ELEC6014 (EZ412/612) Radio Communications Networks and Systems S Chen

Revision of Lecture Twenty

e Previous lecture focuses on interface between physical layer and network layer,
referred to as medium access control

e Concepts of user and signalling (control) channels
e Random access (contention) algorithms

e This lecture we move back to physical layer, and look into multicarrier system
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Orthogonal Frequency Division Multiplexing

e OFDM applies multicarrier modulation principle by dividing the data stream into several bit
streams, each of which has much lower bit rate, and using these substreams to modulate several

carriers

e Basic OFDM system: S, Y Y S,
modulator f demodulator f,
gPF ! modulator f; |—sf demodulator f S /S
$ S11Swa L : : g M SNSRI

What OFDM 1s good for? M odulator . demodulatorf_; St
1. Combating fading: in a parallel Fading channel

transmission, each symbol in a sub- v

carrier has a much larger symbol Seria Tx: Several symbols lost

duration, equal to N times of the l%sl / Sll\l—l

symbol duration in serial transmission. Paralld Tx: /Symbolsslightly affectec

In a deep fade, several symbols in the fo S | — |

single carrier system can be affected fi § I ] |

seriously and lost completely. However,

in parallel transmission, each of the N fyog SN-1 . l

symbols is only slightly affected and can
still be recovered correctly

. University
1]
! Electronics an.d of Southampton
H Computer Science

‘N symbol duration (szerial)I

262



ELEC6014 (EZ412/612) Radio Communications Networks and Systems S Chen

OFDM (continue)

channdl flat

2. Combating frequency selective: the frequency
selective
channel can be severely frequency yana

selective, but for each sub-carrier, the

sub-channel is flat or at least only o
: : multi carrier
slightly frequency selective assignment mmm m
f
T |

What OFDM is bad for? fo f, 5 N-1
-
e High complexity: to be effective, AB g_NAB

number of sub-carriers N should be large

If OFDM is implemented with N modulators/demodulators, the complexity will be enormous.

Fortunately, it can be implemented alternatively using DFT/FFT to reduce this high complexity

e Another disadvantage of OFDM systems is high peak to average power

With N sinusoidal signals added together, the peak amplitude becomes very large, which will be
clicked by amplifier and channel’s nonlinear saturation, causing distortion
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Fourier Transform Pair

e If a discrete-time aperiodic signal x(k) satisfies s
k=—o0
then 0 1 x
FT: X(w) = Z x(k) exp(—jwk) IFT: xz(k) = o X (w) exp(jwk) dw

k=—00 —TT

Integration in IFT can also be over O to 27
e Spectra: X(w) = | X(w)|exp(j£X(w)), with | X (w)| being the amplitude spectrum and
/X (w) the phase spectrum of x (k)

e Parseval's theorem:

oo :l_ TT
2 2
> lz(k) =5 | [X(w] dw
™ J—x
k=—oc0
where | X (w)|? is the energy spectral density, giving distribution of signal energy in frequency

domain. In practice, the power spectral density is more often used

e Differences:

— Continuous-time: f or 27 f has the unit of Hz or radian/s, and ranges in (—oco, oo). FT is an
integral

— Discrete-time: w has the unit of radian, and ranges in [—m, 7] or [0, 27]. FT is a summation
and X (w) is periodic with period 27

. University
1]
! ! Electronics an.d of Southampton
=.= Computer Science
Bl 264




ELEC6014 (EZ412/612) Radio Communications Networks and Systems S Chen

Discrete-Time Fourier Series

o If x(k) is periodic with period K, i.e. x(k) = x(k + K), x(k) can be expressed by DFS:

K-1
2T™Nn
k — n ) nk , n — ——
z(k) nEZOC exp(jwnk), w I

Note there are K frequency components exp(jwpk) for 0 < n < K — 1 and 0 < w, < 2,
and the Fourier coefficients

~

1 :
— x(k) exp(—jwnk), 0<n< K -1
K=

Cpn =—

7
|

provide the amplitudes and phases for frequency components exp(jw,k)
e Differences in periodic signal:
— Continuous-time: has infinite frequency components, and Fourier coefficients are integrals
— Discrete-time: has finite frequency components, and Fourier coefficients are summations
e In theory, X (w) is all we need but let us consider some practical constraints

— Computing X (w) requires infinite summation, that is, infinite number of samples — one can
only approximate it by a finite signal samples in a finite summation

— Displaying X (w) requires w taking values continuously in [0, 27) — one can only approximate
it at finite discrete points w,,, that is, sample X (w) and take only a finite spectrum samples.

These considerations leads to discrete-time Fourier transform
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Discrete-Time Fourier Transform

e Windowing data so that (k) = 0 for kK < 0 and kK > L, i.e. a finite sequence x(k) of length L
— the corresponding Fourier transform is

L—1
X(w) = Zaz(k) exp(—jwk), 0 <w <27
k=0

e Sample X (w) at frequencies w, = 27mn/K, 0 < n < K — 1, where K > L — the resulting
spectrum samples or DFT of {x(k)} is

X(n) =X(wy) = ix(k) exp(—j2mnk/K) = Z_ x(k)exp(—j2mnk/K)
e Inverse DFT (IDFT) is:
x(k) = % Z_X(n) exp(j2mk/K), 0 < k< K —1

e DFT: time samples {z(k)} of length L < K < frequency samples { X (n)} of length K
e For K > L, {z(k)},;—, can be exactly reconstructed from {X (n)} "}

n=0
Otherwise, time folding or aliasing occurs — This is dual to spectral folding or aliasing when
sampling frequency is less than the Nyquist rate
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Example
For 6-point sequence x(k) = k + 1, 0 < k < 5, the spectrum X (w):

X(w) =) x(k)exp(—jwk) = Y (k+ 1)exp(—jwk), 0<w < 27

Evaluate X (w) at the 4 frequencies w,, = 27n /4,0 < n < 3:

X(n) =) (k+1)exp(—j2rnk/4), 0<n <3

or
X(0) =21, X(1) =3 —4j, X(2) = -3, X(3) =3 +4j
The IDFT for the resulting 4 samples X (n), 0 < n < 3:

#(k) = iZX(n) exp(j2mnk/4), 0<k <3

n=0

or
£(0) =6, (1) =8, #(2) =3, 2(3) =4
This example illustrates time aliasing (note z(0) = 1, z(1) = 2, 2(2) = 3, z(3) = 4)

To avoid time aliasing, frequency samples K must be no less than time samples L
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Fast Fourier Transform

e Recall that DFT: {z(k)}; ' <= {X(n)} .. By introducing Wi = exp(—j2r/K),
K—1
DFT: X(n) = > a(k)Wg', 0<n<K—1
k=0
| K1
IDFT: z(k) = — > X)W 0<k<K-—1
o) = 72 3 XmW", 0k S
e Direct computation of DFT can be costly for large K: 2K? trigonometric functions, K2
multiplications, and K (K — 1) additions
e Let K = L M. Data can either be stored in one-dimensional array: {z(k)} with0 < k < K —1
or in two-dimensional array: x (I, m) indexed by land mwith0 <[ < L—1and0 < m < M —1
® Row wise: x(0,0) x(0, M — 1) x(0) x(M — 1)
k= Ml+m x(1,0) x(1, M — 1) x(M) x(2M — 1)
x(L —1,0) x(L—1,M —1) x((L —1)M) x(LM — 1)
Col ise:
¢ Lolumn wise x(0,0) x(0, % - 1) x(0) a:](\EIM — }J)L)
k=14 mL 33(1:, 0) x (1, | —1) :1:(:1) x(( —:1) +1)
x(L —1,0) x(L—1,M —1) (L —1) (LM — 1)
!IIII
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FFT Algorithms

e Similarly, X(n),0 < n < K —-1<= X(p,q),0<p<L—-1,0<gq< M — 1 with row
wise: n = Mp + g or column wise: n = p + qL
e Assuming column wise for (k) and row wise for X (n), then

M-1L-1
X(p, q) _ Zw(l7 m)WI(é—I-mL)(Mp—i-q}

m=0 [=0

where W TR MITD — yy vy ey gy ima gue Wl = WiE = WP, WET = 1,

( )
X(pg) =Y | Wg¢ [Z w(l,m)Wz\”}q] W'

[=0
N A _J/
\ step 1 )

N
step 2

and W™ = Wl = Wi, Thus:

G

'
step 3

e The computation of DFT can be divided into three steps as shown in the next slide
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FFT Algorithms (continue)

e Algorithm one:
1. For0 <[ < L — 1, compute the M-point DFTs:

M—1
F(l,g) = > a(l,mWy?, 0<q<M-—1
m=0
2. For0 <1< L—1and0 < q< M — 1, compute the array G (I, q) = W F(l, q)
3. For0 < g < M — 1, compute the L-point DFTs

L—-1
X(p,q) =Y GlgW/, 0<p<L-1
=0

e Rearrange the double summation in the same DFT expression = another similar algorithm
e Choosing row wise for x(k) and column wise for X (n) = two more similar algorithms

e Complexity of these 4 algorithms resulting from a two-stage decomposition is: 2(L* + M? 4+ K)
trigonometric functions, K (M + L + 1) multiplications, K (M + L — 2) additions
e With L =2 and M = % for example, complexity reduction factor is approximately 2

e Factoring K = riry-- -1y, with v the stage decomposition, leads to the computation of many
small DFTs and, the more stage v, the more significant in complexity reduction
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Radix-2 FFT Algorithms

e When K = r", DFTs are of size r and computation has regular pattern, where r is called the
radix of FFT algorithm. In particular, with K = 2%, we have radix-2 FFT algorithms

e Decimation-in-frequency FFT: in the decomposition stage one, choose L. = K /2 and M = 2:

K/2—1 K/2—1
X(n)= > (k)W + Wit ST a(k + K/2)Wy"
k=0 k=0
e Since W;Km = (—=1)"
K/2—1
X(n)= > (z(k) + (-1)"z(k+ K/2) Wg", 0<n<K-—1
k=0

o Next decimate X (n) into even and odd samples and use W5 = Wi a:

K/2—1

X@2n)= > (k) +a(k+K/2) W), n=01,-,——1

K/2—1
X@n+1)= Y [(a:(k) —2(k + K/2)) W;g] Wi, n=0,1,---,— —1
k=0
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Radix-2 FFT Algorithms (continue)

e Define two K /2-point sequences

g1(k) = a(k) + o (k + K/2) _ K
k k_Oa]-)"'a__l
92(k) = [z(k) — z(k + K/2)] Wy 2
e Then
K/2—1 K/2—1
X(@2n) = > (W)W, X@n+1)= > g(k)Wy),
k=0 k=0
e K /2-point DFTs X (2n) and X (2n 4 1) can each be decimated into two K /4-point DFTs
e Procedure is repeated and entire procedure involves v = log,(K) stages of decimation
e Decimation-in-time FFT: decimate {x(k)} into even and odd samples and repeat the procedure
e Radix-2 FFT algorithm complexity: (K/2) log,(K) complex multiplications, K log,(K) complex

additions

e Example. 1024-point DFT with K = 2% direct computing involves 1048576 multiplications
and 1047552 additions, but radix-2 FFT only involves 5120 multiplications and 10240 additions —
speed improvement factor is approximately 100
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8-Point Decimation-in-Frequency FFT
Algorithm: %(0) X©)
v
Basic operation — A‘A‘A’A wo
“butterfly” computation x(4) vmv.v X(1,
a A=a+b 0
X(5) AA e X(5!
Wi Q
x(7) A W X(7)
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Summary

e OFDM: basic concepts, effective in combating channel fading and frequency
selective, and disadvantages

e Frequency analysis of discrete-time signals: differences with continuous-time case
e DFT: {z(k)};, < {X(n)}5_,, practical considerations, time aliasing

e FFT: basic concepts, Radix-2, DFT implemented efficiently by FFT is widely used
In communication systems
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