Revision of Lecture Eleven

- Previous lecture we have concentrated on carrier recovery for QAM, and modified early-late clock recovery for multilevel signalling as well as star 16QAM scheme
- Thus we have completed Modem, under ideal AWGN or flat fading channel condition

If channel is dispersive, equalisation is required \Rightarrow we will return to this issue as well as issue of multiple access later

 \bullet We now turn to CODEC part \Rightarrow we will concentrate on channel coding and decoding, but not source coding and decoding

For practical source coder and decoder, refer to 2nd half unit of Digital Transmission

Channel Coding Introduction

- Mobile channels are very hostile environments, and yet real systems work satisfactorily. One of the contributors to this success is channel coding
- Channel coding is used to detect and often correct symbols that are received in error
- Error detection can be used by receiver to generate ARQ to transmitter for a re-transmission of the frame in error, as in computer networks (stop & wait, go-back-*n*, selective repeat protocols)
- When re-transmission is not an option: **forward error correction** coding, which introduces extra information (redundancy) into transmitted data for receiver to detect and correct errors

		Convolutional codes						
Others								
	non-cyclic		Polynomial (cy					
		Golay	Bose-Chaudhuri					
			Reed-Solomon					

Some examples:

- Binary BCH and Convolutional codes widely used in various practical communications systems
- Reed-Solomon codes used in music CD
- Golay codes used in Mars explorer

Block Code Introduction

• There are systematic and non-systematic codes. For block codes, systematic ones are more powerful

Rate R = k/n block code: k information bits plus r = n - k check bits forms a **codeword**. All valid codewords form a **codebook**

• (n,k) systematic block code

Systematic: k information bits must be explicitly transmitted (more strict definition also requires they are transmitted together as a block)

• Systematic linear block code: first k bits of a codeword are message bits, and last n-k check bits are linear combinations of the k message bits

University

of Southampton

Linear Block Code: Encoding

- Let \mathbf{c} be *n*-bit codeword and \mathbf{d} be *k*-bit message, written in row-vector form
- An (n,k) linear block code is defined by its $k \times n$ generating matrix G

$$G = [I_k \mid P]$$

with $k\times (n-k)$ matrix P specifying the given (n,k) linear block code, and I_k being identity matrix of order k

• Encoding process can then be written as

$$\mathbf{c} = \mathbf{d}G$$

• All elements in P are binary valued, and binary (modulo-2) arithmetic operations are carried out

A binary sequence of n bits should have 2^n patterns, denoting as $\bar{\mathbf{c}}_i$, $1 \le i \le 2^n$, but c only contains 2^k codewords, i.e. it can only take some of $\{\bar{\mathbf{c}}_i\}$, called **legal** sequences \rightarrow only these legal sequences can be transmitted

If receiver encounters an illegal sequence $\bar{\mathbf{c}}_i$ (not a codeword), what it says?

University

Example

• (6,3) linear block code with generating matrix and codebook

$$G = \begin{bmatrix} 1 & 0 & 0 & | & 0 & 1 & 1 \\ 0 & 1 & 0 & | & 1 & 0 & 1 \\ 0 & 0 & 1 & | & 1 & 1 & 0 \end{bmatrix}$$

massages	codewords
000	000 000
001	001 110
010	010 101
011	011 011
100	100 011
101	101 101
110	110 110
111	111 000

• For example, for message **d**=110, parity check bits are

$$c_4 = 1 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 = 0 + 1 + 0 = 1$$

$$c_5 = 1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 = 1 + 0 + 0 = 1$$

$$c_6 = 1 \cdot 1 + 1 \cdot 1 + 0 \cdot 0 = 1 + 1 + 0 = 0$$

Note the binary modulo-2 arithmetic operations involved

- $2^6 = 64$ but only $2^3 = 8$ legal codewords e.g. 111111 is not a legal codeword
- If receiver encounters 111111 it must be due to error, as 111111 will never be sent

Linear Block Code: Decoding

• Each $k \times n$ generating matrix $G = [I_k \mid P]$ is associated with a $(n - k) \times n$ parity check matrix

$$H = [P^T \mid I_{n-k}]$$

Basic property of codeword: c is a codeword in the (n, k) block code generated by G, if and only if $cH^T = 0$

 $\bullet\,$ Received row vector ${\bf r}$ can be written as

 $\mathbf{r} = \mathbf{c} + \mathbf{e}$

All the elements are binary valued, e.g. if the transmitted $c_i = 1$ and is received in error: $r_i = 0$, then $e_i = 1$

• (n-k) (row vector) error syndrome

$$\mathbf{s} = \mathbf{r}H^T = (\mathbf{c} + \mathbf{e})H^T = \mathbf{c}H^T + \mathbf{e}H^T = \mathbf{e}H^T$$

 ${\bf s}$ is related to the error vector ${\bf e},$ and can be used to detect and correct errors

Error Detection and Correction Capabilities

- Weight of a codeword c is the number of nonzero elements in c
- Hamming distance between two codewords c_1 and c_2 is the number of elements in which they differ
- Minimum distance of a codebook, d_{\min} , is the smallest Hamming distance between any pair of codewords in the codebook
- The minimum distance d_{\min} of a linear block code is equal to the minimum weight of any nonzero codeword in the code
- Code with d_{\min} can detect up to $d_{\min} 1$ errors and correct up to $(d_{\min} 1)/2$ errors in each codeword

Here we are considering binary codes, where Hamming distance is defined

For error correction capability, we refer to hard-input hard-output decoding, i.e. decoder input is in hard bits and it outputs hard bits, later we will see soft-input decoding has better capability

Cyclic Codes

- Cyclic or polynomial generated codes are subset of linear block codes with some nice properties
- Definition of cyclic: if $(c_0, c_1, \dots, c_{n-2}, c_{n-1})$ is a codeword then $(c_{n-1}, c_0, \dots, c_{n-3}, c_{n-2})$ is also a codeword in the same code
- A k-bit message $\mathbf{d} = (d_0, d_1, \cdots, d_{k-1})$ can be described by a message polynomial d(x):

$$d(x) = d_0 + d_1 x^1 + \dots + d_{k-1} x^{k-1}$$

• The code is defined by its generating polynomial

$$g(x) = g_0 + g_1 x^1 + \dots + g_r x^r$$
 with $g_0 = 1$ and $g_r = 1$

• The *n*-bit codeword $\mathbf{c} = (c_0, c_1, \cdots, c_{n-1})$ for \mathbf{d} is described by a polynomial

$$c(x) = \operatorname{Rem}\left(\frac{x^r \cdot d(x)}{g(x)}\right) + x^r \cdot d(x)$$

where the remainder of $x^r \cdot d(x)/g(x)$, $\operatorname{Rem}(x^r \cdot d(x)/g(x))$, is a polynomial up to order x^{r-1} (i.e. r check bits), called **parity check** polynomial for d(x)

• All calculations use modulo-2 arithmetic

Cyclic Codes (continue)

• Example of (7,4) cyclic code with $g(x) = 1 + x^2 + x^3$: for message d = 0101, $d(x) = x^1 + x^3$, $x^3 \cdot d(x) = x^4 + x^6$, $\operatorname{Rem}(x^3 \cdot d(x)/g(x)) = 1$, $c(x) = 1 + x^4 + x^6$, and thus

	check	message					
$\mathbf{c} =$	$1 \ 0 \ 0$	$0\ 1\ 0\ 1$					

• In decoding, the received r(x) = c(x) + e(x) with nonzero terms in e(x) indicating errors, and the **syndrome** polynomial is calculated:

$$\operatorname{Rem}\left(\frac{c(x)+e(x)}{g(x)}\right) = \operatorname{Rem}\left(\frac{e(x)}{g(x)}\right) = s(x)$$

- If it is a zero syndrome: no error or undetectable errors (e(x) contains factor g(x)); if a nonzero syndrome: errors detected and it is used for error correction
- Encoding and syndrome calculation can easily be implemented using shift register feedback circuits

Cyclic Code Encoder

• (n,k) cyclic code encoder: an (n-k) stage shift register with a feedback circuit

- The circuit operates under a clock and an encoding cycle consists of \boldsymbol{n} shifts
 - Shift register always starts at zero state, i.e. all $r_i = 0$, and ends at zero state
 - During the first k shifts, S1 is closed \rightarrow shift d(x) into the shift register; and S2 is down \rightarrow copy d(x) directly to c(x)
 - After the k-th shift, the contents of the (n-k) stage shift register are the n-k parity check bits for d(x)
 - During the remaining n-k shifts, S1 is open and S2 is up \rightarrow clear the shift register contents out to c(x)

(7,4) cyclic code with $g(x) = 1 + x + x^3$ Given message $d(x) = 1 + x^2 + x^3$:

input		shift	register			codeword									
				index	r_0	r_1	r_2	c_0	c_1	c_2	c_3	c_4	c_5	c_6	
1	0	1	1	0	0	0	0	_			_	_	_	_	
	1	0	1	1	1	1	0	-	-	-	-	-	-	1	
		1	0	2	1	0	1	_	_	_	-	_	1	1	
			1	3	1	0	0	_	_	_	-	0	1	1	
			_	4	1	0	0	_	_	_	1	0	1	1	
			_	5	0	1	0	_	_	0	1	0	1	1	
			-	6	0	0	1	_	0	0	1	0	1	1	
			_	7	0	0	0	1	0	0	1	0	1	1	

Cyclic Code Syndrome Calculation

• (n,k) cyclic code syndrome calculation circuit:

• The register is initialised to the zero state

S1 is closed and S2 is opened \rightarrow the received r(x) is shifted into register

After this, contents of register are s(x)

S1 is opened and S2 is closed $\to s(x)$ is shifted out and the register is cleared, ready for the next cycle

S Chen

Other FEC Codes

• BCH is a subset of cyclic codes with the largest d_{\min} for given (n,k) and a BCH code is denoted by (n,k,d_{\min}) . This is a class of powerful and widely used FEC codes

Non-binary (i.e. can take values not just $0 \mbox{ and } 1$) version is called Reed-Solomon code and is used e.g. in music CD

- Golay codes: e.g. Mars explorer uses Golay code
- Convolutional codes:

In block codes, a *n*-bit codeword at a time unit t, c(t), depends only on the k-bit data, d(t), at the time t

For convolutional codes, ${\bf c}(t)$ also depends on N~(N>0) previous blocks of data ${\bf d}(t-i),~1\leq i\leq N$

CC(n,k,N): rate $R=k/n{\rm ,}$ constraint length N (or memory $N+1{\rm)}{\rm ,}$ usually $n{\rm ,}k$ and N are small

Summary

- Channel coding introduction: FEC coding and classification
- Systematic block codes ⊃ linear block codes ⊃ cyclic (polynomial generated) codes
 ⊃ binary BCH codes

Error detection and correction capabilities

- Systematic linear block codes: generating matrix and encoding; parity check matrix and syndrome
- Cyclic codes: how every things can be described by polynomials, encoder and syndrome calculation (shift register feedback circuits)

BCH: subset of cyclic codes with the largest d_{\min} for given (n,k)

• Convolutional codes: differences with linear block codes