Revision of Lecture Twenty-Two

- OFDM fundamentals: what OFDM are "good" for? and any "bad"?
- OFDM implementation: IFFT / FFT

Cyclic extension for removing inter-frame interference Equalisation in OFDM becomes "automatic"

• The last two lectures we will look into some A, B, C of MIMO

MIMO Introduction

- Create **diversity** for combating fading
 - With sufficient antenna spacing (10 wavelengths), each antenna experiences independent fading \rightarrow When one signal is in its deep fade, others are unlikely the same

• Increase throughput

- Data stream is first S/P, each sub-sequence mapped to an antenna → This creates many "digital pipes" to support higher rate
- Support multiple users
 - With multiple receive antennas, each spatially separated user has a unique set of CIRs seen at receiver \rightarrow This enables SDMA

MIMO Channel Models

- Channel model classification
 - SISO: single-input single-output systems
 - SIMO: single-input multi-output systems
 - MISO: multi-input single-output systems
 - MIMO: multi-input multi-output systems
- Many ways to arrive MIMO, e.g. multi-user systems, multiple transmit and/or receive antennas, sampling faster than symbol rate, etc.
- Consider single-user system with **fractional-spaced sampling**, i.e. at each symbol period take more than one samples, which will result multiple (symbol-rate) subchannel models
- There are advantages of fractional-spaced sampling
 - More robust to carrier recovery error and timing recovery error
 - To achieve a perfect reconstruction (remove ISI completely), a finite equaliser can be sufficient (unlike symbol-rate sampling, which requires infinite length)
 - A disadvantage: noise samples are no longer white

Fractional-Spaced Sampling

• **Baseband** model with $T_s/2$ -spaced receiver:

Take two samples during each symbol period

• $T_s/2$ -spaced equaliser

$$\bar{y}(n) = \bar{\mathbf{w}}^H \bar{\mathbf{r}}(n)$$

with $\bar{\mathbf{r}}(n) = [\bar{r}(n) \ \bar{r}(n-1) \cdots \bar{r}(n-2m+1)]^T$ and $\bar{\mathbf{w}} = [\bar{w}_0 \ \bar{w}_1 \cdots \bar{w}_{2m-1}]^T$

- $\bar{y}(n)$ is decimated by a factor of 2 to get T_s -spaced output y(k)
- Discrete-time baseband model: **multirate** model with $T_s/2$ spaced equaliser \overline{a} \overline{a} \overline{a} \overline{v} \overline{w} $\overline{v}(n)$ \overline{w} $\overline{v}(n)$ $\overline{v}(k)$ $\overline{v}(k)$ $\overline{v}(k)$

where k indicates $T_s\mbox{-spaced}$ quantities and n indicates $T_s/2\mbox{-spaced}$ quantities

Multirate Model (continue)

• $T_s/2\text{-spaced sequence }\{\bar{s}(n)\}$ is zero-filled version of transmitted symbol sequence $\{s(k)\}$ defined by

$$ar{s}(n) = \left\{ egin{array}{cc} s(n/2), & \mbox{ for even } n \\ 0, & \mbox{ for odd } n \end{array}
ight.$$

• Received $T_s/2$ -spaced signal sample is

$$\bar{r}(n) = \sum_{i=0}^{2N_c - 1} \bar{a}_i \bar{s}(n - i) + \bar{e}(n)$$

• $T_s/2$ -spaced complex-valued channel impulse response (CIR) is given by

$$\bar{\mathbf{a}} = \left[\bar{a}_0 \ \bar{a}_1 \ \bar{a}_2 \ \bar{a}_3 \cdots \bar{a}_{2N_c-1}\right]^T$$

Sampling at twice of symbol rate ⇒ Two symbol-spaced models: Odd sample model and even sample model, i.e. multichannel model

Multichannel Model

• Take even and odd samples of noise and Rx signal

 $e^{\mathbf{e}}(k) = \bar{e}(2n), \ e^{\mathbf{o}}(k) = \bar{e}(2n+1), \ r^{\mathbf{e}}(k) = \bar{r}(2n), \ r^{\mathbf{o}}(k) = \bar{r}(2n+1)$

Multichannel Model (continue)

- In general, T_s/K -spaced sampling will result in K channel models
- As we have symbol-rate model $y(k) = \mathbf{w}^H \mathbf{r}(k)$, all equalisation results apply
- Blind equalisation example: consists of a 22-tap $T_s/2$ channel and a 26-tap $T_s/2$ equaliser with 256-QAM and SNR= 60 dB
- In simulation, an estimated MSE based on a separate block of data and the maximum distortion measure defined by

$$\mathrm{MD} = \frac{\sum_{i=0}^{n_{\mathrm{tot}}} |f_i| - |f_{i_{\mathrm{max}}}|}{|f_{i_{\mathrm{max}}}|}$$

are used to assess convergence rate, where

$$\mathbf{f} = [f_0 \ f_1 \cdots f_{n_{\text{tot}}}]^T = (\bar{\mathbf{w}}^{\text{o}})^* \star \bar{\mathbf{a}}^{\text{e}} + (\bar{\mathbf{w}}^{\text{e}})^* \star \bar{\mathbf{a}}^{\text{o}}$$

is the combined impulse response of the channel and equaliser, $f_{i_{\max}}=\max\{f_i,\ 0\leq i\leq n_{\rm tot}\}$

Simulation Results

Adaptive Beamforming Assisted Receiver

• SDMA induced MIMO system:

Assume one transmit antenna and Lreceiver antennas supporting K users

Narrowband channels with $m_i(k) =$ $A_i b_i(k)$, A_i : channel coefficient for user i and $b_i(k)$: kth symbol of user i

Assume symbol-rate sampling, user 1is desired user and rest are interferers

• Uniformly spaced linear antenna array: Let $t_l(\theta_i)$ be relative time delay at array element l for user i, θ_i angle of arrival for user *i* and carrier $\omega = 2\pi f_c$

K

i=1

Beamforming Assisted Receiver (continue)

• System model: Antenna array output $\mathbf{x}(k) = [x_1(k) \ x_2(k) \cdots x_L(k)]^T$ is expressed as

$$\mathbf{x}(k) = \bar{\mathbf{x}}(k) + \mathbf{n}(k) = \mathbf{Pb}(k) + \mathbf{n}(k)$$

where $\mathbf{n}(k) = [n_1(k) \ n_2(k) \cdots n_L(k)]^T$ has a covariance matrix of $E[\mathbf{n}(k)\mathbf{n}^H(k)] = 2\sigma_n^2 \mathbf{I}_L$ with \mathbf{I}_L representing the $L \times L$ identity matrix, system matrix \mathbf{P} is given by

$$\mathbf{P} = [A_1 \mathbf{s}_1 \ A_2 \mathbf{s}_2 \cdots A_K \mathbf{s}_K]$$

steering vector for source \boldsymbol{i} is

$$\mathbf{s}_i = \left[\exp(j\omega t_1(heta_i)) \ \exp(j\omega t_2(heta_i)) \cdots \exp(j\omega t_L(heta_i))
ight]^T$$

and transmitted symbol vector $\mathbf{b}(k) = [b_1(k) \ b_2(k) \cdots b_K(k)]^T$

• Beamformer's output is given by

$$y(k) = \mathbf{w}^H \mathbf{x}(k) = \mathbf{w}^H \bar{\mathbf{x}}(k) + \mathbf{w}^H \mathbf{n}(k) = \bar{y}(k) + e(k)$$

where $\mathbf{w} = [w_1 \ w_2 \cdots w_L]^T$ is complex-valued beamformer weight vector and e(k) Gaussian distributed having a zero mean and a variance of $E[|e(k; \mathbf{w})|^2] = 2\sigma_n^2 \mathbf{w}^H \mathbf{w}$

Beamforming Assisted QAM Receiver

• Assume M-QAM modulation and define combined impulse response of beamformer and system as

$$\mathbf{w}^{H}\mathbf{P} = \mathbf{w}^{H}[\mathbf{p}_{1} \ \mathbf{p}_{2} \cdots \mathbf{p}_{K}] = [c_{1} \ c_{2} \cdots c_{K}]$$

The beamformer's output can also be expressed as

$$y(k) = c_1 b_1(k) + \sum_{i=2}^{K} c_i b_i(k) + e(k)$$

• Define decision variable as $d(k) = d_R(k) + jd_I(k) = \frac{y(k)}{c_1}$, then symbol decision $\hat{b}_1(k) = \hat{b}_{R_1}(k) + j\hat{b}_{I_1}(k)$ is given by

$$\hat{b}_{R_1}(k) = \begin{cases} u_1, & \text{if } d_R(k) \le u_1 + 1\\ u_l, & \text{if } u_l - 1 < d_R(k) \le u_l + 1 \text{ for } 2 \le l \le \sqrt{M} - 1\\ u_{\sqrt{M}}, & \text{if } d_R(k) > u_{\sqrt{M}} - 1 \end{cases}$$

$$\hat{b}_{I_1}(k) = \begin{cases} u_1, & \text{if } d_I(k) \leq u_1 + 1 \\ u_q, & \text{if } u_q - 1 < d_I(k) \leq u_q + 1 \text{ for } 2 \leq q \leq \sqrt{M} - 1 \\ u_{\sqrt{M}}, & \text{if } d_I(k) > u_{\sqrt{M}} - 1 \end{cases}$$

where *M*-QAM symbol set is defined as $\{u_l + ju_q, 1 \leq l, q \leq \sqrt{M}\}$

Adaptive Beamforming Solutions

• Let $E[|b_1(k)|^2] = \sigma_s^2$. Then minimum mean square error solution:

$$\mathbf{w}_{\text{MMSE}} = \left(\mathbf{P}\mathbf{P}^{H} + \frac{2\sigma_{n}^{2}}{\sigma_{s}^{2}}\mathbf{I}_{L}\right)^{-1}\mathbf{p}_{1}$$

- MMSE solution can be implemented adaptively using the LMS or RLS algorithm
- We can derive minimum symbol error rate solution $w_{\rm MSER}$ for general QAM, but unlike the MMSE solution, there is no closed-form solution for $w_{\rm MSER}$ and gradient optimisation must be used
- MSER solution can be implemented adaptively using the LSER algorithm
- For details see:

Electronics and

Computer Science

S. Chen, H.-Q. Du and L. Hanzo, "Adaptive minimum symbol error rate beamforming assisted receiver for quadrature amplitude modulation systems," in VTC2006-Spring (Melbourne, Australia), May 7-10, 2006

PDF copy can be download from: http://www.ecs.soton.ac.uk/~sqc/EZ412-612/

• Example: 16QAM, 4 users, 3-element antenna array

of Southampton

University

Summary

- MIMO system introduction
- Single-user fractional-spaced receiver

Baseband continuous-time model, discrete-time multirate model, discrete-time multichannel model

• Adaptive beamforming assisted receiver for QAM modulation

System model, beamformer model, MMSE solution and MSER solution, adaptive implementation

