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Revision of Lecture Twenty

• Previous lecture focuses on interface between physical layer and network layer,
referred to as medium access control

• Concepts of user and signalling (control) channels

• Random access (contention) algorithms

• This lecture we move back to physical layer, and look into multicarrier system

261



ELEC6014 (EZ412/612) Radio Communications Networks and Systems S Chen

Orthogonal Frequency Division Multiplexing

• OFDM applies multicarrier modulation principle by dividing the data stream into several bit

streams, each of which has much lower bit rate, and using these substreams to modulate several

carriers

• Basic OFDM system:

What OFDM is good for?
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OFDM (continue)

2. Combating frequency selective: the
channel can be severely frequency
selective, but for each sub-carrier, the
sub-channel is flat or at least only
slightly frequency selective

What OFDM is bad for?

• High complexity: to be effective,
number of sub-carriers N should be large
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If OFDM is implemented with N modulators/demodulators, the complexity will be enormous.

Fortunately, it can be implemented alternatively using DFT/FFT to reduce this high complexity

• Another disadvantage of OFDM systems is high peak to average power

With N sinusoidal signals added together, the peak amplitude becomes very large, which will be

clicked by amplifier and channel’s nonlinear saturation, causing distortion
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Fourier Transform Pair

• If a discrete-time aperiodic signal x(k) satisfies ∞X

k=−∞

|x(k)| < ∞

then

FT: X(ω) =
∞X

k=−∞

x(k) exp(−jωk) IFT: x(k) =
1

2π

Z π

−π

X(ω) exp(jωk) dω

Integration in IFT can also be over 0 to 2π

• Spectra: X(ω) = |X(ω)| exp(j∠X(ω)), with |X(ω)| being the amplitude spectrum and

∠X(ω) the phase spectrum of x(k)

• Parseval’s theorem: ∞X

k=−∞

|x(k)|2 =
1

2π

Z π

−π

|X(ω)|2 dω

where |X(ω)|2 is the energy spectral density, giving distribution of signal energy in frequency

domain. In practice, the power spectral density is more often used

• Differences:

– Continuous-time: f or 2πf has the unit of Hz or radian/s, and ranges in (−∞, ∞). FT is an

integral

– Discrete-time: ω has the unit of radian, and ranges in [−π, π] or [0, 2π]. FT is a summation

and X(ω) is periodic with period 2π
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Discrete-Time Fourier Series

• If x(k) is periodic with period K, i.e. x(k) = x(k + K), x(k) can be expressed by DFS:

x(k) =
K−1X

n=0

cn exp(jωnk), ωn =
2πn

K

Note there are K frequency components exp(jωnk) for 0 ≤ n ≤ K − 1 and 0 ≤ ωn < 2π,

and the Fourier coefficients

cn =
1

K

K−1X

k=0

x(k) exp(−jωnk), 0 ≤ n ≤ K − 1

provide the amplitudes and phases for frequency components exp(jωnk)

• Differences in periodic signal:

– Continuous-time: has infinite frequency components, and Fourier coefficients are integrals

– Discrete-time: has finite frequency components, and Fourier coefficients are summations

• In theory, X(ω) is all we need but let us consider some practical constraints

– Computing X(ω) requires infinite summation, that is, infinite number of samples → one can

only approximate it by a finite signal samples in a finite summation

– Displaying X(ω) requires ω taking values continuously in [0, 2π) → one can only approximate

it at finite discrete points ωn, that is, sample X(ω) and take only a finite spectrum samples.

These considerations leads to discrete-time Fourier transform
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Discrete-Time Fourier Transform

• Windowing data so that x(k) = 0 for k < 0 and k ≥ L, i.e. a finite sequence x(k) of length L

→ the corresponding Fourier transform is

X(ω) =

L−1X

k=0

x(k) exp(−jωk), 0 ≤ ω < 2π

• Sample X(ω) at frequencies ωn = 2πn/K, 0 ≤ n ≤ K − 1, where K ≥ L → the resulting

spectrum samples or DFT of {x(k)} is

X(n) = X(ωn) =
L−1X

k=0

x(k) exp(−j2πnk/K) =
K−1X

k=0

x(k) exp(−j2πnk/K)

• Inverse DFT (IDFT) is:

x(k) =
1

K

K−1X

n=0

X(n) exp(j2πnk/K), 0 ≤ k ≤ K − 1

• DFT: time samples {x(k)} of length L ≤ K ⇔ frequency samples {X(n)} of length K

• For K ≥ L, {x(k)}L−1
k=0 can be exactly reconstructed from {X(n)}K−1

n=0

Otherwise, time folding or aliasing occurs → This is dual to spectral folding or aliasing when

sampling frequency is less than the Nyquist rate
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Example

For 6-point sequence x(k) = k + 1, 0 ≤ k ≤ 5, the spectrum X(ω):

X(ω) =
5X

k=0

x(k) exp(−jωk) =
5X

k=0

(k + 1) exp(−jωk), 0 ≤ ω < 2π

Evaluate X(ω) at the 4 frequencies ωn = 2πn/4, 0 ≤ n ≤ 3:

X(n) =

5X

k=0

(k + 1) exp(−j2πnk/4), 0 ≤ n ≤ 3

or

X(0) = 21, X(1) = 3 − 4j, X(2) = −3, X(3) = 3 + 4j

The IDFT for the resulting 4 samples X(n), 0 ≤ n ≤ 3:

x̂(k) =
1

4

3X

n=0

X(n) exp(j2πnk/4), 0 ≤ k ≤ 3

or

x̂(0) = 6, x̂(1) = 8, x̂(2) = 3, x̂(3) = 4
This example illustrates time aliasing (note x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4)

To avoid time aliasing, frequency samples K must be no less than time samples L
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Fast Fourier Transform

• Recall that DFT: {x(k)}K−1
k=0 ⇐⇒ {X(n)}K−1

n=0 . By introducing WK = exp(−j2π/K),

DFT: X(n) =

K−1X

k=0

x(k)W
kn
K , 0 ≤ n ≤ K − 1

IDFT: x(k) =
1

K

K−1X

n=0

X(n)W
−kn
K , 0 ≤ k ≤ K − 1

• Direct computation of DFT can be costly for large K: 2K2 trigonometric functions, K2

multiplications, and K(K − 1) additions

• Let K = LM . Data can either be stored in one-dimensional array: {x(k)} with 0 ≤ k ≤ K −1

or in two-dimensional array: x(l, m) indexed by l and m with 0 ≤ l ≤ L−1 and 0 ≤ m ≤ M−1

• Row wise:

k = Ml + m

x(0, 0) · · · x(0, M − 1) x(0) · · · x(M − 1)
x(1, 0) · · · x(1, M − 1) x(M) · · · x(2M − 1)

...
...

x(L − 1, 0) · · · x(L − 1, M − 1) x((L − 1)M) · · · x(LM − 1)

• Column wise:

k = l + mL

x(0, 0) x(0, M − 1) x(0) x((M − 1)L)
x(1, 0) · · · x(1, M − 1) x(1) · · · x((M − 1)L + 1)

...
...

...
...

x(L − 1, 0) x(L − 1, M − 1) x(L − 1) x(LM − 1)
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FFT Algorithms

• Similarly, X(n), 0 ≤ n ≤ K − 1 ⇐⇒ X(p, q), 0 ≤ p ≤ L − 1, 0 ≤ q ≤ M − 1 with row

wise: n = Mp + q or column wise: n = p + qL

• Assuming column wise for x(k) and row wise for X(n), then

X(p, q) =
M−1X

m=0

L−1X

l=0

x(l, m)W
(l+mL)(Mp+q)
K

where W
(l+mL)(Mp+q)
K = W Mlp

K W Kmp
K W lq

K W Lmq
K . But W Mlp

K = W lp
K/M

= W lp
L , W Kmp

K = 1,

and W Lmq
K = W mq

K/L
= W mq

M . Thus:

X(p, q) =
L−1X

l=0

0

B
B
B
B
@

W
lq
K

"
M−1X

m=0

x(l, m)W
mq
M

#

| {z }
step 1

1

C
C
C
C
A

| {z }
step 2

W
lp
L

| {z }
step 3

• The computation of DFT can be divided into three steps as shown in the next slide
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FFT Algorithms (continue)

• Algorithm one:

1. For 0 ≤ l ≤ L − 1, compute the M -point DFTs:

F (l, q) =

M−1X

m=0

x(l, m)W
mq
M , 0 ≤ q ≤ M − 1

2. For 0 ≤ l ≤ L − 1 and 0 ≤ q ≤ M − 1, compute the array G(l, q) = W lq
K F (l, q)

3. For 0 ≤ q ≤ M − 1, compute the L-point DFTs

X(p, q) =
L−1X

l=0

G(l, q)W lp
L , 0 ≤ p ≤ L − 1

• Rearrange the double summation in the same DFT expression ⇒ another similar algorithm

• Choosing row wise for x(k) and column wise for X(n) ⇒ two more similar algorithms

• Complexity of these 4 algorithms resulting from a two-stage decomposition is: 2(L2 + M2 + K)

trigonometric functions, K(M + L + 1) multiplications, K(M + L − 2) additions

• With L = 2 and M = K
2 , for example, complexity reduction factor is approximately 2

• Factoring K = r1r2 · · · rv, with v the stage decomposition, leads to the computation of many

small DFTs and, the more stage v, the more significant in complexity reduction
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Radix-2 FFT Algorithms

• When K = rv, DFTs are of size r and computation has regular pattern, where r is called the

radix of FFT algorithm. In particular, with K = 2v, we have radix-2 FFT algorithms

• Decimation-in-frequency FFT: in the decomposition stage one, choose L = K/2 and M = 2:

X(n) =

K/2−1
X

k=0

x(k)W
kn
K + W

nK/2
K

K/2−1
X

k=0

x(k + K/2)W
kn
K

• Since W
nK/2
K = (−1)n

X(n) =

K/2−1
X

k=0

(x(k) + (−1)nx(k + K/2)) W kn
K , 0 ≤ n ≤ K − 1

• Next decimate X(n) into even and odd samples and use W 2
K = WK/2:

X(2n) =

K/2−1
X

k=0

(x(k) + x(k + K/2)) W
kn
K/2 n = 0, 1, · · · ,

K

2
− 1

X(2n + 1) =

K/2−1
X

k=0

h

(x(k) − x(k + K/2)) W k
K

i

W kn
K/2 n = 0, 1, · · · ,

K

2
− 1
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Radix-2 FFT Algorithms (continue)

• Define two K/2-point sequences

g1(k) = x(k) + x(k + K/2)

g2(k) = [x(k) − x(k + K/2)] W k
K

ff

k = 0, 1, · · · ,
K

2
− 1

• Then

X(2n) =

K/2−1
X

k=0

g1(k)W
kn
K/2, X(2n + 1) =

K/2−1
X

k=0

g2(k)W
kn
K/2

• K/2-point DFTs X(2n) and X(2n + 1) can each be decimated into two K/4-point DFTs

• Procedure is repeated and entire procedure involves v = log2(K) stages of decimation

• Decimation-in-time FFT: decimate {x(k)} into even and odd samples and repeat the procedure

• Radix-2 FFT algorithm complexity: (K/2) log2(K) complex multiplications, K log2(K) complex

additions

• Example. 1024-point DFT with K = 210: direct computing involves 1048576 multiplications

and 1047552 additions, but radix-2 FFT only involves 5120 multiplications and 10240 additions →

speed improvement factor is approximately 100
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8-Point Decimation-in-Frequency FFT

Algorithm:

Basic operation –
“butterfly” computation
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Summary

• OFDM: basic concepts, effective in combating channel fading and frequency
selective, and disadvantages

• Frequency analysis of discrete-time signals: differences with continuous-time case

• DFT: {x(k)}K
k=0 ⇐⇒ {X(n)}K

n=0, practical considerations, time aliasing

• FFT: basic concepts, Radix-2, DFT implemented efficiently by FFT is widely used
in communication systems
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