ELEC6214 AWCNSs: Advanced Topics Seminar

Social-Aware D2D Communication Underlaying Cellular Network: Where Mobile Network Meets Social Network

Professor Sheng Chen

Southampton Wireless Group

Electronics and Computer Science

University of Southampton

Southampton SO17 1BJ, UK

E-mail: sqc@ecs.soton.ac.uk

Joint work with: Dr Yong Li, Tsinghua University, China

Electronics and

Computer Science

Cisco Forecast 2013-2018

• Over two-thirds of the world's mobile Source: Clsco VNI Mobile, 2 data traffic will be video by 2018 $1 \exp 10^{18}$ bytes

Electronics and Computer Science S Chen

New G Mobile Network

- Mobile communications landscape shows that current technology could not meet demand
 - You with your smart phones are creating this exponentially increasing demand
- We are going to "save" future world by **new generation mobile network**
- Long term evolution-advanced (LTE-A) supports mobile content downloading
- A key component of LTE-A: **Device-to-device** (D2D) communication
 - Enhancing bandwidth efficiency and increasing system capacity
 - while reducing power consumption
- New generation mobile network will be **D2D underlaying** cellular network

S Chen

Birth of Social Networks

- Digital world reality: where those huge volume of mobile traffics come from ? social networks !
- Mobile devices carried by human beings who form social networks of certain **social structures and phenomenons**
- Birth of social networks \Rightarrow thanks to mobile networks
- More and more people are living in two worlds: "real" physical world and "virtual" digital world
- As they usual to say

©The future is bright the future is orange

We are going to say

©The future is social network the future is mobile network

Social Characteristics

- 1. Social **tie**: characterise strength that two individuals are related to each other
 - In mobile network, social ties identify weak or strong connections among mobile users
- 2. Social **community**: identify groups of individuals sharing same interests or behaviours
 - In mobile network, social communities represent social groupings by interests or background
- 3. Social **centrality**: quantify structural importance of an individual
 - A central user has a stronger capability of connecting others in the network
- 4. Social **bridge**: manifest as connections between communities
 - A bridge provides path to connect two communities, along which information or influence can flow between two groups

Electronics and

Reality Mining

- 100 smart phones \Rightarrow MIT staff and students for nine months \Rightarrow human social interactions and dynamics
- Users are coloured to identify 9 different **communities**
- User in community has different **centrality**, by size of circle
- Social ties: some user pairs have strong relations, while others have weak ones
- When strong relations occur across two communities, social bridge is observed

Computer Science

6

What We Want

• Social networks have benefited greatly from advance of mobile communication technology

• We want to leverage social network characteristics for establish new paradigm of mobile network design

D2D Underlaying Cellular Network

1. **Cellular direct** (original mode); 2. **D2D connected** (relay); 3. **D2D opportunistic** (no end-to-end path) – new paradigm, store-carry-and-forward

Key Technical Problems

- 1. Service and Peer **Discovery**: identify candidate D2D pairs and required services
 - Cellular mediates discovery process, a centralized single-point-of-failure solution, stability and scalability problems
 - Ad hoc network approach, peer discovery by UE themselves, e.g. through beaconing
- 2. Communication Mode Selection: how to utilize all potential transmission modes to maximize data transmission capacity from all BSs to all UEs
- 3. Spectrum Resource Allocation: how to share spectrum between D2D and cellular to attain maximum system throughput
- 4. Interference **Coordination** and Management: how to manage interference between cellular and D2D and across multiple cells
 - Interference coordination for D2D connected can be managed centrally by BSs
 - Interference coordination for D2D opportunistic may require distributed management involving handsets

University

of Southampton

Conventional Solutions

- We have been working on communication-domain designs/solutions
 - Collaborative vehicular content dissemination with directional antennas, IEEE Trans. Wireless Communications, vol.11, 2012
 - Optimal beaconing control for epidemic routing in delay tolerant networks,
 - An optimal relaying scheme for delay-tolerant networks with heterogeneous mobile nodes, IEEE Trans. Vehicular Technology, vol.63, 2013
 - Exponential and power law distribution of contact duration in urban vehicular ad hoc networks, IEEE Signal Processing Letters, vol.20, 2013
 - Coding or not: optimal mobile data offloading in opportunistic vehicular networks, IEEE Trans. Intelligent Transportation Systems, vol.15, 2013
 - Multiple mobile data offloading through disruption tolerant networks, IEEE Trans. Mobile Computing, vol.13, 2014
 - A Markov jump process model for urban vehicular mobility: modeling and applications, IEEE Trans. Mobile Computing, vol.13, 2014
 - Optimal mobile content downloading in device-to-device communication underlaying cellular networks, IEEE Trans. Wireless Communication, vol.13, 2014

Electronics and

Social-Enhanced Solutions: Social Ties

- Social tie-aware peer discovery:
 - links correlated to strong ties offer more communication contacts and have higher data loads
- Instead of randomly beaconing, adjust beacon rates according to strengths of ties

- Allocating more spectrum and energy resources to users with strong ties increases peer discovery ratio, avoid congestion, and improve spectral efficiency
- **Social tie**-aware resource allocation and **relay selection**: Strength of a tie reflects trustfulness of two peers
 - In relay selection, taking social tie information into account improves privacy and security

Computer Science

Social-Enhanced Solutions: Social Community

- Peer discovery: community structure and encounter patterns helps peer discovery process
 - User in population-dense community can utilise community encounter patterns to aid ad hoc based peer discovery procedure
- Resource allocation: user obtains information and content from community neighbors with less effort, owing to similar interest

- Allocating more resources in D2D communication for these community links helps to reduce duplicated network load
- Mode selection: relies on knowledge of channel condition, inter-cell interference and network load
- Community structure information simplifies detection and helps to make mode selection quickly and accurately

Social-Enhanced Solutions: Social Centrality

- High degree **centrality** indicates that the user plays **key role** in data dissemination
- As multiple communication paths are built up on it, a central node has **higher demand** on **resources**
- **Centrality** users should possess **high capacity** for data transmission volume and frequency
- A central node has high proximity-encounter possibility with nearby devices
- Central devices may provide alternatives to relieve synchronization and communication work load on BSs
- Instead of randomised beaconing, central node can **proactively** send **beacons** to improve peer discovery ratio

Social-Enhanced Solutions: Social Bridges

- 1. A **bridge** undertakes task to provide information and content exchange among communities
 - Prone to **congestion** under heavy network load conditions
- 2. Resource allocation needs to schedule more resources to bridge users
 - To avoid congestion
- 3. Mode selection needs to give **higher preference** of cellular communication to bridge nodes
 - To avoid congestion
- 4. Bridge user **detection**, bridge-aware resource **allocation** and mode **selection** schemes are challenging problems
 - Have potential for significantly improving overall **throughput** and **coverage** of D2D enabled cellular network

Social-Aware D2D Summary

Peer Discovery

Ties	Community	Centrality	Bridge
beacon rate	peer density	proactive beacons	_
adjustment	encounter patterns	communication demands	_

Mode Selection

Ties	Community	Centrality	Bridge
	community density	cellular preferential	inter-community
_	community interests	bottleneck detection	demands

Resource Allocation

Ties	Community	Centrality	Bridge
com demands	community sharing	resource demands	dissemination dominant
security, privacy	com demands	bottleneck prediction	bottleneck prediction

Interference Management

Ties	Community	Centrality	Bridge
relay selection	resource partition	_	_
spectrum allocation	distributed coordination	—	_

Social Meets D2D: Quantitative Evaluation

System set up for simulated D2D enabled network:

- 1. Use **Reality Mining** trace, the most recognised human social and mobility trace, to drive simulation
- 2. In the area covered by Reality trace, multiple BSs, each with a coverage radius of 400 m, provide a seamless coverage
- 3. Maximum transmission range of D2D nodes is 50 m, and achievable link data rate depends on distance of two UEs
- 4. Other network parameters are based on standard wireless propagation settings
 - **D2D** channel based on scenario that two communicating UEs are physically in close proximity
 - Cellular channel is simulated according to urban microcell scenario

Social-Aware D2D Designs

- 1. Centrality-Aware Peer Discovery: adjust users' beacon rates proportional to centrality values
 - Group users by their centrality values, and allocate a different beacon rate to each group
- **Mode Selection**: first throughput-maximisation to decide 2. Bridge-Aware transmission modes
 - Amend results by setting all bridge users to cellular mode in downloading phase
 - Then set them to D2D mode in data sharing phase to disseminate data to other users
- 3. Community and Ties Guided Resource Allocation:
 - Allocate D2D pairs with same resources of cellular users in different communities (usually not in physical proximity)
 - Within a community, allocate resources for D2D pairs to be proportional to their social tie strengths

Electronics and

University

of Southampton

Peer Discovery Efficiency

Comparison of **peer discovery** performance as function of normalised energy consumed for **non-social centrality aware** and **social centrality aware** schemes

S Chen

Resource Allocation Performance

Comparison of spectrum efficiencies in terms of sum rate achieved (further first: allocate D2Ds with same resources of cellular users that are

furthest away from the D2D pairs; non-social aware optimal: throughput-maximisation)

Social Bridge Guided Mode Selection

• D2D opportunistic offloads large amount of data from the traditional cellular transmission

Conclusions

- Social networks we inhibit inhibit in mobile networks
 - 1. Understand interplay between social network's characteristics and mobile communication problems
 - 2. Beneficial to exploit social network's characteristics in mobile network design
- Open up new direction for designing next-generation social-aware D2D underlaying cellular system

21

S Chen

References

- 1. Doppler, Rinne, Wijting, Ribeiro, Hugl, "Device-to-device communication as an underlay to LTEadvanced networks," *IEEE Communications Magazine*, 47(12), 42–49, 2009
- 2. Fodor, Dahlman, Mildh, Parkvall, Reider, iklós, Turányi, "Design aspects of network assisted device-to-device communications," *IEEE Communications Magazine*, 50(3), 170–177, 2012
- 3. Lei, Zhong, Lin, Shen, "Operator controlled device-to-device communications in LTE-advanced networks," *IEEE Wireless Communications*, 19(3), 96–104, 2012
- 4. Watts, Strogatz, "Collective dynamics of 'small-world' networks," *Nature*, 393(6684), 440–442, 1998
- 5. Bond, Fariss, Jones, Kramer, Marlow, Settle, Fowler, "A 61-million-person experiment in social influence and political mobilization," *Nature*, 489(7415), 295–298, 2012
- 6. Hui, Crowcroft, Yoneki, "BUBBLE rap: social-based forwarding in delay-tolerant networks," *IEEE Trans. Mobile Computing*, 10(11), 1576–1589, 2011
- 7. Han, Hui, Kumar, Marathe, Shao, Srinivasan, "Mobile data offloading through opportunistic communications and social participation," *IEEE Trans. Mobile Computing*, 11(5), 821–834, 2012
- 8. Li, Wu, Hui, Jin, Chen, "Social-awre D2D communications: qualitative insights and quantitative analysis," *IEEE Communications Magazine*, 52(6), 150–158, 2014

