Revision of Lecture Twenty

- Previous lecture focuses on interface between physical layer and network layer, referred to as **medium access control**
- Concepts of **user** and **signalling** (control) channels
- Random access (contention) algorithms
- This lecture we move back to physical layer, and look into multicarrier system

Orthogonal Frequency Division Multiplexing

• OFDM applies **multicarrier** modulation principle by dividing the data stream into several bit streams, each of which has much lower bit rate, and using these substreams to modulate several carriers

OFDM (continue)

2. **Combating frequency selective**: the channel can be severely frequency selective, but for each sub-carrier, the sub-channel is flat or at least only slightly frequency selective

What OFDM is bad for?

• *High complexity*: to be effective, number of sub-carriers N should be large

If OFDM is implemented with N modulators/demodulators, the complexity will be enormous.

Fortunately, it can be implemented alternatively using DFT/FFT to reduce this high complexity

• Another disadvantage of OFDM systems is *high peak to average power*

With N sinusoidal signals added together, the peak amplitude becomes very large, which will be clicked by amplifier and channel's nonlinear saturation, causing distortion

Fourier Transform Pair

• If a discrete-time aperiodic signal x(k) satisfies

$$\sum_{k=-\infty}^{\infty} |x(k)| < \infty$$

then

FT:
$$X(\omega) = \sum_{k=-\infty}^{\infty} x(k) \exp(-j\omega k)$$
 IFT: $x(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) \exp(j\omega k) d\omega$

Integration in IFT can also be over 0 to 2π

- Spectra: $X(\omega) = |X(\omega)| \exp(j \angle X(\omega))$, with $|X(\omega)|$ being the amplitude spectrum and $\angle X(\omega)$ the phase spectrum of x(k)
- Parseval's theorem:

$$\sum_{k=-\infty}^{\infty} |x(k)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$$

where $|X(\omega)|^2$ is the energy spectral density, giving distribution of signal energy in frequency domain. In practice, the power spectral density is more often used

- Differences:
 - Continuous-time: f or $2\pi f$ has the unit of Hz or radian/s, and ranges in $(-\infty,\ \infty).$ FT is an integral
 - Discrete-time: ω has the unit of radian, and ranges in $[-\pi, \pi]$ or $[0, 2\pi]$. FT is a summation and $X(\omega)$ is periodic with period 2π

Discrete-Time Fourier Series

• If x(k) is periodic with period K, i.e. x(k) = x(k + K), x(k) can be expressed by DFS:

$$x(k) = \sum_{n=0}^{K-1} c_n \exp(j\omega_n k), \quad \omega_n = \frac{2\pi n}{K}$$

Note there are K frequency components $\exp(j\omega_n k)$ for $0 \le n \le K-1$ and $0 \le \omega_n < 2\pi$, and the Fourier coefficients

$$c_n = \frac{1}{K} \sum_{k=0}^{K-1} x(k) \exp(-j\omega_n k), \quad 0 \le n \le K-1$$

provide the amplitudes and phases for frequency components $\exp(j\omega_n k)$

- **Differences** in periodic signal:
 - Continuous-time: has infinite frequency components, and Fourier coefficients are integrals
 - Discrete-time: has finite frequency components, and Fourier coefficients are summations
- In theory, $X(\omega)$ is all we need but let us consider some practical constraints
 - Computing $X(\omega)$ requires infinite summation, that is, infinite number of samples \rightarrow one can only approximate it by a finite signal samples in a finite summation
 - Displaying $X(\omega)$ requires ω taking values continuously in $[0, 2\pi) \rightarrow$ one can only approximate it at finite discrete points ω_n , that is, sample $X(\omega)$ and take only a finite spectrum samples.

These considerations leads to discrete-time Fourier transform

University

of Southampton

Discrete-Time Fourier Transform

 Windowing data so that x(k) = 0 for k < 0 and k ≥ L, i.e. a finite sequence x(k) of length L → the corresponding Fourier transform is

$$X(\omega) = \sum_{k=0}^{L-1} x(k) \exp(-j\omega k), \quad 0 \le \omega < 2\pi$$

• Sample $X(\omega)$ at frequencies $\omega_n = 2\pi n/K$, $0 \le n \le K - 1$, where $K \ge L \rightarrow$ the resulting spectrum samples or DFT of $\{x(k)\}$ is

$$X(n) = X(\omega_n) = \sum_{k=0}^{L-1} x(k) \exp(-j2\pi nk/K) = \sum_{k=0}^{K-1} x(k) \exp(-j2\pi nk/K)$$

• Inverse DFT (IDFT) is:

$$x(k) = \frac{1}{K} \sum_{n=0}^{K-1} X(n) \exp(j2\pi nk/K), \ 0 \le k \le K-1$$

- DFT: time samples $\{x(k)\}$ of length $L \leq K \Leftrightarrow$ frequency samples $\{X(n)\}$ of length K
- For $K \ge L$, $\{x(k)\}_{k=0}^{L-1}$ can be exactly reconstructed from $\{X(n)\}_{n=0}^{K-1}$ Otherwise, time folding or aliasing occurs \rightarrow This is dual to spectral folding or aliasing when sampling frequency is less than the Nyquist rate

Example

For 6-point sequence x(k) = k + 1, $0 \le k \le 5$, the spectrum $X(\omega)$:

$$X(\omega) = \sum_{k=0}^{5} x(k) \exp(-j\omega k) = \sum_{k=0}^{5} (k+1) \exp(-j\omega k), \quad 0 \le \omega < 2\pi$$

Evaluate $X(\omega)$ at the 4 frequencies $\omega_n = 2\pi n/4$, $0 \le n \le 3$:

$$X(n) = \sum_{k=0}^{5} (k+1) \exp(-j2\pi nk/4), \quad 0 \le n \le 3$$

or

$$X(0) = 21, X(1) = 3 - 4j, X(2) = -3, X(3) = 3 + 4j$$

The IDFT for the resulting 4 samples X(n), $0 \le n \le 3$:

$$\hat{x}(k) = \frac{1}{4} \sum_{n=0}^{3} X(n) \exp(j2\pi nk/4), \quad 0 \le k \le 3$$

or

 $\hat{x}(0) = 6, \ \hat{x}(1) = 8, \ \hat{x}(2) = 3, \ \hat{x}(3) = 4$ This example illustrates time aliasing (note x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4)

To avoid time aliasing, frequency samples K must be no less than time samples L

Electronics and Computer Science

Fast Fourier Transform

• Recall that DFT: ${x(k)}_{k=0}^{K-1} \iff {X(n)}_{n=0}^{K-1}$. By introducing $W_K = \exp(-j2\pi/K)$,

DFT:
$$X(n) = \sum_{k=0}^{K-1} x(k) W_K^{kn}, \ 0 \le n \le K-1$$

IDFT:
$$x(k) = \frac{1}{K} \sum_{n=0}^{K-1} X(n) W_K^{-kn}, \ 0 \le k \le K-1$$

- Direct computation of DFT can be costly for large K: $2K^2$ trigonometric functions, K^2 multiplications, and K(K-1) additions
- Let K = LM. Data can either be stored in one-dimensional array: $\{x(k)\}$ with $0 \le k \le K-1$ or in two-dimensional array: x(l, m) indexed by l and m with $0 \le l \le L-1$ and $0 \le m \le M-1$
- Row wise:

k = Ml + m	$egin{array}{c} x(0,0) \\ x(1,0) \end{array}$	···· ···· :	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} x(0) \\ x(M) \end{array}$	$ \begin{array}{ccc} \cdots & x(M-1) \\ \cdots & x(2M-1) \\ \vdots & & \end{array} $
Calana	x(L-1,0)	•••	x(L-1,M-1)	x((L-1)M)	$\cdots x(LM-1)$
Column wise:	$x(0,0) \\ x(1,0)$		x(0, M-1) x(1, M-1)	$\begin{array}{c} x(0) \\ x(1) & \cdots \end{array}$	x((M-1)L) $x((M-1)L+1)$
k = l + mL	\vdots x(L-1,0)		$\vdots x(L-1, M-1)$	\vdots x(L-1)	\vdots x(LM-1)
			· · · · · · · · · · · · · · · · · · ·		· / /

FFT Algorithms

- Similarly, $X(n), 0 \le n \le K 1 \iff X(p,q), 0 \le p \le L 1, 0 \le q \le M 1$ with row wise: n = Mp + q or column wise: n = p + qL
- Assuming column wise for x(k) and row wise for X(n), then

$$X(p,q) = \sum_{m=0}^{M-1} \sum_{l=0}^{L-1} x(l,m) W_K^{(l+mL)(Mp+q)}$$

where $W_{K}^{(l+mL)(Mp+q)} = W_{K}^{Mlp} W_{K}^{Kmp} W_{K}^{lq} W_{K}^{Lmq}$. But $W_{K}^{Mlp} = W_{K/M}^{lp} = W_{L}^{lp}$, $W_{K}^{Kmp} = 1$, and $W_{K}^{Lmq} = W_{K/L}^{mq} = W_{M}^{mq}$. Thus:

$$X(p,q) = \sum_{l=0}^{L-1} \underbrace{\left(W_{K}^{lq} \left[\sum_{m=0}^{M-1} x(l,m) W_{M}^{mq} \right] \right)}_{\text{step 1}} W_{L}^{lp}$$

• The computation of DFT can be divided into three steps as shown in the next slide

FFT Algorithms (continue)

• Algorithm one:

1. For $0 \leq l \leq L - 1$, compute the M-point DFTs:

$$F(l,q) = \sum_{m=0}^{M-1} x(l,m) W_M^{mq}, \quad 0 \le q \le M-1$$

2. For $0 \le l \le L - 1$ and $0 \le q \le M - 1$, compute the array $G(l,q) = W_K^{lq}F(l,q)$ **3.** For $0 \le q \le M - 1$, compute the *L*-point DFTs

$$X(p,q) = \sum_{l=0}^{L-1} G(l,q) W_L^{lp}, \quad 0 \le p \le L-1$$

- Rearrange the double summation in the same DFT expression \Rightarrow another similar algorithm
- Choosing row wise for x(k) and column wise for $X(n) \Rightarrow$ two more similar algorithms
- Complexity of these 4 algorithms resulting from a two-stage decomposition is: $2(L^2 + M^2 + K)$ trigonometric functions, K(M + L + 1) multiplications, K(M + L 2) additions
- With L = 2 and $M = \frac{K}{2}$, for example, complexity reduction factor is approximately 2
- Factoring $K = r_1 r_2 \cdots r_v$, with v the stage decomposition, leads to the computation of many small DFTs and, the more stage v, the more significant in complexity reduction

Radix-2 FFT Algorithms

- When $K = r^v$, DFTs are of size r and computation has regular pattern, where r is called the radix of FFT algorithm. In particular, with $K = 2^v$, we have radix-2 FFT algorithms
- **Decimation-in-frequency** FFT: in the decomposition stage one, choose L = K/2 and M = 2:

$$X(n) = \sum_{k=0}^{K/2-1} x(k) W_K^{kn} + W_K^{nK/2} \sum_{k=0}^{K/2-1} x(k+K/2) W_K^{kn}$$

• Since $W_K^{nK/2} = (-1)^n$

$$X(n) = \sum_{k=0}^{K/2-1} \left(x(k) + \left(-1\right)^n x(k+K/2) \right) W_K^{kn}, \quad 0 \le n \le K-1$$

• Next decimate X(n) into even and odd samples and use $W_K^2 = W_{K/2}$:

of Southampton

$$X(2n) = \sum_{k=0}^{K/2-1} \left(x(k) + x(k+K/2) \right) W_{K/2}^{kn} \quad n = 0, 1, \cdots, \frac{K}{2} - 1$$

$$X(2n+1) = \sum_{k=0}^{K/2-1} \left[(x(k) - x(k+K/2)) W_K^k \right] W_{K/2}^{kn} \quad n = 0, 1, \cdots, \frac{K}{2} - 1$$

Radix-2 FFT Algorithms (continue)

• Define two K/2-point sequences

$$g_1(k) = x(k) + x(k + K/2) g_2(k) = [x(k) - x(k + K/2)] W_K^k \ \ k = 0, 1, \cdots, \frac{K}{2} - 1$$

• Then

$$X(2n) = \sum_{k=0}^{K/2-1} g_1(k) W_{K/2}^{kn}, \quad X(2n+1) = \sum_{k=0}^{K/2-1} g_2(k) W_{K/2}^{kn}$$

- K/2-point DFTs X(2n) and X(2n+1) can each be decimated into two K/4-point DFTs
- Procedure is repeated and entire procedure involves $v = \log_2(K)$ stages of decimation
- **Decimation-in-time** FFT: decimate $\{x(k)\}$ into even and odd samples and repeat the procedure
- Radix-2 FFT algorithm complexity: $(K/2) \log_2(K)$ complex multiplications, $K \log_2(K)$ complex additions
- Example. 1024-point DFT with $K = 2^{10}$: direct computing involves 1048576 multiplications and 1047552 additions, but radix-2 FFT only involves 5120 multiplications and 10240 additions \rightarrow speed improvement factor is approximately 100

8-Point Decimation-in-Frequency FFT

Summary

- OFDM: basic concepts, effective in combating channel fading and frequency selective, and disadvantages
- Frequency analysis of discrete-time signals: differences with continuous-time case
- DFT: ${x(k)}_{k=0}^K \iff {X(n)}_{n=0}^K$, practical considerations, time aliasing
- FFT: basic concepts, Radix-2, DFT implemented efficiently by FFT is widely used in communication systems

