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The past few years have seen a dramatic growth in mobile 
traffic, contributed by billions of mobile devices as the 

first-class citizens of the Internet. The global cellular network 
traffic from mobile devices is expected to surpass 24 exabytes 
(an exabyte is approximately equal to 1018 bytes) per month 
by 2019 [1], which is 9 times larger than the traffic served by 
the existing cellular network in 2014. Such a huge volume 
of mobile traffic forms large-scale mobile big data recording 
human’s activities in the physical world, behaviors in the cyber-
space, and interactions with the urban social ecology. Here, 
social ecology refers to the complex relationship between 
human behaviors and urban environments. More specifically, 
in this article, the study of social ecology is carried out through 
investigating urban functional regions, such as transport hub, 
business district, shopping mall, and residential area. There-
fore, while we are embracing a world with ambient cellular 
connectivity, there is also a critical and challenging problem: 
how to understand the patterns of data traffic in cyberspace 
and human mobility in the physical world profoundly [2–6], 
especially their inherent relationship.

On a more practical note, understanding the hidden pat-
terns of humans’ activities and behaviors in cyberspace, the 
physical world, and social ecology in a large-scale urban envi-
ronment is extremely valuable for service providers, mobile 

users, and government managers of modern cites [7, 8]. If 
the traffic patterns of a cellular network can be identified and 
modeled, the service provider can exploit the modeled traffic 
patterns and customize a strategy for its individual cellular 
tower for providing services, instead of using a uniform strat-
egy, such as using the same load balancing and data pricing 
algorithms on each tower. Mobile users also benefit from the 
traffic modeling because they can then choose towers with pre-
dicted lower traffic and enjoy better services. More profound-
ly, management departments of government will benefit from 
such mobile big data analysis as well because they may infer 
the social ecology and human economy activities by interpret-
ing these data recorded by mobile networks [9].

On the other hand, understanding humans’ behaviors in 
cyberspace and the physical world as well as their interaction 
with social ecology by analyzing mobile big data is challeng-
ing for three reasons. First, the recorded data experienced by 
thousands of cellular towers deployed in large-scale modern 
cities is highly complicated and hard to analyze. For exam-
ple, our measurement includes over 9600 cellular towers and 
150,000 subscribers, where lots of redundant and conflicting 
logs are observed. To identify patterns and behaviors embed-
ded in the data associated with thousands of cellular towers, 
designing a system that is able to clean and handle large-scale 
big data is needed. Second, we do not have a priori human 
behavior patterns in cyberspace and the physical world. With-
out these profiles of human behavior patterns, it is challenging 
to group the huge amount of data experienced by thousands 
of cellular towers into a small number of meaningful patterns, 
which are vital for further understanding human behaviors. 
Third, the traffic of a cellular tower is affected by many factors 
(time, location, etc.). These factors are often correlated with 
each other and further complicate the analysis task. For exam-
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ple, significant traffic variation is observed at both fine-grained 
(hours) and coarse-grained (days) timescales, and across tow-
ers deployed in different locations [10]. By addressing these 
challenges, in this article, we investigate how to extract and 
model the user behaviors and patterns embedded in thousands 
of cellular towers in a large-scale urban environment via a 
credible dataset collected by one of the largest commercial 
mobile operators.

Our main contribution comprises three parts. First, we 
reveal people’s behavior patterns in cyberspace and the physi-
cal world, in terms of traffic consumption and human mobility 
patterns, respectively. Specifically, we find out that cyberspace 
traffic consumption and physical world human mobility have 
temporal patterns and are tightly correlated with each other. 
Second, we link cyberspace and the physical world with social 
ecology by first detecting the key mobility patterns embedded 
in the dataset and then investigating their links with urban 
functional regions. Third, with the established link between 
cyberspace, the physical world, and social ecology, we find that 
the average traffic-consuming rate and human migration pat-
tern are correlated with social ecology. More importantly, we 
further analyze the characteristics of human behavior in differ-
ent urban functional regions, which deepens our understand-
ing of human behaviors in large-scale urban environments.

The rest of this article is organized as follows. The introduc-
tion of the mobile big data investigated and the required pre-
processing techniques employed is first presented, followed by 
an overall visualization of the temporal features of mobile big 
data. Then, how people behave in cyberspace and the physical 
world is investigated, and we further our understanding of 
people’s behaviors by linking them with social ecology. Finally, 
the last section summarizes our study and discusses future 
studies.

Dataset, Preprocessing, and Overall 
Visualization
This section provides the detailed information of the mobile 
big data investigated and the preprocessing needed. In addi-
tion, we visualize the temporal distribution of cellular traffic 
and subscribers, which benefits analysis.

Dataset Description
Our utilized mobile big data is an anonymized cellular trace 
collected by one of the largest mobile service providers in 
Shanghai during the whole month of August 2014. The trace 
contains the detailed mobile data usage record of 150,000 
users, and each entry in the trace includes the identify ID 
of device (anonymized), start-end time of data connection, 
base station (BS) ID, address of BS, and the amount of third 
generation (3G) or Long Term Evolution (LTE) data con-
sumed in each connection. The trace logs 1.96 billion tuples 
of the described information, contributed by over 9600 BSs, 
which contains the traffic logs of 2.8 petabytes (petabyte = 
1015 bytes) cellular data traffic, 92 terabytes (terabyte = 1012 
bytes) per day, and 7 GB per BS on average. This large-scale 
and fine-grained dataset ensures that our human behavior 
analysis and modeling is credible.

Preprocessing
The trace collected by the service provider needs to be prepro-
cessed because of the existence of redundant and conflicting 
traffic logs as well as incomplete information of BSs’ locations. 
The preprocessing includes three steps. First, redundant and 
conflicting logs are eliminated, such as the identical traffic 
logs caused by technical issues. Second, to solve the problem 
of incomplete information, we convert the addresses of BSs to 

their geographical longitudes and latitudes through application 
programming interfaces (APIs) provided by an online map ser-
vice. This conversion gives us the precise geographical location 
of each BS, which is important for analyzing the ground truth 
of urban functional regions. The last step of preprocessing is 
segmenting the 31-day traffic trace of a tower into thousands 
of chunks, each of which contains a 10-minute traffic log. The 
10-minute segmentation is chosen because it is the smallest 
time interval in which a cellular tower can experience non-zero 
traffic.

Data Visualization
Before diving into a deep analysis of mobile data traffic, the 
visualization is first displayed for the distributions of the tem-
poral traffic and number of active users provided by the 9600 
BSs, from which two interesting observations can be made.

First, the data embeds the fundamental temporal patterns 
of mobile data traffic. Figure 1 shows the aggregated and nor-
malized traffic and the number of active users at different 
timescales. More specifically, Fig. 1a depicts the profile of nor-
malized traffic and number of active users in one day (August 
7, 2015, Thursday), where the aggregated network traffic looks 
similar to the profile of active users, and both are tightly cou-
pled with the sleep patterns of humans; that is, high cellular 
traffic and a large number of active users are observed during 
the day, and low volumes are experienced overnight. Figure 1b 
shows the profile of normalized traffic and number of active 
users over one week (August 3–9, 2015). In addition to the 
repeated daily patterns of Fig. 1a, we observe from Fig. 1b that 
the peak traffic and the number of active users at the weekend 
are lower than those on a weekday. This suggests that mobile 
users are less active during the weekend and consume less cel-
lular data traffic, which has also been found in [3]. Figure 1c 
illustrates the traffic distribution over the month (August 3–31, 
2015), which shows that the traffic exhibits a periodical pat-
tern on the order of a week, and weekend traffic is lower than 
weekday traffic. Figure 1d depicts the temporal patterns of the 
number of active mobile users over the month. On one hand, 
the profile of number of active users given in Fig. 1d exhibits 
similar patterns with the cellular traffic profile shown in Fig. 
1c. On the other hand, the number of users is more stable 
during weekdays than the cellular traffic, which indicates that 
the number of active users in Shanghai does not vary signifi-
cantly on different weekdays.

Human Behaviors in Cyberspace and the 
Physical World
In this section, human mobility and cellular traffic consump-
tion patterns are investigated in order to understand human 
behaviors in cyberspace and the physical world. In addition, 
the relationships between human mobility in the physical 
world and traffic consumption patterns in cyberspace are fur-
ther analyzed to provide insights of the link between cyber-
space and the physical world.

Human Mobility in the Physical World
Human mobility is an important topic, which has been exten-
sively studied in the past decade [11, 12]. With our mobile big 
data, mobile users can be located by checking the locations of 
the BSs to which they are connected. Therefore, it provides 
fine-grained location of large-scale mobile users, which is ideal 
for studying human mobility. In particular, human mobility 
can be studied through investigating dynamic distribution of 
mobile user population, which offers a new angle to aid our 
understanding of how humans move in an urban environment 
at a macro scale.
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The bottom two plots of Figs. 2a and 2b show the spatial 
distributions of the number of active mobile users at two dif-
ferent times of a day (August 7, 2015, Thursday). From these 
results, it can be seen that the city center possesses the highest 
density of mobile users. Also, we can see that the spatial distri-
bution of mobile users varies with time during a day. In partic-
ular, the spatial distribution at 4 a.m. is different from that at 
4 p.m. This suggests that human mobility patterns vary during 
a day in an urban environment, which is probably governed by 
activity patterns of humans.

Traffic Consumption Patterns in the Cyberspace
Understanding the traffic consumption patterns in an urban 
environment is of great importance for cellular network load 
balancing, green operation, and smart pricing. With the help 
of the traffic logs recorded in our big dataset, we are able 
to analyze such patterns in an urban environment up to the 
period of one month. Let us specifically study the spatial distri-
bution of cellular traffic during a chosen day (August 7, 2015, 
Thursday).

The top two plots of Figs. 2a and 2b present the spatial dis-
tributions of normalized cellular traffic at two different times. 
From these two figures, we observe that the highest traffic 
consumption rate always occurs in the city center for different 
times, which is probably associated with the highest density of 
mobile users at the city center. Furthermore, from Fig. 2b, we 
can see that the spatial distribution of cellular traffic is similar 
to the spatial distribution of mobile users at 4 p.m. However, 

observe from Fig. 2a that the cellular traffic’s spatial distribu-
tion is different from the distribution of mobile users at 4 a.m. 
This indicates that the traffic consumption is not only correlat-
ed with the number of users, but also affected by other factors, 
such as traffic demand.

Relationship Analysis
From Figs. 2a and 2b, it can be seen that the traffic consump-
tion is correlated with the number of users. Understanding 
the correlations between them will help us better understand 
human behavior in the physical world and cyberspace. There-
fore, we analyze and quantify the correlations between human 
mobility and cellular traffic patterns.

To understand the relationship between traffic consumption 
and number of users, the cumulative distribution functions 
(CDFs) of the spatial and temporal correlations, respective-
ly, between them are analyzed and presented in Fig. 2c. The 
spatial correlation is derived by computing the Spearman cor-
relation coefficient at each time slot, while the temporal cor-
relation is computed on each BS. Observing the results of Fig. 
2c, the number of users and the traffic consumption rate has a 
strong correlation in the spatial domain, with most time slots 
having a correlation coefficient larger than 0.9. This suggests 
that at every time slot an area with more users is very likely 
to have higher traffic consumption. In contrast, the number 
of users and the traffic consumption exhibit surprisingly low 
correlation in the temporal domain, with about 20 percent of 
the BSs having negative correlation and about 40 percent of 

Figure 1. Variation of the normalized traffic and the number of active users at different timescales: a) profile of active users and 
traffic in one day; b) profile of active users and traffic in one week; c) traffic volume in one month; d) number of active users in 
one month.
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the BSs having a correlation coefficient lower than 0.4. This 
implies that in 50 percent of the BSs the number of users has a 
weak correlation with the traffic consumption rate.

Linking with Social Ecology
Based on the above analysis, we have some basic understand-
ing of human behavior in the cyberspace and physical world in 
urban environment. A natural question to ask is does human 
behavior relate to the social ecology? To answer this question, 
the links between the physical world and social ecology are 
established by detecting the key patterns of human mobility. 
Then, with knowledge of social ecology, we deepen our under-
standing of human behavior in cyberspace and the physical 
world.

Discovering the Links with Social Ecology
Discovering the links between the physical world, cyberspace, 
and social ecology is nontrivial, because we have little knowl-
edge of the relationships among them. However, inspired by a 
key observation that the human mobility patterns of the same 
geographical context tend to be similar, we implement and 
evaluate a system to discover the links by detecting the key 
mobility patterns.

Detecting Key Mobility Patterns: Our system is composed of 
three key elements: data cleaner, pattern identifier, and metric 
tuner.

Data Cleaner: The data cleaner is a distributed traffic anal-
ysis system implemented in Hadoop, which is able to tackle 
large-scale unstructured mobile big data. The key to designing 
the data cleaner is a parallel transformer, which takes the 
time-domain logs of thousands of cellular towers as its input 
and converts each cellular tower’s logs into a vector. A vector 
is constructed in two phases: aggregation and folding. In the 
first phase, each BS’s number of users is aggregated in each 
10-minute time slot to generate a vector representing its user 
number pattern. Then cellular towers’ user number patterns 
of a month are converted into the patterns of a week (seven 
days) by averaging. The purpose of averaging is smoothing 
burst events experienced by cellular towers, such as parades.

Pattern Identifier: The pattern identifier takes the vector-
ized data from the cleaner and runs an unsupervised machine 
learning algorithm to identify the key patterns of human 
mobility. The pattern identifier addresses one key challenge 
of the mining process, unknown patterns, by exploiting hierar-
chical clustering [13]. The basic idea of hierarchical clustering 
is iteratively merging the nearest two clusters. It first considers 
each input point as a cluster and then bottom-up iteratively 
merges the nearest two clusters until the stop condition is 
met. In our application, correlation distance is utilized as the 
distance metric, and the distance between clusters is defined as 
average-linkage distance. In addition, a threshold value is set 
as the stop condition, which stops clustering when the distance 
between every pair of clusters is above the threshold value. 
To be more specific, the pattern identifier operates in the fol-
lowing three steps. First, it receives the predefined threshold 
value, takes the vectorized data as input, and considers each 
cell tower’s data as a cluster. Second, it calculates the distances 
for all pairs of clusters. Third, it finds the minimum distance 
from the set of all the distances and compares it to the thresh-
old value. If the minimum distance is above the threshold, 
the clustering is stopped, and the number of clusters gives the 
number of patterns identified, while the average pattern of 
every cluster is output as the identified pattern for each clus-
ter. Otherwise, it merges the nearest two clusters and returns 
to the second step.

Metric Tuner: As the patterns of user variation are 

unknown, a key question is when should the identifier stop its 
clustering. In our system, the Davies-Bouldin index is utilized 
[14] to explicitly inform the identifier that the optimum num-
ber of patterns has been identified. The Davies-Bouldin index 
is utilized because it measures both the separation of clusters 

Figure 2. The spatial distribution of normalized traffic 
consumption and number of active users, and the CDF of 
their correlation: a) spatial distribution at 4AM; b) spatial 
distribution at 4PM; c) CDF of correlation between number 
of active users and traffic.
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and cohesion within clusters, which mathematically guarantees 
a good clustering result. When a minimum Davies-Bouldin 
index is obtained, the optimum number of patterns is identi-
fied.

Figure 3 shows the five time-domain patterns identified by 
our system from over 9600 cellular towers. The five clusters 
differ in terms of the time where the peak of user number 
appears as well as the number of users experienced during 
weekdays and weekend. The percentage of each cluster’s cel-
lular towers is shown in the upper right column of Table 1, 
which indicates that the first cluster has the most cellular tow-
ers and the second cluster has the least.

Linking Mobility Patterns with Social Ecology: After obtain-
ing the clustered BSs, the next question to ask is how to link 
these clusters to the social ecology of the city (i.e., the urban 
functional regions). We build the linker via investigating the 
ground truth of urban functions in different regions.

To start with, the distribution of points of interest (POIs) 
is investigated in each cluster to establish the links between 
human mobility patterns and urban functional regions. A 
POI is a specific point location of a certain function such as 
a restaurant or shopping mall. An area’s POI distribution 
reflects its urban function and can be considered as ground 
truth [15]. Therefore, studying the POI distribution of an 
area can help us to accurately find out the urban function of 
that area. To calculate the POI distribution, we measure the 
numbers of four types of POIs, which are resident, transport, 
office, and entertainment, within 200 m of each cellular tower. 
Then different regions’ POI distributions are summarized in 
the lower part of Table 1. The maximum value of each column 
is shaded dark blue, which shows the dominant urban function 
in the corresponding row (i.e., cluster). According to Table 1, 
cluster 1 corresponds to an office area, cluster 2 corresponds 
to a transport area, cluster 3 corresponds to an entertainment 
area, cluster 4 corresponds to a residential area, and cluster 5 
corresponds to a comprehensive area. Therefore, regions are 
classified into their dominant urban functions. If a region does 
not have an obvious dominant urban function, it is classified 
as comprehensive. With the help of POI data, we manage to 
establish the links between the human mobility of the physical 
world with urban social ecology.

Understanding Human Behaviors with Social Ecology
After discovering the links between the cyberspace, physical 
world and social ecology, we are able to further our analysis to 
better understand human behavior in both the cyberspace and 
physical world by focusing on human behaviors in different 
functional regions of social ecology. To characterize the fea-
tures of cellular traffic patterns in different urban functional 
regions, the normalized traffic patterns for both weekday and 
weekend are presented in Fig. 4.

Comparing Fig. 4a with Fig. 4b, the traffic patterns in differ-
ent urban functional regions have distinct features on a week-
day and on the weekend. For a weekday, the traffic patterns 
of the office area and entertainment area reach their peaks 
around noon, while the traffic pattern of the transportation 
area has two peaks in the morning and afternoon, and the 
traffic pattern of the residential area experiences a high value 
at night. In contrast, on the weekend, the traffic in the trans-
portation area has only one peak, and the traffic patterns in 
the residential and office areas are different from those experi-
enced during the week, while the entertainment area’s pattern 
does not vary much.

To characterize the patterns of traffic consumption, the 
average traffic consumption for different urban functional 
regions are presented in Fig. 4c. As seen from Fig. 4c, the res-
idential area possesses the highest traffic consumption, while 
the transportation area has the least traffic consumption. In 
addition, in the office and transportation areas, the traffic con-
sumption is lower on the weekend than on a weekday, while in 
the residential and entertainment areas, the traffic consump-
tion is higher on the weekend, which is consistent with human 
activity patterns.

The information of social ecology can also benefit our 
understanding of human behaviors in the physical world. 
A human’s migration between different urban function-
al regions is an important aspect of understanding human 
mobility in an urban environment. Therefore, the migra-
tion probabilities (from other areas) to office and residen-
tial areas are presented in Figs. 5a and 5b, respectively. The 
migration probability from one region A to another region B 
is calculated by dividing the number of users migrating from 
A to B with the total number of users moving out of region 
A. In addition, a positive value represents people actually 
migrating from A to B, while a negative value represents 
people actually migrating from B to A. Therefore, the migra-
tion probability to each area sums up to 1 or –1 in each time 
slot, with a negative value indicating people migrating out 
of this area and a positive value suggesting that people are 
migrating into this area. As seen from Fig. 5b, most people 
migrate into an office area from a residential area from 5 
a.m. to 9 a.m., and most people migrate out of an office area 

Figure 3. Patterns of number of active users for the five 
identified clusters.
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Table 1. Percentage and averaged normalized points of interest of 
cellular towers classified in each cluster.

Functional regions Cluster index Percentage

Office 1 45.72%

Transport 2 2.58%

Entertainment 3 9.35%

Resident 4 17.55%

Comprehensive 5 24.81%

Cluster Points of interest

Office Transport Entertain Resident

#1 0.1034 0.0813 0.0515 0.0439

#2 0.1012 0.2000 0.1020 0.0473

#3 0.0976 0.1201 0.1674 0.0474

#4 0.0232 0.0285 0.0269 0.0528

#5 0.0453 0.0373 0.04030 0.0508
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to a residential area from 12 p.m. to 9 p.m. In addition, peo-
ple begin to migrate from a transportation area to an office 
area from 8 a.m. to 10 a.m., while people begin to migrate 
from an office area to a transportation area from 1 p.m. to 5 
p.m., as can be seen from Fig. 5a. Furthermore, the migration 
probability to a residential area is the opposite of that to an 
office area, as can be clearly seen by comparing Fig. 5a with 
Fig. 5b. This simply confirms that there is a strong connec-
tion between the office area and residential area, with most 
migration happening between these two areas. The above 
results clearly suggest that going to work is the main purpose 
of human migration between urban functional regions.

Prospects and Discussion
With the rapid growth of mobile devices and ubiquitous 
cellular access, the cellular mobile network has become a 
gigantic sensing platform, which captures human behaviors 
in the physical world and cyberspace. For example, a cellu-
lar network records human access of all kinds of applica-
tions as well as human mobility and locations in the physical 
world. This detailed information enables us not only to 
analyze human mobility and traffic consumption patterns 
but also to study the links between human behaviors in the 
physical world, cyberspace, and social ecology. In our future 
studies, we plan to further investigate the links from the 
following aspects.

Spatial domain: In our current study, we have found out 
that the number of active mobile users has a strong correla-
tion with cellular data traffic in the spatial domain. With the 
penetration rate of mobile devices reaching up to 96 percent 
over the world, mobile devices have become the best agent 
to monitor traces of human mobility. Therefore, based on 
cellular big data, future studies can be carried out to model 
the dynamic distribution of population, which not only is an 
important topic in human mobility, but also plays an important 
role in disease control, transportation scheduling, and other 
urban planning applications.

Temporal domain: In our current study, we have shown 
that human behaviors have strong temporal periodicity in the 
physical world as well as in cyberspace. Moreover, the pat-
terns of human behaviors differ significantly in different urban 
functional regions. Therefore, based on the links with social 
ecology, we can better characterize and model human behav-
ior in the physical world and cyberspace. Future studies can be 
carried out to model the temporal patterns of human behav-
iors with social ecology in mind and to develop applications 
based on it, such as a cellular network’s dynamic load balanc-
ing schemes.

Events oriented: Detecting anomaly events in the physical 
world is an interesting topic that is of great importance in pub-
lic safety. In our current study, we have observed that human 
behaviors in the physical world are tightly coupled with those 
in cyberspace. For example, a parade may cause spikes in cel-
lular data traffic in particular regions. Therefore, by investigat-
ing the links between human behaviors in the physical world 
and cyberspace, we plan to develop an effective system to 
detect anomalous events in the urban environment.

Figure 4. Characteristics of cellular traffic patterns in 
different functional regions: a) normalized traffic variations 
of different regions on weekdays; b) normalized traffic 
variations of different regions on the weekend; c) average 
traffic consumption rates in different regions.
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Figure 5. Migration probabilities to office area and residential 
area: a) to office area; b) to residential area.
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Conclusion and Discussion
In this article, we carry out, to the best of our knowledge, the first 
study of human behaviors in cyberspace and the physical world 
embedded in large-scale 3G and LTE cellular towers deployed in 
an urban environment. Through investigating human mobility pat-
terns and traffic consumption patterns, we characterize the features 
of human behaviors in the physical world, cyberspace, and social 
ecology. Our analysis reveals that human mobility and traffic con-
sumption have strong correlation, and both have distinct periodical 
patterns in the time domain. Moreover, they are both linked with 
social ecology, which helps us better understand human behaviors. 
We believe that our analysis provides a systematic and compre-
hensive understanding of human behavior in social-physical-cyber 
space, and opens a new set of research directions.
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