205

To reduce the power consumption and hardware cost, a sub-connected hybrid analog-digital206

array architecture is considered at the BS, i.e., there are only MB RF chains to support U ≤ MB
207

data streams, and each of RF chains is connected to a subarray through NB
sub phase shifters. An208

orthogonal frequency division multiplexing (OFDM) transmission scheme with K subcarriers and209

sampling period Ts = 1/fs is adopted. The cyclic prefix (CP) of length NCPTs is added before each210

OFDM symbol to avoid inter-symbol interference. The center-carrier frequency is fc corresponding211

to a wavelength λ.212

2.2 Channel Model213

2.2.1 BS-RIS Channel Model214

By considering the spherical wave propagation of THz signals, we investigate the LoS MIMO215

link between the BS and RIS with only the LoS path, but it can support intra-path multiplexing216

for multi-stream transmission [29]. In THz channels, the path loss of the NLoS paths is known to217

be much larger than that of the LoS path. Therefore, we can neglect the NLoS paths in the channel218

between the BS and the RIS. The inter-antenna spacing in each subarray is d = λ/2. In order to219

satisfy the LoS MIMO characteristic, the BS subarray spacing dB
sy and dB

sz are set to the following220

optimal LoS MIMO spacing221

dB
sy =

√
λD

MB
y

− λ

2
(NB

y − 1), dB
sz =

√
λD

MB
z

− λ

2
(NB

z − 1), (1)

i.e., dB
sy and dB

sz should satisfy the condition λ� dB
sy, d

B
sz � D. The detailed explanation of Equation222

(1) can be found in [29, 30]. The RIS subarray spacing dR
sy and dR

sz can be obtained by using a223

similar definition. Note that self-orthogonal LoS MIMO not only is obtained from parallel symmetric224

antenna arrangements but also can be obtained with symmetrical/unsymmetrical arrangements on225

tilted non-parallel lines/planes [30]. We have the following proposition from [31].226

Proposition 1 Let the transceiver arrays be separated by D and be communicating at a carrier227

wavelength of λ that is much smaller than D, i.e., λ � D. If the inter-antenna spacing is in the228

order of O(λ), the first-order approximation of the spherical wave by the planner wave model can be229

applied. Otherwise, the spherical wave model should be used.230
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According to Proposition 1, the subarray response vectors a(θ, φ, fk) ∈ CNHNV×1 can be approx-

imated by a planner wave model:

a(θ, φ, fk) =ah(θ, φ, fk)⊗ av(φ, fk)

=
[
1, . . . , e−j2π

fk
c d(nh sin θ cosφ+nv sinφ), . . . , e−j2π

fk
c d((NH−1) sin θ cosφ+(NV−1) sinφ)

]T
, (2)

where fk = fc − fs
2 + kfs

K , 1 ≤ k ≤ K, is the k-th subcarrier frequency, c is the speed of light,231

0 ≤ nh ≤ (NH− 1), 0 ≤ nv ≤ (NV − 1), NH and NV are the numbers of antennas along the azimuth232

and elevation directions in the subarray, respectively, while θ and φ are the azimuth and elevation233

angles of the departure or arrival (AoD or AoA) of the path, respectively.234

Since dB
sy, d

B
sz, d

R
sy, d

R
sz � D, the direction difference of the same path in different subarrays is235

negligible, and all the subarrays on either the BS or RIS-side share the same set of array response236

vectors. However, the relative phase differences among subarrays are of non-negligible values, as sub-237

arrays are widely spaced. Motivated by the above analysis, the downlink spatial-frequency channel238

G[k]∈CNR×NB

from the BS to the RIS on the k-th subcarrier can be modeled as239

G[k] = α[k]GTG̃[k]⊗
[
aR(θR,A, φR,A, fk)aH

B(θB, φB, fk)
]
, (3)

where α[k] is the channel attenuation coefficient on the k-th subcarrier, (θB, φB) and (θR,A, φR,A)

are the LoS AoD and LoS AoA of the BS-RIS channel, respectively. Without loss of generality, the

LoS angles between the BS and the RIS are assumed to be fixed and known in advance based on

their locations. In (3), the entries of G̃[k] ∈ CMR×MB

are given by the spherical wave model as

{G̃[k]}mr,mb
=e−j2πfk·

D(mr,mb)

c , (4)

where D(mr,mb) denotes the distance between the mr-th RIS-side subarray and the mb-th BS-side240

subarray. Furthermore, the subarray response vectors aR(θR,A, φR,A, fk)∈CNR
sub×1 and aB(θB, φB, fk)241

∈ CNB
sub×1 are defined in Equation (2). The constant coefficient GT represents the antenna gain at242

the BS, which is the gain of the single antenna element, and is different from the array gain generated243

by beamforming [32]. The only unknown parameter in Equation (3) is the channel coefficient α[k],244

which can be obtained by placing a power detector at the RIS-side. Therefore, it is reasonable to245

assume that the BS-RIS channel is quasi-static and known.246

2.2.2 RIS-UE Channel Model247

As illustrated in Figure 1(b), we consider a multi-path THz channel model for indoor envi-

ronments by using deterministic ray-tracing techniques [33]. For a RIS-UE link in a room, the

multi-path propagation model consists of one LoS path and Lp NLoS paths reflected or scattered

by the surrounding walls in the room, where the paths reflected by the ceiling and the floor can

be neglected [34]. The three-dimensional (3D) distances for the LoS path and the NLoS paths be-

tween RIS and UE are denoted as d0 and dl, for 1 ≤ l ≤ Lp, respectively. The total attenuation

of EM wave propagation in the THz band is composed of molecular absorption and free space path
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loss. The free space path loss is βspr(fk, dl) = c
4πfkdl

, and the molecular absorption is given by

βabs(fk, dl) = e−
1
2κ(fk)dl , where κ(fk) stands for the frequency-dependent absorption coefficient [35].

Hence, the spatial-frequency channel h[k] ∈ C1×NR

for the RIS-UE link can be written as

h[k] = β[k]h̃LoS[k]⊗ aH
R(θLoS

R,D, φ
LoS
R,D, fk) +

1√
Lp

Lp∑
l=1

βl[k]h̃l[k]⊗ aH
R(θlR,D, φ

l
R,D, fk), (5)

where β[k] = βspr(fk, d0)βabs(fk, d0) and βl[k] = βspr(fk, dl)βabs(fk, dl)βRC are the channel atten-248

uation coefficients of the LoS component and the l-th NLoS component, respectively, (θLoS
R,D, φ

LoS
R,D)249

and (θlR,D, φ
l
R,D) are the LoS AoD and the NLoS AoD of the l-th NLoS path, respectively. We250

model the approximate reflection coefficient βRC in dB unit as an independent Gaussian random251

variable, i.e., 10 log βRC[dB] ∼ min {N (µR, σ
2
R), 0}. The entries of h̃LoS[k] ∈ C1×MR

are given as252

{h̃LoS[k]}mr = e−j2πfk·
d(mr)

c , where d(mr) denotes the 3D distance between the UE and the mr-th253

RIS-side subarray. h̃l[k] can be written by using a similar notation and assumptions.254

3 Problem Formulation and Proposed Channel Estimation255

Solution256

3.1 Problem Formulation of Channel Estimation257

In this subsection, we formulate the downlink channel estimation problem for the considered258

RIS-assisted THz massive MIMO communication system over hybrid-field channels. As shown in259

Figure 2, we consider the two-stage frame structure consisting of the pilot training and data trans-260

mission stages. At the pilot training stage, the BS transmits M pilot OFDM symbols (i.e., M time261

Su
bc

ar
rie

r

Element-RIS Subarray-1

RIS element selection pattern RIS-UE sub-sampling channel

Data transmission stage
Pilot training stage

Su
bc

ar
rie

r

Time slot
Pilot subcarrier

Subarray-1

21

3 4

3

3

1

1

2

2

4

4

Figure 2: The schematic diagram of the frame structure, RIS element selection pattern, and RIS-UE
sub-sampling channel, where the selected parts are marked in yellow blocks and the number in the
yellow block indicates the index of the selected element.
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slots) dedicated to channel estimation. The received signal at the UE-side1 in the m-th time slot on262

the k-th subcarrier can be written as263

ym[k] =
√
PTh[k]ΦmG[k]FRFFBB[k]sm[k] + nm[k], (6)

where 1 ≤ k ≤ K, 1 ≤ m ≤ M , PT is the transmit power of the BS, sm[k] ∈ CU×1 denotes the

transmitted symbol vector with E{sm[k]sH
m[k]} = IU , and nm[k] ∼ CN (0, σ2

n) is the effective complex

additive white Gaussian noise (AWGN) at the UE, while h[k] ∈ C1×NR

and G[k] ∈ CNR×NB

are

the downlink RIS-UE and BS-RIS channels on the k-th subcarrier, respectively. Denote the control

vector vmr,m ∈ C1×NR
sub for the mr-th subarray elements of the RIS in the m-th time slot as

vmr,m = omr,m � ṽmr,m =
[
· · · , ηnr

sub,mr,m, · · ·
]
�
[
· · · , ejφnr

sub
,mr,m , · · ·

]
, (7)

where omr,m ∈ C1×NR
sub represents the amplitude control vector, ṽmr,m ∈ C1×NR

sub represents the264

phase control vector, and 1 ≤ nrsub ≤ NR
sub, while ηnr

sub,mr,m ∈ [0, 1] and φnr
sub,mr,m ∈ [0, 2π] are the265

amplitude control coefficient and phase control coefficient, respectively. ηnr
sub,mr,m can be utilized to266

turn on/off the refraction functions of each RIS element. The entire RIS elements can be expressed267

as vm = om � ṽm =
[
v1,m, · · · ,vmr,m, · · · ,vMR,m

]T ∈ CNR×1, where om =
[
o1,m, · · · ,oMR,m

]T ∈268

CNR×1 and ṽm =
[
ṽ1,m, · · · , ṽMR,m

]T ∈ CNR×1. Then the RIS’s refraction phase matrix is defined269

as Φm = diag(vm) = Om � Ṽm ∈ CNR×NR

, where Om = diag(om) ∈ CNR×NR

is the RIS selection270

matrix and Ṽm = diag(ṽm) ∈ CNR×NR

is the RIS phase matrix.271

FRF ∈ CNB×MB

and FBB[k] ∈ CMB×U are respectively analog and digital beamforming matrices272

that are used at the BS to perform hybrid beamforming. Due to the sub-connected hybrid MIMO273

architecture, the analog beamformer implemented by the phase shifters can be expressed as274

FRF = blkdiag
(
f1, · · · , fmb

, · · · , fMB

)
, (8)

where fmb
=
[
fmb,1, · · · , fmb,nb

sub
, · · · , fmb,NB

sub

]T ∈ CNB
sub×1 with

∣∣fmb,nb
sub

∣∣2 = 1/NB
sub. Since the275

BS-RIS channel with the LoS path only is quasi-static and known, each analog beamforming vector276

can be designed as277

fmb
= aB(θB, φB, fk), 1 ≤ mb ≤MB, (9)

where k can be set to K/2 for alleviating the beam squint problem caused by the large bandwidth278

[36]. The digital beamformer FBB [k] is designed according to the zero forcing (ZF) precoding in279

order to eliminate the multi-stream interference between the BS and the RIS subarrays, i.e.,280

FBB[k] = ζG̃†eq[k] = ζG̃H
eq[k]

(
G̃eq[k]G̃H

eq[k]
)−1

, (10)

where G̃eq[k] =
[
α[k]GTG̃[k] ⊗ aH

B(θB, φB, fk)
]
FRF ∈ CMR×MB

is the equivalent BS-RIS chan-281

nel obtained from the perspective of the first element of different subarrays at the RIS, and ζ =282 √
MB/Tr

{
G̃†eq[k]

(
G̃†eq[k]

)H}
is a constant to meet the total transmit power constraint after beam-283

1Note that since each UE can perform channel estimation independently, UE subscripts are omitted.
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forming. In this way, the multi-stream interference between the BS and the RIS subarrays can be284

eliminated, i.e., Geq[k] = G[k]FRFFBB[k] ∈ CNR×U , ∀k, is a block diagonal constant matrix.285

Therefore, the equivalent pilot signal pm ∈ CNR×1 can be expressed as286

pm =
[
Om � Ṽm

]
︸ ︷︷ ︸

Φm

[
G[k]FRFFBB[k]

]
︸ ︷︷ ︸

Geq[k]

sm[k], (11)

where pm is identical for different subcarriers since we set the transmit symbol sm[k] to be 1U , ∀m, k,287

and the ZF digital beamformer Equation (10) for G [k]. Under the assumption that the BS and RIS288

meet the parallel symmetric array arrangements, Geq[k] is defined by
√
NBα[k]GTblkdiag

(
11
NB

sub
, · · · ,289

1u
NB

sub
, · · · ,1U

NB
sub

)
. Thus, the effective pilot signals can be further expressed as the RIS element vector290

given by pm =
√
NBα[k]GTvm ≈

√
NBαGTvm = ATvm, where the approximation α[k] ≈ α, ∀k, is291

further applied and AT =
√
NBαGT represents the total attenuation from the BS to the RIS.292

By collecting ym[k] for 1 ≤ m ≤ M together, the aggregate received signal vector y[k] =293

[y1[k], · · · , yM [k]] ∈ C1×M can be expressed as294

y[k] =
√
PTh[k]P + n[k], (12)

where P = [p1, · · · ,pM ] = ATV = AT [v1, · · · ,vM ] ∈ CNR×M , and n[k] = [n1[k], · · · , nM [k]] ∈295

C1×M . Thus, the received signal matrix Y =
[
yT[1], · · · ,yT[K]

]T ∈ CK×M can be expressed as296

Y =
√
PTHP + N, (13)

where H =
[
hT[1], · · · ,hT[K]

]T ∈ CK×NR

denotes the downlink spatial-frequency domain RIS-UE297

channel matrix, and N =
[
nT[1], · · · ,nT[K]

]T ∈ CK×M .298

3.2 Deep Learning Based Spatial-Frequency Domain Channel Extrapo-299

lation300

We choose to activate only NR
s = NR

ρ RIS elements and estimate the sub-channels associated301

with the activated RIS elements, where ρ > 1 is the element compression ratio. Furthermore, as302

shown in Figure 2, only Ks = K
ρ̄ uniformly selected subcarriers are used for pilot training, where303

ρ̄ is the frequency compression ratio, and the remaining subcarriers can be used for transmitting304

control signals. We also give an example of the RIS element pattern selected uniformly and the305

corresponding RIS-UE side sub-sampling spatial-frequency channel in Figure 2, where the yellow306

blocks indicate the selected elements and the selected subcarriers. Thus, the practical received pilot307

signal Ys ∈ CKs×M is defined as308

Ys =
√
PTHsPs + Ns, (14)

where Hs ∈ CKs×NR
s is the sub-sampling of the spatial-frequency channel, Ps ∈ CNR

s ×M is the

corresponding equivalent pilot signal, and Ns is the noise. Our goal is to recover the complete

channel Ĥ ∈ CK×NR

from the limited received pilot signals Ys, i.e., extrapolating the rest unknown
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Figure 3: The overall structure of the proposed DL-based spatial-frequency domain channel extrap-
olation scheme.

channels from the acquired partial channels. Based on the universal approximation capability of

DL, we can use DL to characterize the mapping among the channels at different space/frequency

locations. Thus, we propose a DL-based spatial-frequency domain channel extrapolation network,

which consists of the element selection strategy (ESS), pilot design, CSI feedback, sub-channel

estimation, and spatial-frequency domain channel extrapolation modules, as illustrated in Figure 3.

The overall flow of the proposed scheme is expressed as

Ĥ =fSFDE(fSCE(fCsiFd(
√
PTHsPs + Ns))) = fSFDE(fSCE(fCsiFd(

√
PTfESS (H) Ps + Ns))), (15)

where the mapping fESS(·) represents the element selection strategy for deciding the sub-sampling309

channel, and the equivalent pilot signal Ps can be learned as the trainable parameters, while fCsiFd(·),310

fSCE(·) and fSFDE(·) represent the CSI feedback network, the sub-channel estimation network and311

the spatial-frequency domain extrapolation network, respectively. We now detail each component.312

3.2.1 Element Selection Strategy313

With only NR
s activated RIS elements, from (7), the RIS element selection vector o = om =314 [

o1,m, · · · ,omr,m, · · · , oMR,m

]T ∈ {0, 1}NR×1 is an NR
s -hot vector with NR

s elements being ‘1’ and315

the other elements being ‘0’, where the subscript ‘m’ can be dropped since o is fixed at the pilot316

training stage. Also since only Ks subcarriers are uniformly selected for pilot training, the frequency317

selection vector κ ∈ {0, 1}K×1 is defined by {κ}ρ̄k+1 = 1, 0 ≤ k ≤ Ks − 1, and the other elements318

being ‘0’. Thus, the selection operation of the sub-sampling function fESS(·) can be expressed as319

Hs = fESS(H) = S�H, (16)

where S = κ⊗oT ∈ {0, 1}K×NR

is the spatial-frequency selection matrix, and the zero rows/columns320

in S �H are deleted directly to yield Hs. Note that the selection of the activated elements, i.e.,321

the RIS element selection vector, can affect the extrapolation performance. Thus, we consider the322
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following three element selection strategies.323

1) Uniform Selection Strategy: Since each subarray in the RIS is a UPA, its element compression324

ratio is expressed as ρ = ρy×ρz. For fairness, ρy and ρz should be as close as possible. When ρy 6= ρz,325

the z-axis compression should be considered first to maintain the y-axis angular resolution of indoor326

UEs. Thus, the y-z compression ratio allocation can be solved from the following optimization327

min
{ρy,ρz}

|ρz − ρy| ,

s.t. ρy × ρz = ρ,

1 ≤ ρy ≤ ρz.

(17)

Some allocation examples as ρ(2, 4, 8, 16) = ρy(1, 2, 2, 4)× ρz(2, 2, 4, 4). Given ρy and ρz, the active328

element index vector ξmr
∈ C1×NR

sub/ρ of the mr-th subarray can be expressed as329

{ξmr}ny
iN

R
z /ρz+nz

i +1 = NR
sub(mr − 1) +NR

z ρyn
y
i + ρzn

z
i + 1, (18)

where 1 ≤ mr ≤ MR, 0 ≤ nyi ≤
NR

y

ρy
− 1, and 0 ≤ nzi ≤

NR
z

ρz
− 1. The entire active element index330

vector or set of the RIS is defined as ξ = [ξ1, · · · , ξmr
, · · · , ξMR ]

T ∈ CNR
s ×1. Thus, we set the entries331

of the RIS element selection vector o corresponding to the index set ξ to ‘1’, i.e., {o}ξ = 1 for ξ ∈ ξ,332

and the other elements of o to ‘0’.333

2) Random Selection Strategy: It randomly selects NR
s elements from the RIS as the random334

pattern. We can use the function ‘random.choice(·)’ of the NumPy library in Python to generate335

the active element index vector ξ. Given that the elements of the pattern are randomly selected336

from the whole RIS, if the element compression ratio ρ is not large, then the aperture of a random337

pattern is usually comparable to that of the RIS.338

3) Learning-Based Selection Strategy: In addition to the above two fixed selection strategies,339

the learning-based element selection strategy has also been widely studied. In [14], a differentiable340

selection network is proposed to learn the element selection vector o. The input of this network is341

a random initialization vector. By utilizing several fully-connected layers and the softmax function,342

a probability vector g = {g1, g2, · · · , gNR} is generated, where gi represents the probability of the343

i-th element being selected. Thus, the active element index vector ξ can be defined as344

ξ = arg topNR
s
{g}, (19)

where arg topNR
s
{·} is a function that finds the element index set of the first NR

s largest selection345

probabilities. The details of the antenna selection network can be found in [14].346

3.2.2 Pilot Design347

As aforementioned in Equation (11), under the assumption that the BS and RIS meet the348

parallel symmetric array arrangements, the equivalent downlink pilots can be defined as Ps = ATVs,349

where Vs ∈ CNR
s ×M is the phase matrix of selected RIS elements at the pilot training stage. Thus,350

the pilot matrix Ps can be obtained by adjusting the RIS phase at different time slots, which is351
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given by352

Ps = AT exp(jΞ) = AT (cos(Ξ) + j sin(Ξ)) , (20)

where Ξ ∈ RNR
s ×M is the phase control matrix of selected RIS elements. As it is well known that353

complex-valued outputs are not well supported by most deep learning frameworks (e.g., Tensorflow,354

Pytorch), it would be difficult to directly train the complex-valued pilot matrix Ps. Hence, we adopt355

the real-valued RIS phase control matrix Ξ whose entries take values in [0, 2π) as the real-valued356

trainable parameters of the pilot design network (PDN) and the pilot matrix Ps can be obtained357

from Equation (20). The structure of the PDN is shown in Figure 3, where the trainable parameters358

of the PDN, i.e., Ξ, are learned at the DL training stage.359

3.2.3 CSI Feedback360

At the uplink CSI feedback stage, the UE extracts the CSI from the received pilot signals and361

feeds it back to the BS. However, the large number of array elements results in excessive feedback362

overhead. Recently, DL-based solutions, such as CsiNet [37], have achieved good performance for363

CSI feedback. Furthermore, an emerging DL architecture, known as the transformer [38], is utilized364

as the novel CSI feedback network to further reduce the feedback overhead and obtain more efficient365

compression performance than the CsiNet framework [39]. Therefore, in this paper, we utilize the366

transformer as the backbone of the CSI feedback network fCsiFd(·). The original transformer is367

composed of an encoder and a decoder. However, since we are dealing with the CSI without time-368

sequential information, there is no causality constraint. Thus, we only exploit the encoder module369

of the transformer which obtains output in parallel. Since neural networks are more effective for370

real-valued operations than complex-valued operations and the transformer can only extract the371
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correlation between sequences, we reshape the received pilot signal into a real-valued two-dimensional372

(2D) sequence Ȳs ∈ RKs×2M , which can be expressed as373

Ȳs = [<{Ys},={Ys}] , (21)

where the number of subcarriers Ks represents the input sequence length of the transformer.374

The schematic diagram of the transformer encoder is shown in Figure 4. Through the fully-

connected linear embedding layer, the input sequence Ȳs is converted to Xs ∈ RKs×dT , which

merges the relative position information of the sub-carriers using the positional embedding layer.

Then, multiple encoder layers are utilized to extract features from the input sequences. Each en-

coder layer has the same structure which is composed of a multi-head self-attention sub-layer fol-

lowed by a position-wise multi-layer perceptron (MLP) sub-layer. Layernorm is applied before every

block and the residual connection is applied after every block. Among them, the multi-head at-

tention mechanism is the key component for the performance improvement of the transformer. As

shown in Figure 4, the input sequence Xs is first projected onto three different sequential vec-

tors: the queries, keys, and values with different learned linear projections, respectively, namely,

{Qi,Ki,Vi} ∈ RKs×dm , 1 ≤ i ≤ h, where h is the number of heads and dm = dT/h. Then, each

value headi ∈ RKs×dm , 1 ≤ i ≤ h, is outputted by performing the scaled dot-product attention in

parallel, where a softmax function is applied to obtain the weight on the value, which is given by

headi = softmax

(
QiK

T
i√

dm

)
Vi, 1 ≤ i ≤ h. (22)

These output values are concatenated and projected back to a dT-dimensional representation using

the linear projection matrix WO ∈ RKs×dT as

MultiHead(Xs) =Concat(headi, · · · ,headh)WO. (23)

After the transformer encoder, a fully-connected linear layer and sigmoid function are used to gen-375

erate a real-valued compressed codeword. The codeword is then converted to B bits as the feedback376

information through a quantization layer, which is constructed by a B-bit uniform scalar quantizer.377

The above feedback process generates the binary vector q ∈ {0, 1}B as378

q = fCsiFd

(
Ȳs;WF

)
, (24)

where WF denotes the trained parameter set of the CSI feedback network.379

3.2.4 Sub-Channel Estimation380

When the BS receives the feedback bits, the sub-channel estimation network is used to recon-381

struct the sub-sampling of the complete spatial-frequency channel. Similar to Subsection 3.2.3, we382

also consider the transformer encoder as the backbone of this part. As shown in Figure 3, the383

received CSI feedback bit vector is first inputted into a dequantization layer, which conducts the384
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inverse operation of the quantizer and outputs a real-valued vector. Then, a fully-connected layer385

is utilized to obtain an initial coarse channel estimation. Finally, the transformer encoder extracts386

the spatial-frequency correlation of the channel and further improves the channel estimation perfor-387

mance. The output of the sub-channel estimation network is expressed as388

H̄s =
[
<{Ĥs},={Ĥs}

]
= fSCE (q;WS) , (25)

where Ĥs ∈ CKs×NR
s is the estimated sub-sampling channel, H̄s ∈ RKs×NR

s ×2 is a real-valued 3D389

matrix, and WS is the trained parameter set of the sub-channel estimation network.390

3.2.5 Spatial-Frequency Domain Channel Extrapolation391

First, the initial input H̃ ∈ RK×NR×2 to the channel extrapolation network is constructed from392

the estimated sub-sampling channel H̄s ∈ RKs×NR
s ×2 with the known RIS spatial-frequency selection393

pattern S. Specifically, we copy the entries of H̄s to the corresponding positions in H̃ and fill the394

other elements of H̃ with zeros according to the known RIS spatial-frequency selection pattern S.395

This initial operation can be expressed as396

H̃ = fzfi

(
H̄s; S

)
. (26)

The non-zero rows/columns of H̃ are consistent with H̄s and their locations are the same as the397

locations of elements ‘1’ in S. The neighborhood information in the receptive field is then extracted398

using a convolutional layer for initial interpolation. To guarantee that the output dimensions from399

the convolution layer remain unchanged, we employ zero padding in the convolution layer.400

Subsequently, we consider a competitive yet conceptually and technically simple architecture,

called MLP-Mixer [40], as the backbone of the channel extrapolation network. The architecture

of this MLP-Mixer is based entirely on MLPs, which can extract and reconstruct 2D features by

repeatedly applying them to either spatial locations or feature channels. Specifically, the input

H̃ ∈ RK×NR×2 is rearranged as a sequence of flattened 2D patches Xp ∈ RNp×(2L2), where (K,NR)

is the resolution of the original input, (L,L) is the resolution of each patch, and Np = KNR/L2 is the

resulting number of patches. Then, all the patches are linearly projected with the same projection

matrix. This results in a 2D real-valued matrix X̃ ∈ RNp×dM . Next the input matrix X̃ is fed into
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Figure 5: The structure of the mixer layer.
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several mixer layers to extrapolate the complete channel. As illustrated in Figure 5, each mixer layer

consists of two MLP blocks. The first one acts on the columns of X̃, maps RNp 7→ R2Np 7→ RNp ,

and is shared across all the columns. The second acts on the rows of X̃, i.e., on the transposed input

matrix X̃T, maps RdM 7→ R2dM 7→ RdM , and is shared across all the rows. Each MLP block contains

two fully-connected layers and a nonlinear activation function. Denote the input matrix to the t-th

mixer layer as X̃t. The mapping of the t-th mixer layer can be expressed as

U = X̃t + Wt,2fσ(Wt,1LayerNorm(X̃t)),

X̃t+1 = U +
(
Wt,4fσ(Wt,3LayerNorm(U)

T
)
)T
,

(27)

where Wt,i, 1 ≤ i ≤ 4, are the parameter matrices of the fully-connected layers in the t-th mixer401

layer for 1 ≤ t ≤ LM, and LM is the number of mixer layers, while fσ is the activation function.402

Finally, the output of the last mixer layer is linearly projected back to the original dimension403

RNp×dM 7→ RNp×(2L2), and the 2D patches are rearranged back to RNp×(2L2) 7→ RK×NR×2 for404

obtaining the final extrapolation result H̄ ∈ RK×NR×2, which is a real-valued 3D matrix. Thus, the405

extrapolation process can be expressed as406

Ĥ = H̄[:,:,1] + jH̄[:,:,2] = fSFDE

(
H̄s;WE

)
, (28)

where Ĥ ∈ CK×NR

is the estimated complete complex-valued channel, and WE is the trained407

parameter set of the spatial-frequency domain extrapolation network.408

3.2.6 Training Strategy409

The data set for off-line training is denoted as H, where |H| = Nset is the number of off-line410

training samples. Furthermore, a sample in H is an input-label pair written as (H, H), where H is411

the extrapolation target and is also the input of the entire SFDCEtra network. The input will go412

through the RIS array element and subcarrier sub-sampling strategy, since we need to extrapolate413

the original complete channel by receiving only the pilot signal of the sub-sampling channel.414

With the uniform or random ESS fESS(·), at the off-line training stage, we consider E2E training415

to jointly optimize the pilot design network, CSI feedback network, sub-channel estimation net-416

work, and channel extrapolation network, by minimizing the normalized mean square error (NMSE)417

between the output Ĥ and the target H. Thus, the loss function is written as418

Lc =
1

Be

Be∑
i=1

‖H− Ĥ‖2F
‖H‖2F

, (29)

where Be is the batch size for off-line training.419

When the learning-based ESS is adopted, the parameters for the ESS and the above networks420

are optimized jointly. The loss function for the joint optimization problem is given by421

L = γLc + (1− γ)LESS, (30)
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where 0 < γ ≤ 1 is the weight to balance the penalties of channel extrapolation and ESS with422

γ = 1 denoting that the non-learning based fESS(·) is selected, and LESS is the loss function of the423

learning-based ESS. The details of LESS are available in [14].424

4 Proposed Beamforming Solution425

4.1 Problem Formulation of RIS-aided Multi-User Beamforming426

At the data transmission stage, the BS can simultaneously supports U UEs with the aid of RIS,

since the LoS MIMO architecture between the BS and RIS can support multi-stream transmission

via intra-path multiplexing. Similar to Equation (6), the received signal at the u-th UE on the k-th

subcarrier can be expressed as

y[u, k] =
√
PTh[u, k]ΦG[k]FRFfBB[u, k]s[u, k]

+

U∑
i=1,i6=u

√
PTh[i, k]ΦG[k]FRFfBB[i, k]s[i, k] + n[u, k], (31)

where h[u, k] ∈ C1×NR

, 1 ≤ u ≤ U, 1 ≤ k ≤ K, represents the downlink channel vector between the427

RIS and the u-th UE on the k-th subcarrier, fBB[u, k] ∈ CMB×1 denotes the digital baseband beam-428

forming vector associated with the u-th UE on the k-th subcarrier. Thus, the signal-to-interference429

plus-noise-ratio (SINR) of the u-th UE on the k-th subcarrier can be expressed as430

SINR[u, k] =
PT|h[u, k]ΦG[k]FRFfBB[u, k]|2

PT

U∑
i=1,i6=u

|h[i, k]ΦG[k]FRFfBB[i, k]|2 + σ2
n

. (32)

Therefore, the sum rate R in the downlink multi-user transmission can be expressed as431

R =
1

K

U∑
u=1

K∑
k=1

log2 (1 + SINR[u, k]) . (33)

Based on the estimated RIS-UE channel at the pilot training stage, the BS can design the hybrid432

beamformer {FRF,FBB [k] ,∀k} and the RIS refraction phase matrix Φ to maximize the sum rate433

R, where FBB[k] =
[
fBB[1, k], · · · , fBB[U, k]

]
. This design process is formulated as the following434

optimization problem435

max
F(·)

R,

s.t. {FRF,FBB[k],∀k,Φ} = F
(
Ĥ[u],∀u

)
,

FRF ∈ (8),

‖FRFFBB[k]‖2F = MB,∀k,
{Φ}i,i = {v}i = ejφi , φi ∈ [0, 2π),∀i,

(34)

where Ĥ[u] is the estimated spatial-frequency channel between the RIS and the u-th UE, and436
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F(·) represents a function that maps the estimated RIS-UE channels onto the hybrid beamformer437

{FRF,FBB [k] ,∀k} and the RIS refraction phase matrix Φ.438

4.2 Deep Learning Based Hybrid Beamforming and RIS Phase Design439

In order to solve the optimization Equation (34), some alternating iterative algorithms [17,440

18, 19] have been proposed to obtain the analog beamformer, digital beamformer, and RIS phase,441

respectively. Unfortunately, all the aforementioned approaches are based on the idealized case that442

the CSI is known accurately. However, perfect CSI is usually unavailable, especially for indoor443

channel cases where the channel characteristics are complex due to rich scatterers. Inspired by444

the universal approximation capability of DL, it is possible to use DL to learn the complicated and445

unknown mapping from the estimated channels to the hybrid beamformers and RIS refraction phase.446

Thus, we propose a DL-based hybrid beamforming and RIS phase design scheme, which consists of447

analog beamformer design, DL-based RIS refraction phase design, and knowledge-data dual-driven448

digital beamformer design. The block diagram of the proposed scheme is shown in Figure 6.449
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Figure 6: The overall structure of the proposed DL-based hybrid beamforming and RIS refraction
phase design scheme.

4.2.1 Analog Beamformer Design450

Since the BS’s active beamforming and RIS’s passive beamforming are coupled, the optimization451

problem is non-convex, and it is very challenging to find a global optimum. Hence, we separately452

design the analog beamforming of the BS and the passive beamforming of the RIS. Specifically, the453

BS analog beamforming and the RIS passive beamforming are designed to improve the received454

SINR of UEs. However, due to the sub-connected structure of phase shifters in the LoS MIMO455

architecture, the interference among beams from the BS subarrays to the RIS subarrays cannot456

be eliminated. Fortunately, this part of interference can be removed by appropriately designing457

the digital beamforming. Therefore, when designing the analog beamforming on the BS-side, it is458

sufficient to assume that the transmit energy of the BS is focused on the RIS.459
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Since the BS-RIS channel with only LoS path is quasi-static and known, we can utilize the angle460

information of the BS-RIS link to design the analog beamformer. Without loss of generality, we461

assume that the u-th UE is assisted by the mr-th subarray of the RIS. Thus, the active beamforming462

designed for the u-th UE should be aligned to the mr-th subarray of the RIS. Therefore, the transmit463

beam of the mb-th subarray fmb
is designed according to Equation (9).464

4.2.2 DL-Based RIS Refraction Phase Design465

The key challenge in the RIS-aided communication system is to optimize a common RIS phase466

shared by all the subcarriers. In the THz broadband case, there exists a non-negligible beam squint467

effect for different subcarriers [36]. Therefore, when designing the common RIS phase, it is necessary468

to consider this effect on all subcarriers, which makes the RIS phase design much more difficult than469

the narrowband case. To solve this challenging problem, we propose a transformer-based RIS phase470

design network (RPDN), as shown in Figure 6, to design the RIS refraction phase matrix.471

We first convert all the estimated RIS-UE channels Ĥ[u] ∈ CK×NR

for 1 ≤ u ≤ U into a472

real-valued 3D matrix H̄ ∈ RU×K×2NR

, which is expressed as473

H̄ =
[
H̄[1], · · · , H̄[u], · · · , H̄[U ]

]
, (35)

where H̄[u] = [<{Ĥ[u]},={Ĥ[u]}] ∈ RK×2NR

and Ĥ[u] is the estimated RIS-UE channel of the u-th474

UE obtained from the DL-based SFDCEtra network. H̄ is inputted into the transformer encoder,475

which globally extracts the inter-subcarrier correlation. To consider the beam squint effect for476

different subcarriers, the 2D matrix Xr ∈ RU×NR/U is obtained by the mean operation over the477

subcarrier dimension of the transformer encoder’s output. Then Xr is flattened as xr ∈ RNR×1, and478

passes through the activation function to generate the RIS phase vector v ∈ CNR×1 that satisfies479

the the constant modulus constraint. The corresponding activation function is defined as480

v = ej2π·Sigmoid(xr). (36)

Finally, the RIS phase matrix Φ ∈ CNR×NR

is obtained through diagonalization. The overall process481

of the RIS refraction phase design, namely, the transformer-based RPDN, can be expressed as482

Φ = fRIS

(
H̄;WR

)
, (37)

where fRIS(·) denotes the mapping of the RPDN, whose trainable parameter set is WR.483

4.2.3 Knowledge-Data Dual-Driven Digital Beamformer Design484

With the known BS-RIS channel G[k], the designed RIS refraction phase matrix Φ and the485

analog beamforming matrix FRF as well as the estimated RIS-UE channel ĥ[u, k], the BS can obtain486

the estimated equivalent baseband channel ĥeq[u, k] ∈ C1×MB

as487

ĥeq[u, k] = PT ĥ[u, k]ΦG[k]FRF. (38)
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The true equivalent baseband channel heq[u, k] has the similar form to Equation (38), given the488

designed Φ and FRF. Thus, the optimization problem Equation (34) can be simplified as489

max
FBB[k],∀k

1

K

U∑
u=1

K∑
k=1

log2 (1 + SINR[u, k]) ,

s.t. SINR[u, k] =
|heq[u, k]fBB[u, k]|2

U∑
i=1,i6=u

|heq[i, k]fBB[i, k]|2 + σ2
n

,

‖FRFFBB[k]‖2F = MB, ∀k.

(39)

The above problem is a classic baseband beamforming problem, which can be solved with standard490

liner beamforming schemes, such as the regularized ZF (RZF) or iterative weighted minimum mean-491

square error (WMMSE) algorithm.492

The iterative WMMSE algorithm solves the optimization (39) by solving the MMSE problem493

given in (40) below, which has the identical optimal solution FBB[k],∀k to the problem (39).494

max
Ū,W̄,FBB[k],∀k

U∑
u=1

K∑
k=1

(w̄u,keu,k − log2 w̄u,k) ,

s.t. ‖FRFFBB[k]‖2F ≤MB, ∀k,
(40)

where w̄u,k = {W̄}u,k is the weight of the u-th user on the k-th subcarrier, eu,k = E{|ŝ[u, k] −495

s[u, k]|2} is the MSE between the transceiver symbols under the independence assumption of s[u, k]496

and n[u, k], while ŝ[u, k] = ūu,ky[u, k] denotes the estimated data symbol at the UE-side, and497

ūu,k = {Ū}u,k is the receiver gain of the u-th UE on the k-th subcarrier. According to [41], the above498

problem is convex in individual optimization variable. Hence each of the optimization subproblems499

has a closed-form solution given the other optimization variables, and a block coordinate descent500

(BCD) iterative algorithm is adopted to solve the optimization (40). This algorithm is summarized501

in Algorithm 1, where we omit the iteration index t on the variables for clarity.502

However, the iterative WMMSE algorithm typically imposes a large number of iterations with503

Algorithm 1 Iterative WMMSE beamforming design algorithm

1: Initialize FBB[k] that meets ‖FRFFBB[k]‖2F = MB, set the maximum iteration number Imax,
and the current iteration index t = 0;

2: repeat

3: Update {Ū}u,k: ūu,k =
( U∑
i=1

|heq[u, k]fBB[i, k]|2 + σ2
n

)−1

heq[u, k]fBB[u, k], ∀u, k;

4: Update {W̄}u,k: w̄u,k =
(
1− ū∗u,kheq[u, k]fBB[u, k]

)−1
, ∀u, k;

5: Update fBB[u, k]: fBB[u, k] = ūu,kw̄u,k

( U∑
i=1

w̄i,k|ūi,k|2hH
eq[i, k]heq[i, k] + µkI

)−1

hH
eq[u, k],

where µk =
U∑
j=1

σ2

MB w̄j,k|ūj,k|2, ∀u, k;

6: t = t+ 1;
7: until t ≥ Imax

8: Scale FBB[k] to meet the transmit power constraint.
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long running time. Furthermore, the BS can only acquire the imperfect estimated CSI ĥeq[u, k], and504

it is difficult for the traditional digital beamforming algorithms, such as Algorithm 1, to overcome the505

interference induced by the imperfect CSI. Thus, we propose the knowledge-data dual-driven digital506

beamforming network, as shown in Figure 6, which utilizes the transformer encoder to directly learn507

the parameters of the iterative WMMSE algorithm from the imperfect CSI for better interference508

elimination and shorter running time.509

Specifically, the real-valued 3D matrix H̄ is reshaped into a 2D matrix H̄d ∈ CK×2UNR

, which

is inputted into the transformer encoder. The output of the transformer encoder X ∈ CK×4U is

converted into the weight matrix W̄ and the receiver gain matrix Ū, i.e.,

W̄ = XT
[:,:U ] + jXT

[:,U :2U ], (41)

Ū = XT
[:,2U :3U ] + jXT

[:,3U :]. (42)

Then, we can obtain FBB[k], ∀k, based on the learned W̄ and Ū by the update function of fBB[u, k],510

i.e., line 5 of Algorithm 1. Compared with the iterative WMMSE beamforming design, our proposed511

scheme does not involve an iterative process so that running time can be reduced significantly. To512

satisfy the transmit power constraint, the normalization operation can be expressed as513

FBB[k] =

√
MBFBB[k]

‖FRFFBB[k]‖F
,∀k. (43)

The proposed knowledge-data dual-driven digital beamformer design can be expressed as514

{FBB[k],∀k} = fDBF

(
H̄d;WD

)
, (44)

where fDBF(·) is the map of the digital beamforming network with a trainable parameter set WD.515

4.2.4 Training Strategy516

We take every U channel samples (i.e., the channels of U UEs) in the training set of the channel517

estimation stage as a group to form a training set at the beamforming design stage, which is denoted518

as HU . The number of off-line training samples is |HU | = Nset/U . A sample in HU is an UE set519

{H[u], 1 ≤ u ≤ U}, where H[u] is the spatial-frequency channel between the RIS and the u-th UE.520

{H[u], 1 ≤ u ≤ U} are inputted to the trained SFDCEtra network to obtain the estimated521

channels {Ĥ[u], 1 ≤ u ≤ U}, which form the input to the proposed network. Since imperfect CSI522

will reduce the sum rate upper bound, to ensure a faster learning process, we apply a teacher forcing523

technique [42] at the early stage of training by feeding the perfect CSI {H[u],∀u} to the proposed524

network. At the off-line training stage, we consider E2E training to jointly optimize the proposed525

hybrid beamforming and RIS phase design network, i.e., the parameters of the entire network are526

trained by minimizing the negative sum rate. Thus, the loss function is written as527

Lb = − 1

Bb

Bb∑
i=1

R, (45)
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where R is the sum rate defined in Equation (33) and Bb is the batch size for off-line training.528

5 Results and Discussion529

In this section, we evaluate the performance of the proposed spatial-frequency domain channel530

extrapolation scheme as well as hybrid beamforming and RIS phase design for the RIS-aided THz531

massive MIMO system through numerical simulations.532

5.1 Simulation Settings533

5.1.1 Communication Scenario Set up534

In simulations, the BS is deployed on the top of a building of height 30 m, and the RIS is installed on535

a window surface on one floor of another building. As shown in Figure 1(b), the BS (RIS) is equipped536

with MB = MB
y M

B
z = 4 (MR = MR

y M
R
z = 4) subarrays on the yz-plane, where MB

y = 2 (MR
y = 2)537

and MB
z = 2 (MR

z = 2). Each subarray is a UPA with NB
sub = NB

y N
B
z = 64 (NR

sub = NR
y N

R
z = 64)538

isotropically radiating elements, where NB
y = 8 (NR

y = 8) and NB
z = 8 (NR

z = 8). Therefore,539

the number of elements of the complete array at the BS (RIS) is NB = MBNB
sub = 256 (NR =540

MRNR
sub = 256). For simplicity, we assume that the BS and RIS meet the parallel symmetric array541

arrangement with a distance of D = 20 m. The central frequency is fc = 0.3 THz with bandwidth542

fs = 1 GHz. The number of OFDM subcarriers is set to K = 128 and the antenna gain of the BS543

is GT = 10 dBi. Given the above parameter settings, the subarray intervals of both the BS and544

Figure 7: Multi-ray THz channel model for the indoor scenario: the NLoS rays are reflected by the
scatters.
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the RIS are calculated from Equation (1) as dB
sy, d

B
sz, d

R
sy, d

R
sz = 96.5λ for obtaining the multi-stream545

multiplexing gain over the LoS path.546

Figure 7 depicts the schematic diagram of the fixed scattering environment, where the positions547

of the RIS, UEs, and scatterers are marked by blue, red, and green circles, respectively. The red548

solid line represents the LoS link between the RIS and an UE, and the black dotted line indicates the549

NLoS link via an scatterer. We assume that U = 4 UEs are randomly distributed over the xy-plane550

of the rectangular room (Wx = 5 m, Wy = 10 m), and the height of UEs is 1 m lower than the RIS.551

Due to rich scatterers for indoor environment as well as the high scattering and diffraction losses in552

the THz band, the number of available NLoS paths (scatterers) in the THz indoor channel is set to553

Lp = 5, implying that only a single-bounce scattering mode is considered. We set the parameters554

of the reflection coefficient βRC as µR = −5, σR = 2. The noise power spectrum density at the555

UEs is σ2
NSD = −174 dBm/Hz. Thus, the power of the AWGN is σ2

n = σ2
NSDfs/K = −105 dBm.556

The RIS-UE channel samples are generated using Equation (5), where the UEs and scatterers are557

distributed randomly each time.558

5.1.2 SFDCEtra Network Parameter Configuration559

In the CSI feedback network, the linear embedding layer of the transformer encoder has dT = 256560

neurons. In the transformer encoder, the number of the encoder layers is LT = 3, where the561

number of heads is h = 8 and the position-wise MLP sub-layer has 2 fully-connected layers with562

4dT and dT neurons, respectively, while the dimension of the output linear layer is 2M . In the563

sub-channel estimation network, the linear layer is a 2NR
s -dimensional fully-connected layer and the564

hyperparameters of the transformer encoder are the same as those of the CSI feedback network. As565

for the channel extrapolation network, the output of the zero filling is processed by the convolutional566

layer with the kernel size of 7 × 7 and the number of filters is 2. The patch size of the rearranged567

operation is L = 16, the number of patches is Np = 128 and the number of neurons in the linear568

layer is dM = 512. We set the number of mixer layers as LM = 6, where each mixer layer consists569

of two MLP blocks, and the numbers of neurons in the MLP blocks are set to 2Np, Np, 2dM, and570

dM, respectively. The above structural parameters of the SFDCEtra network are empirically found571

to be appropriate.572

We divide the data set into the training set, validation set, and test set, which contain 102400,573

10240, and 10240 samples, respectively. Unless otherwise specified, the uniform element selection574

strategy is adopted in the simulations. When considering the learning-based element selection strat-575

egy, the weight factor γ is set to 0.9. At the network training stage, the Adam optimizer is adopted576

to update the network weight parameters and the learning rate varies depending on the warmup577

mechanism [38]. We set the batch size of the training set to 512, and 200 epochs for training.578

5.1.3 HBFRPD Network Parameter Configuration579

Again we determine appropriate structural parameters of the HBFRPD network empirically.580

Specifically, in the RIS phase design network, the linear embedding layer of the transformer encoder581

has dB = 128 neurons. In the transformer encoder, the number of the encoder layers is LB = 3,582
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where the number of heads is h = 8 and the position-wise MLP sub-layer has 2 fully-connected layers583

with 4dB and dB neurons, respectively, while the output linear layer of the transformer encoder has584

NR/U = 64 neurons. In the digital beamforming network, the hyperparameters of the transformer585

encoder are the same as those of the RIS phase design network, and the output linear layer of the586

transformer encoder has 4U neurons.587

We take each U channel samples as a group to form a data set, which is divided into the training588

set, validation set, and testing set, which contain 25600, 2560, and 2560 samples, respectively. We589

set the batch size of the training set to 32, and 180 epochs for training.590
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Figure 8: NMSE performance comparison of different channel estimation schemes versus transmit
power PT.

5.2 DL-Based Spatial-Frequency Domain Channel Extrapolation591

Since the RIS element can only passively receive EM waves, selecting partial elements of array would592

reduce the signal energy radiated into the room. For the fair comparison between different schemes,593

we adopt the same transmit power instead of the same SNR as the comparison criterion to avoid594

ignoring the performance differences induced by the number of activated RIS elements. Specifically,595

as shown in Figure 8, we plot the NMSE performance of the different schemes as a function of596

transmit power PT. The number of NLoS paths is Lp = 5. We consider three model-based chan-597

nel estimation benchmark algorithms, namely, the simultaneous orthogonal match pursuit (SOMP)598

algorithm [43], the multiple-measurement-vector approximate message passing (MMV-AMP) algo-599

rithm [44], and the model-driven DL-based channel estimation scheme using the MMV learned AMP600

(MMV-LAMP) network [45], which utilize M = 64 OFDM symbols on all subcarriers and then di-601
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rectly estimate the complete channel. For the SOMP and MMV-LAMP schemes, the redundant602

dictionary with an oversampling ratio of 4 is considered to further improve the performance, i.e., the603

number of codewords is Gd = 1024. Note that the MMV-AMP scheme requires the measurement604

matrix’s elements to be independent and identically distributed, and hence we cannot consider the605

redundant dictionary (i.e., Gd = NR = 256). Since data-driven DL algorithms have the potential to606

achieve better performance, we also compare our proposed DL-based SFDCEtra network with the607

transformer-based channel estimation network (Transformer-CEN) [39] and the CNN-based chan-608

nel extrapolation network (CNN-CEtraN) [16]. For these methods, we set the number of OFDM609

symbols to M = 16 and the subcarrier compression ratio to ρ̄ = 16. The transformer-based scheme610

collects the signals from all RIS elements, i.e., ρ = 1, and directly estimates the complete channel.611

Both the CNN-based and our proposed channel extrapolation schemes consider the element com-612

pression ratio of ρ = 4 to perform partial channel extrapolation. Note that for fairness, the above613

model- and data-driven algorithms do not consider the quantization of CSI feedback information.614

Therefore, we additionally consider the proposed scheme with B = 256 feedback bits generated via615

a 2-bit quantizer, denoted as ‘Proposed-Q’.616

It can be observed from Figure 8 that the proposed channel extrapolation scheme outperforms617

the other channel estimation schemes considerably in terms of NMSE performance while imposing618

a smaller pilot overhead. This is because exploiting the spatial-frequency correlation allows our619

DL-based channel extrapolation scheme to recover the unobserved channel part from the estimated620

low-dimensional sub-channel, thus reducing the training overhead while improving the NMSE per-621

formance. In particular, our extrapolation scheme significantly improves the NMSE performance622

compared with the state-of-the-art CNN-based channel extrapolation scheme. Unlike local percep-623
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Figure 9: NMSE performance comparison of the proposed scheme versus the number of multipath
Lp, given ρ = 4, ρ̄ = 16 and M = 16. Offline training is based on the channel samples with Lp = 5
multipath components.
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tion in CNN, the MLP-mixer is utilized as the backbone of our channel extrapolation module and624

it can extract the global features of the channel for enhanced extrapolation accuracy. Considering625

the actual situation of finite quantized feedback, we can see that our proposed scheme with 2-bit626

quantizer, ‘Proposed-Q’, can still achieve very good performance. These results demonstrate that627

the proposed channel extrapolation scheme can learn latent features from the data more effectively628

to achieve better channel estimation accuracy with less pilot and feedback overhead.629

We further investigate the robustness of the proposed channel extrapolation scheme as a function630

of the number of multipath Lp in Figure 9. Note that the proposed DL-based channel extrapolation631

scheme is trained at the offline training stage, based on the channel samples with Lp = 5 multipath632

components. It can be clearly seen from Figure 9 that at the online estimation stage, the proposed633

scheme can adapt to estimate multipath channels with Lp 6= 5, without having to retrain the634

entire network architecture. Therefore, the proposed DL-based channel extrapolation enjoys better635

robustness and generalization capability to various channel conditions.636
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Figure 10: NMSE performance comparison of the proposed scheme with different pilot numbers
versus transmit power PT, given ρ = 4, ρ̄ = 16, Lp = 5.

In Figure 10, we investigate the channel extrapolation NMSE performance of our proposed scheme637

with different numbers of pilot OFDM symbols, M = 4, 8, 16, 32 and 64. As expected, the channel638

extrapolation performance improves with the increase of the number of pilot OFDM symbols. This639

is because more pilot OFDM symbols can improve the accuracy of sub-channel estimation, thus640

reducing the error propagation and improving the reconstruction of the extrapolation module. Fur-641

thermore, we can see that the proposed scheme can provide more significant performance gain by642

increasing the number of pilot OFDM symbols in the case of low transmit power. This is because643

the increase in the number of observations can improve the received SNR.644

Figure 11 depicts the NMSE performance of the proposed DL-based channel extrapolation scheme645

versus the element compression ratio ρ, with three ESEs. Specifically, the curve labeled by ‘Uniform’646
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Figure 11: NMSE performance comparison of the proposed scheme with different element selection
strategies versus element compression ratio ρ, given ρ̄ = 16, Lp = 5, M = 16, PT = 44 dBm.

corresponds to the uniform selection strategy, the curve labeled by ‘Random’ represents the random647

selection strategy, while the other two marked by ‘DL-based with 200 epochs’ and ‘DL-based with648

300 epochs’ use the DL-based element selection strategy. As expected, the NMSE improves as the649

element compression ratio ρ decreases. This is largely due to two reasons: 1) As the number of650

selected RIS elements increases, or the element compression ratio ρ decreases, the received signal651

power will increase, thus improving the estimation accuracy of channel extrapolation input (i.e., sub-652

channel estimate), and 2) The received pilot signal can provide more channel information when more653

RIS elements are selected. However, this does not imply that we can obtain the best performance by654

choosing the lowest element compression ratio (or performing complete observations directly without655

extrapolation). Indeed, the channel extrapolation performance heavily depends on the number of656

transmission resources, the accuracy of the sub-channel estimate, and the number of selected RIS657

elements (i.e., the dimension of the sub-channel). Only when the transmission resources are sufficient,658

can the gain provided by more selected RIS elements be seen clearly. Moreover, it can be seen659

that the performance difference between different element selection strategies is not obvious at low660

compression ratios. Only at high compression ratio (ρ > 8), can the performance difference be seen661

clearly as ‘Uniform’< ‘Random’< ‘DL-based’. Since the aperture of the random pattern is usually662

larger than that of the uniform pattern, the random selection strategy is slightly better than that of663

the uniform selection strategy. The performance of the DL-based approach is relatively better than664

that of the first two approaches only when its training reaches sufficient epochs, as the learning of665

the selection network needs sufficient number of epochs to converge.666

To fully illustrate the effectiveness of the proposed DL-based channel extrapolation solution,667

we verify its channel extrapolation module separately. To do so, we fix the compression ratio of668

RIS elements to 4, i.e., NR
s = 64. First, the least squares (LS), the SOMP, and the proposed669
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Figure 12: (a) NMSE performance comparison of different sub-channel estimation schemes versus
transmit power PT; and (b) NMSE performance of channel extrapolation versus transmit power PT

for different sub-channel estimation schemes.

transformer-based algorithm are utilized for sub-channel estimation, and the results are shown in670

Figure 12(a). Observe that the NMSE of the SOMP-based sub-channel estimation with M = 64 pilot671

symbols is significantly better than that of the LS-based sub-channel estimation with M = 64 pilot672

symbols, particularly at low transmit power PT. Furthermore, the NMSE of our transformer-based673

sub-channel estimation algorithm with only M = 16 pilot symbols is considerably better than that674

of the SOMP-based sub-channel estimation with M = 64 pilot symbols. Then, we input the sub-675

channels estimated by different algorithms into the trained channel extrapolation network fSFDE(·),676

which outputs the estimation of the complete channel. The corresponding results are shown in677

Figure 12(b). Observe that the NMSE performance of the complete channel extrapolated from our678

channel extrapolation network is even better than the NMSE of the estimated low-dimensional sub-679

channel, without any additional pilot overhead. This shows that our proposed channel extrapolation680

network can not only be used for DL-based communication architecture, but also be combined with681

traditional algorithms to significantly reduce resource overhead. Therefore, we conclude that the682

proposed DL-based spatial-frequency domain channel extrapolation scheme can significantly reduce683

the pilot overhead while achieving the same or better channel estimation NMSE performance.684

5.3 DL-Based Hybrid Beamforming and RIS Phase Design685

Figure 13 shows the sum rates achieved by different schemes under the perfect CSI case. We686

considered two comparison schemes, both of which adopt the analog beamforming design discussed687

in Subsection 4.2.1 as well as the beam alignment-based RIS phase design. In the beam alignment-688

based RIS phase design, each subarray of the RIS selects one UE and performs beam alignment689

according to the RIS-UE CSI on the central subcarrier to concentrate and refract the signal energy690

to it, while ignoring interference to other UEs. For digital beamforming design, these two comparison691
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Figure 13: Sum rates achieved by different schemes versus transmit power PT given the perfect CSI.
The actual transmit power of the ‘w/o LoS MIMO’ case is UPT = 4PT.

schemes adopt the RZF and iterative WMMSE algorithms, respectively, thus they are abbreviated692

as ‘RZF’ and ‘WMMSE’, respectively. It can be observed that our proposed HBFRPD scheme has693

the better performance than other schemes and the superiority is more evident as the transmit power694

increases. In addition, the proposed HBFRPD scheme does not require to obtain FBB[k],∀k, in an695

iterative manner. Thus, it runs much faster than the iterative WMMSE algorithm. We also analyze696

the performance gain provided by LoS MIMO architecture. Considering the case of the BS and the697

RIS w/o LoS MIMO array structure (i.e., both use UPA arrays), the BS-RIS channel is a single698

LoS path with rank 1, which only provides single stream data transmission. To ensure fairness, the699

transmit power of the ‘w/o LoS MIMO’ case is equal to the total transmit power of the ‘w/ LoS700

MIMO’ cases, i.e., the transmit power of the ‘w/o LoS MIMO’ case is actually UPT = 4PT. By701

calculating the sum rate, we obtain the green curve in Figure 13. It can be seen that the sum rate702

in the ‘w/ LoS MIMO’ case is much higher than that of ‘w/o LoS MIMO’ case. This is because the703

LoS MIMO architecture can increase the sum rate linearly benefited from extra spatial multiplexing704

gain, while ‘w/o LoS MIMO’ case can only provide log-level growth as the SINR increases.705

Although most schemes can achieve high sum rate performance under perfect CSI, the sum rate706

of multi-users is actually limited by the inter-user interference induced by CSI error. Figure 14(a)707

illustrates the sum rate performance of the different schemes with imperfect CSIs estimated at two708

different transmit powers PT(CE). Compared with the case of perfect CSI, the sum rate degrades709

significantly with the decrease of CSI estimation accuracy, i.e., with the decrease of the transmit710

power at the channel estimation stage. It can be clearly seen that due to the inter-user interference711

induced by CSI errors, the sum rates of the RZF and iterative WMMSE schemes barely increases712

with transmit power. Moreover, our proposed HBFRPD scheme exhibits a significant performance713

gain over the RZF and iterative WMMSE algorithms in the presence of CSI estimation errors. This714
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Figure 14: (a) Sum rates achieved by different schemes versus transmit power PT under the imperfect
CSI case, and (b) The CDFs of the sum rates achieved by different schemes under the imperfect CSI
case, given PT = 44 dBm. We have ρ = 4, ρ̄ = 16, Lp = 5 and M = 16.

result indicates that our proposed scheme is capable of mitigating the interference caused by CSI715

errors and hence has better robustness to inaccurate CSI than the other schemes.716

Figure 14(b) shows the cumulative distribution functions (CDFs) that characterize the sum rate717

performance achieved by the different schemes. Here, we consider the transmit power PT = 44 dBm718

at the data transmission stage. It can be seen from Figure 14(b) that when the transmit power is719

PT(CE) = 34 dBm at the channel estimation stage, the proposed HBFRPD network has a probability720

of about 64.6% to achieve a sum rate exceeding 30 bps/Hz, while the other two schemes can only721

achieve 16.3%. When the transmit power is PT(CE) = 44 dBm at the channel estimation stage,722

our HBFRPD network has a probability of about 68.8% to achieve a sum rate exceeding 40 bps/Hz,723

which is significantly better than the other two schemes. This result again confirms the superior724

performance of the proposed DL-based HBFRPD network over the existing conventional schemes.725

5.4 Computational Complexity Analysis726

We now investigate the computational complexity. For the DL-based schemes, since there is727

no strict time limit at the offline training stage, we only consider the computational complexity728

at the inference stage. The computational complexity analysis of different schemes is presented in729

Table 1. All the numerical results are obtained on a PC with Intel(R) Core(TM) i9-10980XE CPU @730

3.00GHz and an Nvidia GeForce RTX 3090 GPU. The DL-based methods and the existing solutions731

are implemented on the PyCharm framework. The details are further elaborated as follows.732

1) Channel estimation schemes: In the SOMP algorithm [43], correlation operation imposes733

significant computational complexity, where Gd is the dimension of the redundant dictionary and I734

is the number of iterations. The MMV-AMP algorithm [44] mainly requires matrix multiplication735

operations, but a large number of iterations I increases its computational complexity. The MMV-736
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Table 1: Computational Complexity of Different Schemes.

Channel estimation scheme Complexity FLOPs Run time/s
SOMP O

(
GdKMI +G2

dKI
)

4.707 G 0.1130

MMV-AMP O
(
MKNRI

)
5.337 G 0.7482

MMV-LAMP O (MGdKI) 0.341 G 0.0689

Transformer-CEN O
(
LT(Kd2

T +K2dT)
)

0.362 G 0.0103

CNN-CEtraN O
(
Z2

5N
RKC2

32

)
10.16 G 0.6039

Proposed O
(
LM(N2

pdM +Npd
2
M)
)

1.066 G 0.0248

Beamforming scheme Complexity FLOPs Run time/s

RZF O
(
(2U(MB)2 + (MB)3)K

)
24.58 K 0.1389

WMMSE O
(
IK(U2(MB)2 + U(MB)3)

)
8.192 M 0.9184

Proposed O
(
LBU(Kd2

B +K2dB)
)

0.512 G 0.0616

LAMP algorithm [45] has a low computational complexity because DL reduces the required number737

of iterations. The Transformer-CEN [39] also has a low computational complexity, and the main738

sources of its computational complexity come from self-attention and MLP sublayers. In the CNN-739

CEtraN [16], convolutional layers introduce significant computational complexity. By contrast,the740

MLP-mixer layers provide the majority of the computational complexity in our proposed SFDCEtra741

network, which is much lower than that of the CNN-CEtraN. We further meticulously count the742

numbers of floating-point operations per second (FLOPs) and run times per sample on CPU for743

different schemes in Table 1. Observe that at the inference stage, the FLOPs and run time per744

sample of the proposed scheme are lower than most benchmarks. Specifically, our SFDCEtra network745

imposes the second lowest run time per sample, and only the MMV-LAMP and Transformer-CEN746

have lower FLOPs than our proposed scheme.747

2) Beamforming schemes: A matrix inversion is required in the RZF algorithm, which is its main748

source of computational complexity. In the iterative WMMSE algorithm [41], a large number of749

iterations increases the computational complexity and the run time per sample. In the proposed DL-750

based HBFRPD Network, self-attention and MLP sublayers impose higher computational complexity751

and FLOPs than the other two algorithms. However, the run time per sample of our proposed scheme752

is significantly lower than that of the two model-based schemes. This is due to the fact that the753

DL-based HBFRPD network just needs matrix multiplication operations and does not requires an754

iterative procedure. This is a superior advantage of our DL-based HBFRPD network.755

6 Conclusions756

In this paper, we have proposed a DL-based transmission scheme for RIS-aided THz massive757

MIMO systems over hybrid-field channels. Our novel twofold contribution has been to develop a758

channel estimation scheme with low pilot overhead and to design a robust beamforming scheme.759

More specifically, we have first proposed an E2E DL-based channel estimation framework, which760

consists of pilot design, CSI feedback, sub-channel estimation, and channel extrapolation. Then, to761

maximize the sum rate of all UEs under imperfect CSI, we have developed a DL-based scheme to762

simultaneously design the hybrid beamforming and RIS phase. Simulation results have shown that763

our proposed channel extrapolation scheme significantly outperforms the existing state-of-the-art764
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schemes, in terms of reconstruction performance, while imposing a much reduced pilot overhead.765

Moreover, the results have also demonstrated that our proposed beamforming scheme is superior766

over the existing designs in terms of achievable sum rate performance and robustness to imperfect767

CSI. Potential future research directions based on the outcomes of this paper include the practical768

phase shift model of reflecting elements, the analysis of hardware impairments, the analysis of the769

complex near-field channel, and sensing-aided communications.770
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