ELEC6014 RCNSs: Brief Notes

Coherent and Non-coherent Receivers

Professor Sheng Chen School of Electronics and Computer Science University of Southampton Southampton SO17 1BJ, UK E-mail: sqc@ecs.soton.ac.uk

http://www.ecs.soton.ac.uk/~sqc/EZ412-612/

Coherent Receiver

(a) Carrier recovery for demodulation

- Receiver signal $\hat{S}(t) = A \cos \left(\omega_c t + \varphi\right) + N(t)$
- Local carrier $\cos(\omega_c t + \bar{\varphi})$
- Carrier recovery (e.g. phase lock loop) circuit

$$\Delta \varphi = \varphi - \bar{\varphi} \to 0 \quad \text{i.e.} \quad \bar{\varphi} \to \varphi$$

- Demodulation leads to recovered baseband signal

$$Y(t) = X(t+\tau) + N(t)$$

where $\boldsymbol{X}(t)$ is transmitted baseband signal

(b) Timing recovery for sampling

– Align receiver clock with transmitter clock, so that sampling \Rightarrow no ISI

$$Y_k = X_k + N_k$$

where X_k are transmitted symbols, and N_K noise samples

Electronics and Computer Science

Non-coherent Receiver

(a) No carrier recovery for demodulation

- Receiver signal $\hat{S}(t) = A \cos \left(\omega_c t + \varphi\right) + N(t)$
- Local carrier $\cos\left(\omega_c t + \bar{\varphi}\right)$
- No carrier recovery,

$$\phi = \Delta \varphi = \varphi - \bar{\varphi} \neq 0$$
 i.e. $\bar{\varphi} \neq \varphi$

- Demodulation leads to recovered baseband signal

$$Y(t) = X(t+\tau)e^{j\phi} + N(t)$$

(b) Timing recovery for sampling

- Align receiver clock with transmitter clock, sampling results in

$$Y_k = X_k e^{j\phi} + N_k$$

Could not recover transmitted symbols properly from Y_k !

Differential Detection

(a) Differential encoding for transmission

- Symbols $\{C_k\} \Rightarrow \{X_k\}$ for transmission

$$X_k = C_k \cdot X_{k-1}$$

- As
$$X_k \cdot X_{k-1}^* = C_k \cdot (X_{k-1} \cdot X_{k-1}^*)$$
,

$$C_k = \frac{X_k \cdot X_{k-1}^*}{|X_{k-1}|^2}$$
(1)

(b) Non-coherent detection

- Receiver samples $Y_k = X_k \cdot |H|$

$$Y_k = X_k \cdot |H| \cdot e^{j\phi} + N_k$$

- |H|: magnitude of combined channel tap, $\phi \neq 0:$ unknown phase
- Differential decoding

$$\hat{C}_k = \frac{Y_k \cdot Y_{k-1}^*}{|Y_{k-1}|^2} \tag{2}$$

Differential Detection (derivation)

$$Y_{k} \cdot Y_{k-1}^{*} = (X_{k} \cdot |H| \cdot e^{j\phi} + N_{k}) \cdot (X_{k-1}^{*} \cdot |H| \cdot e^{-j\phi} + N_{k-1}^{*})$$

$$= X_{k} \cdot X_{k-1}^{*} \cdot |H|^{2} \cdot e^{j(\phi-\phi)}$$

$$+ N_{k} \cdot N_{k-1}^{*} + X_{k} \cdot |H| \cdot e^{j\phi} \cdot N_{k-1}^{*} + N_{k} \cdot X_{k-1}^{*} \cdot |H| \cdot e^{-j\phi}$$

$$|Y_{k-1}|^{2} = X_{k-1} \cdot X_{k-1}^{*} \cdot |H|^{2} + N_{k-1} \cdot N_{k-1}^{*}$$
$$+ X_{k-1} \cdot |H| \cdot e^{j\phi} \cdot N_{k-1}^{*} + N_{k-1} \cdot X_{k-1}^{*} \cdot |H| \cdot e^{-j\phi}$$

When noise N_k is very small

$$Y_k \cdot Y_{k-1}^* pprox X_k \cdot X_{k-1}^* \cdot |H|^2$$
 and $|Y_{k-1}|^2 pprox |X_{k-1}|^2 \cdot |H|^2$

• Thus,

$$\hat{C}_k = \frac{Y_k \cdot Y_{k-1}^*}{|Y_{k-1}|^2} \approx C_k + \bar{N}_k$$

where power of enhanced noise \bar{N}_k is larger than that of N_k

• Note that influence of channel phase ϕ has been removed

Comparison

- Coherent detection
 - Require expensive and complex carrier recovery circuit
 - Better bit error rate of detection

$$\hat{X}_k = X_k + N_k$$

- Non-coherent detection
 - Do not require expensive and complex carrier recovery circuit
 - Poorer bit error rate of detection

$$\hat{C}_k = C_k + \bar{N}_k$$

• Differential systems have important advantages and are widely used in practice

Differential PSK

- (a) For differential phase shift keying, $|X_{k-1}|^2 = \text{con and } C_k = \frac{X_k \cdot X_{k-1}^*}{\text{con}} C_k \leftarrow \text{phase of } X_k \cdot X_{k-1}^*$
 - $\hat{C}_k \leftarrow$ phase of $Y_k \cdot Y_{k-1}^*$
- (b) At receiver, differential decoding (2) becomes

$$\hat{C}_{k} = \frac{Y_{k} \cdot Y_{k-1}^{*}}{|X_{k-1}|^{2}} = \frac{Y_{k} \cdot Y_{k-1}^{*}}{\operatorname{con}}$$
(3)

– For convenience, assuming $|H|^2=1$ (or $|H|^2$ is known), then

$$\frac{Y_k \cdot Y_{k-1}^*}{\text{con}} = \frac{X_k \cdot X_{k-1}^*}{\text{con}} + \frac{N_k \cdot N_{k-1}^*}{\text{con}} + \frac{X_k}{\text{con}} \cdot e^{j\phi} \cdot N_{k-1}^* + N_k \cdot e^{-j\phi} \cdot \frac{X_{k-1}^*}{\text{con}}$$

- Noting magnitudes of $\frac{X_k}{\text{con}}$ and $\frac{X_{k-1}^*}{\text{con}}$ are 1, $\frac{N_k \cdot N_{k-1}^*}{\text{con}}$ is much smaller than the last two terms, while $e^{j\phi} \cdot N_{k-1}^*$ and $N_k \cdot e^{-j\phi}$ have the same variance as N_k ,

$$\hat{C}_k \approx C_k + 2N_k$$

- Compared with coherent detection, noise is **doubled** or 3 dB worse off

Differential BPSK

- (a) For differential binary phase shift keying, at transmitter
 - Bit sequence $\{b_k\}$ with $b_k \in \{0, 1\}$ are encoded by

$$d_k = \overline{b_k \oplus d_{k-1}}$$

Initial condition d_0 is given and known to both transmitter and receiver

- Encoded bit sequence $\{d_k\}$ is then BPSK modulated into BPSK symbol sequence $\{s_k\}$

- Transmitted signal

$$x(t) = \sqrt{\frac{2E_b}{T_b}} \cos\left(2\pi f_c t + \frac{1}{2}(1 - s_k)\pi\right), \ kT_b \le t < (k+1)T_b$$

where f_c is carrier frequency, E_b bit energy, and T_b bit duration (b) At coherent demodulator, from sampled received signal r_k

$$\{r_k\} \to \{\hat{s}_k\} \to \{\hat{d}_k\} \to \{\hat{b}_k\} \text{ with } \hat{b}_k = \overline{\hat{d}_k \oplus \hat{d}_{k-1}}$$

University of Southampton

DBPSK (Continue)

(c) For noncoherent demodulator, no local carrier is needed

$$r(t) = A \cos \left(2\pi f_c t + \varphi_k + \vartheta\right), \ kT_b \le t < (k+1)T_b$$

- Noting $\cos \alpha \cos \beta = \frac{1}{2} \cos(\alpha + \beta) + \frac{1}{2} \cos(\alpha - \beta)$, input to integrator

$$A^{2}\cos\left(4\pi f_{c}t+2\vartheta+arphi_{k}+arphi_{k-1}
ight)+A^{2}\cos\left(arphi_{k}-arphi_{k-1}
ight)$$

- First term average over one period is zero, and $\cos(\varphi_k - \varphi_{k-1}) = 1$ if $s_k = s_{k-1}$; $\cos(\varphi_k - \varphi_{k-1}) = -1$ if $s_k = -s_{k-1}$

$$\hat{x}_k = \begin{cases} E_b, & s_k = s_{k-1} \\ -E_b, & s_k = -s_{k-1} \end{cases}$$

- Detection is achieved by $\{\hat{x}_k\} \rightarrow \{\hat{s}_k\} \rightarrow \{\hat{d}_k\} \rightarrow \{\hat{b}_k\}$

