ELEC6014 (EZ412/612) Radio Communications Networks and Systems S Chen

Revision of Lecture Fifteen

e Previous lecture introduces generic structure of adaptive equalisation

— Adaptive signal processing/filtering is an enabling technology for
communications, and adaptive equalisation is just a particular example
— Concepts of cost function and optimisation, adaptive FIR filter

e This lecture looks into optimal FIR filter design known as Wiener filter or
minimum mean square error solution

— This Wiener design embodies most important ideas of adaptive filtering
— It is most widely used design principle in communication applications
— It has important influence on new designs
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Wiener Filters

e Wiener filter is the optimal FIR filter in the MMSE sense

Define the FIR filter weight vector output r(ejsesiorﬁ(sje
w = [wo wy -+ w]’ nput u(k) FIR filer | 7Y d(k)
WoW1 * * * W — _|_
and the filter input vector

u(k) = [uw(k) u(k—1) - u(k—M)]" error e (k)

The actual filter output and the error signal are given by
M
y(k) => wiu(k —i) = w'u(k) e(k) =d(k) —y(k) = d(k) — w"u(k)
1=0

e Assuming the desired signal d(k) and the filter input w(k) are wide-sense stationary, the optimal
Wiener solution w minimises the MSE

J(w) = E[le(k)|"] = E[e(k)e" (k)]

o Define the desired signal power o3 = E[|d(k)|?], the autocorrelations v(1) = E[u(k)u*(k — )]
for 0 < I < M, and the crosscorrelations p(l) = E[d"(k)u(k — )] for 0 <1 < M
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Wiener Filters (continue)

e Since the square error |e(k)|? = d(k)d*(k)—d(k)u” (k)w—wu(k)d*(k)+wu(k)u” (k)w,

e For W to be a minimum point of J(w):

where

- p(0)
p(_l)

i p(M) ]

J(w) = E[le(k)]’] = 0> —p'w—w'p+w'Rw

and R =

VJ(W)|w=w = 0 (necessary)

7(0) v(1) e (M) ]

v (1) 7(0) o y(M =)
SO M1 0
% is positive definite (sufficient)

W=WwW

that is, —2p + 2Rw = 0 (necessary), and R is positive definite (sufficient)

e Necessary condition — Wiener-Hopf equations: Rw = p, which gives the Wiener solution

W = R_lp

Since this is the only minimum, it is a global minimum. Note that the correlation matrix R is
always nonnegative definite. When R is positive definite, the inverse R~ exists
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Orthogonal Principle and MSE surface

e The Wiener filter error é(k) = d(k) — w"u(k) is orthogonal to the filter input vector:
E[é¢*(k)u(k)] = 0, and as a consequence, the MMSE filter output 3j(k) = W u(k) is orthogonal
to its error: E[é*(k)y(k)] =0

e The MSE is a bowl-shaped (2(M + 1) + 1)-dimensional surface ((M + 1) 4+ 1 in real case)

J(w) = 03 —p'w—w'p+w'Rw
and has a unique minimum at w = w. Since the MMSE
Jmin = J(W) = O‘CQZ — pHR_lp = O‘CQZ — O‘g
where E[|5(k)|?] = ag = E[w"u(k)u” (k)w] = p"R'p, the MSE for w can be written as
J(w) = Jmin + (W — W) "R(w — W)

e The eigenvalues of R are the solutions Ao, A1, - - - , Ajys of det(R — AI) = 0, and the condition
number is the ratio of largest eigenvalue to smallest eigenvalue

;)\11121)(

R) =
x(R) -
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Eigenvalue Spread

e The ratio x(R) is called eigenvalue spread, and it determines the performance of an adaptive
algorithm
x(R) > 1: If R is singular, Apmin = 0 and x(R) = oo; R is ill conditioned if x(R) is large.

e Example of real channel and modulation with the channel (k) = 0.5s(k) +1.0s(k—1) +n(k),
the equaliser y(k) = wor(k) + wir(k — 1) + wor(k — 2), and the desired response d(k) =
s(k — 1), where n(k) is white Gaussian with zero mean and variance o> = 0.25, and s(k) is
BPSK taking value from {41}

e [ he auto-correlation matrix and the cross-correlation vector are:

1.5 0.5 0.0 1.0
R=| 05 1.5 0.5 p=| 0.5
0.0 0.5 1.5 0.0

The eigenvalues and the MMSE error solution are

Ao = 1.5+ 0.5 0.6190
A= 1.5 W = 0.1429
Ao =1.5—1+/0.5 —0.0476

The MMSE is Jyim = 0.3095, and the eigenvalue spread is x(R) = 2.7836
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Steepest Descent Algorithm

e There are many reasons for not computing R~! directly — gradient descent for the MMSE solution

e For function of a scalar variable f(x), noting that negative gradient points “downhill” and starting
from an initial guess x(0), we can use: f (%)

o1+ 1) = 2() + Ba(l) = o) + (~52 oma0) )

This iteration loop will leads to (1) — & at which point

of
~  |lz=2 — 0
ox | g
e For the FIR filter y(k) = wu(k) with e(k) = d(k) — y(k),
J(w) = O‘Z —p'w—wlp+w'Rw and w =R 'p
e lIteration procedure based on gradient so that w(l) — w, with Algorithm:
1. Initial value w(0)
2. VJ(I) =VJ(w(l)) = —2p + 2Rw(I)
3. w(l+ 1) =w(l) +53u(=VJ(1)) = w(l) + u(e — Rw(l))
4. Go back to step 2
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Analysis of Steepest Descent Algorithm

e Note that the steepest descent algorithm involves feedback e(k) — stability consideration and the
value of w is critical. Also the underlying system is characterised by the eigenvalue spread

e Stability analysis: Necessary and sufficient condition for

llim w(l) =w

IS 2
0< <

’)\Illii)(
e Time constant of the algorithm 7, defines how quickly the algorithm converges to a steady-state

solution on average. It can be shown that

—1 —1
<7, <
10g(|]— - ,u>\max|) 10g(|1 - N>\min|)

Note 1

Ta ~

,Uf>\min
But

]- ;)\Illil)(

X = Tq X = x(R
a >\maX ¢ )\min X( )

This clearly shows that the eigenvalue spread influences rate of convergence
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Example

e Example as in Slide 190: The steepest-descent algorithm is used. The step-size
parameter u should satisfy

2 2
O< u< — or 0<u<0.9
K Amax 1.5 ++/0.5 K

0. 1
| Jmn —— i
() = ES (). S) \ mu ::(). 22 —
: -~ 0.8} \mu=0.5 —«— -
) \mu=0.8 —=—
2 0. 1 ) 0.7 r i
S g 0.6 .
g 0. i @ 0.5¢ .
| S 0.4+t .
777777777777 =t = 5 n g O 3 LT & & =
-0.2 ' ' ' ' 0.2 ' ' ' '
0 2 4 6 8 10 0 2 4 6 8 10
iteration iteration
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Sample-by-Sample Adaptation

e Recall that the steepest descent algorithm can be used to obtain the Wiener (MMSE) solution

{ It requires ensemble averages R and p, usually not available. These statistics may be
approximated by time-averaging

3 = = D ulkp' (b~ 1) p) = > d" (Ryulk — 1)

I} But u(k) and d(k) can be nonstationary, and it would be better to update the filter as each
new data sample is taken

|} Many practical applications require extremely fast computation per sample, as sampling rate can
be very fast

e These considerations — a stochastic gradient-based method
In the steepest descent method: VJ(w(l)) = —2p + 2Rw(l) with R = E[u(k)u” (k)] and
p = E[u(k)d™(k)]. All the quantities are deterministic
In a stochastic gradient-based method: instantaneous “estimates’” R(k) = u(k)u® (k) and
p(k) = u(k)d*(k) are used to provides gradient of the instantaneous squared error J(k) =
le(k)|® i

VJ(k) = —2u(k)d* (k) + 2u(k)u” (k)w(k) = —2u(k)e* (k)

where e(k) = d(k) — W (k)u(k). All the quantities are noisy or stochastic
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Least Mean Square Algorithm

e This is probably the simplest adaptive algorithm, involving three steps per cycle:

1. Compute the filter output o
y(k) = w" (k)u(k)

2. Compute the estimation error

e(k) = d(k) — y(k)
3. Update the tap weights
Wk + 1) = W (k) + pV T() = W(k) + pu(k)e’ (k)

e The step size ;. must be properly chosen, the mean of w(k) is:

E[w(k)]

and the mean square error is:

J(k) = E[le(k)|"] = E[|d(k) — %" (k)u(k)|]

e Note w(k) is stochastic and we have to talk about convergence in mean and/or mean square error

e Surprisingly, this LMS algorithm actually works, but its convergence analysis is extremely difficult
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Analysis in Stationary Environment

e Assuming u(k) and d(k) are jointly wide sense stationary and some other simplified assumptions:

— Convergence in mean:
2

klim E[w(k)] = W provided that 0 < p <

>\max

— Convergence in mean square: where J(00) (> Juin) is finite,

2 M U
d - <1
)\max o ; 2(1 T :u’>\’6)

klim J(k) = J(co) ifandonlyif 0 < pu <

e Steady state mean square error is given by
Jmin

1 - %Z?io pAi/ (1 — pXi)

J(o0) =

e Excess mean square error is defined as

1 M
2 o A/ (1 — p;
JeX(OO) — J(OO) — Jmin = Jmin X : 21:"—3\/? /( - )
L — 352 s A/ (1 — pi)

e Misadjustment is defined by
Jex(00) _ 5 30img pAi/ (L — pi)
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Influence of Eigenvalue Spread

e Define the average eigenvalue

1 M
)\av — )\z
a3
and the average time constant of the LMS algorithm
—1 1

Tmse,av — ~
| 2log(|1 — pdav])  2pAay

e If step size is chosen as u << /\riax, condition for convergence in mean square becomes:

O< u< ZM2 . With this choice of u, the misadjustment is approximately by

i=0 "M

_,u(M—I—l))\aVN M+ 1

2 =0 2 4Tmse,av

e Noting that M oc p and Tipseav X % a careful trade off is required in choosing p: small o leads

to small M but large © leads to fast convergence

e Noting that Thge,av ~ u/\:n' x x(R), the rate of convergence is determined by the eigenvalue

spread: in general, when )é?R) is large, the LMS converges slowly
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Example

e Example as in Slide 190 but the LMS is used is used. In computer simulation, E[w (k)] and J (k)
are approximated using sample averages over 500 different runs

p << - and p < ZM X\ L Theoretical Jox(co) | Simulation Je,(00)
. i
=0 0.10 0.1162 0.10
— p << 0.45 and p < 0.44 0.05 0.0435 0.04
0.01 0.0073 0.01
1 - 1
() S) \] ___r11 r] ”””” () S) | \J ___r11 r] ”””” i
) ' aver age/ 500 runs,\nmu=0.1 —— ) ' aver age/ 500 runs,\nmu=0.01 ——
- 0.8 - 0.8°¢
[¢D) (]
o 0.7 o 077
S 0.6 H S 0.6}
) ]
& 0.5} o 0.5}
S 0.4¢f S 0.4°f :
g 0.3} g 0.3} ﬂ/J\/\MVMJ\‘AAVMA /J\AVN\A[\J\/\ AMM " ‘wa\N/\ﬁvf\v/\MVAUMJLv awis
0.2 ' ' ' ' ' 0.2 ' ' ' ' '
0 50 100 150 200 250 300 0 50 100 150 200 250 300
iteration iteration
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Summary

e Wiener (MMSE) solution: w = R™'p
e MSE surface J(w) = o7 — p’w —w/'p+w'Rw = Joi + (W — W)"R(w — W) is quadratic
with the MMSE given by Juin = 02 — p?R™'p

e Steepest-descent algorithm and convergence analysis
e The LMS algorithm:

y(k) = w(k)u(k), e(k) =d(k) —y(k), w(k+1)=w(k)+ pu(k)e (k)

e Sufficient conditions for stationary convergence of the LMS

2
o << and 0 < p < ———
>\max fo\iO >\z
e Misadjustment and convergence rate of the LMS:
M

7 1 ) 1
M~ — Z ANi—> M x u Tmse,av ~ —> convergence time o —
2 = 2\ vy n

e Effect of eigenvalue spread: the larger eigenvalue spread, the slower convergence rate of LMS
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