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Semi-blind Joint Maximum Likelihood Channel
Estimation and Data Detection for MIMO Systems

M. Abuthinien, S. Chen, and L. Hanzo

Abstract—Semi-blind joint maximum likelihood (ML) channel
estimation and data detection is proposed for multiple-input
multiple-output (MIMO) systems. The joint ML optimization over
channel and data is decomposed into an iterative two-level opti-
mization loop. An efficient optimization search algorithm referred
to as the repeated weighted boosting search (RWBS) is employed
at the upper level to identify the unknown MIMO channel while an
enhanced ML sphere detector termed as the optimized hierarchy
reduced search algorithm is used at the lower level to perform ML
detection of the transmitted data. Only a minimum pilot overhead
is required to aid the RWBS channel estimator’s initial operation,
which not only speeds up convergence but also avoids ambiguities
inherent in blind joint estimation of both the channel and data.

Index Terms—Channel estimation, data detection, joint max-
imum likelihood estimation, multiple-input multiple-output.

I. INTRODUCTION

ULTIPLE-INPUT multiple-output (MIMO) tech-
Mnologies are capable of substantially improving the
achievable system’s capacity and/or quality of service [1]-[4].
The system’s ability to approach the MIMO capacity heavily
relies on the channel state information. Accurately esti-
mating a MIMO channel is much more challenging than its
single-input single-output (SISO) counterpart. The various
MIMO channel estimation methods can be classified into
three categories: training-based methods, blind methods and
semi-blind methods. Pure training-based schemes are com-
putationally less demanding but a high proportion of training
symbols is required in order to obtain a reliable MIMO channel
estimate, which considerably reduces the achievable system
throughput. The family of blind methods for joint channel
estimation and data detection does not require training symbols
and hence does not reduce the achievable system throughput,
although this is achieved at the expense of high computational
complexity. Moreover, blind joint channel estimation and data
detection results in a certain grade of estimation and decision
ambiguities [5]. Semi-blind schemes do not suffer from this
ambiguity problem and are computationally simpler than their
blind counterparts, at the cost of requiring a few training
symbols.

Many semi-blind methods have been developed for MIMO
systems. In the schemes of [6]-[9], a few training symbols
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are used to provide an initial MIMO channel estimate, and
the channel estimator as well as the data detector iteratively
exchange their information, where the channel estimator relies
on decision-directed adaptation. In [10], the MIMO channel
matrix is decomposed into the product of a whitening matrix
and a rotational unitary matrix. The first matrix is estimated
blindly while the second is estimated with the aid of training
symbols. In contrast to these proposals, our novel contribution
extends the approach developed for SISO systems in [11] and
that advocated for single-input multiple-output systems in [12],
where the joint ML channel and data estimation optimization
process is decomposed into two levels. At the upper level a
global optimization algorithm searches for an optimal channel
estimate, while at the lower level a ML data detector recovers
the transmitted data. Joint ML channel estimation and data
detection is achieved by iteratively exchanging information
between the channel estimator and the data detector. Specifi-
cally, at the upper level we use the repeated weighted boosting
search (RWBS) algorithm [13] as the channel estimator, which
searches the MIMO channel space by evolving a population
of MIMO channel matrices, while at the lower level we use
the optimized hierarchy reduced search algorithm (OHRSA)
aided detector [14], which is an advanced extension of the
complex sphere decoder [15], to provide ML data estimates for
the MIMO channel population. Only a few training symbols
are used to provide an initial least squares channel estimate
(LSCE) [16] for aiding the RWBS channel estimator to im-
prove its convergence. The employment of a minimum training
overhead has an additional benefit in terms of avoiding the
ambiguities inherent in pure blind joint channel estimation and
data detection.

Throughout our discussions we adopt the following nota-
tional conventions. Boldface capitals and lower-case letters
stand for matrices and vectors, respectively, while Ix and
1x x 1 denote the K x K identity matrix and the K x L matrix
of unity elements, respectively. Furthermore, ( )7 and ( )¥
are the transpose and Hermitian operators, respectively, while
| ||* and | | denote the norm and the magnitude operators,
respectively. Finally, F[ ] is the expectation operator.

II. SYSTEM MODEL

We consider a MIMO system consisting of n transmitters
and np receivers, which communicates over flat fading chan-
nels. The system is described by the MIMO model

y(k) = Hs(k) + n(k) )

where k is the symbol index, H denotes the ng X ny MIMO
channel matrix, s(k) = [s1(k) s2(k)...sn,(k)]T is the
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transmitted symbols vector of the np transmitters with the
symbol energy given by E [|s,,(k)|*] = o% for 1 < m < nr,
y(k) = [v1(k) ya2(k)...yny(k)]T denotes the received
signal vector, and n(k) = [n1(k) n2(k)...n.,(k)]7 is the
complex-valued Gaussian white noise vector associated with
the MIMO channels with E [n(k)nf (k)] = 2021,,,,.

Specifically, the narrowband MIMO channel matrix is de-
fined by H = [h; ], for 1 <[ <mngand1 < m < nyp, where
hi,m denotes the nondispersive channel coefficient linking the
mth transmitter to the [-th receiver. Furthermore, the fading is
assumed to be sufficiently slow, so that during the time period of
a short block of N symbols, all the entries in the MIMO channel
matrix H may be deemed unchanged. From frame to frame, the
channel impulse response taps h; , are independently and iden-
tically distributed complex-valued Gaussian processes with zero
mean and E [|hy,,|?] = 1. The signal-to-noise ratio (SNR) is
defined by Ey /N, = 02 /202.

III. PROPOSED SEMI-BLIND SCHEME

Let us consider joint channel estimation and data detection
based on the observation vector y(k) over a relatively short
length of N symbols. Define the n g x N matrix of received data
asY =[y(l) y(2)...y(N)] and the corresponding nyp x N
matrix of transmitted symbols as S = [s(1) s(2)...s(N)].
Then the probability density function of the received data matrix
Y conditioned on the MIMO channel matrix H and the trans-
mitted symbol matrix S can be written as

1 o= (1/202) 370 Iy () —H s(k)|2
(2mo2) <N .
()

The ML estimation of S and H can be obtained by jointly max-
imizing p(Y|H, S) over S and H. Equivalently, the joint ML
estimation can be obtained by minimzing the cost function

p(Y[H,S) =

1
TLRXN

3)

]\T
T (S, H) = MO E O]
k=1

Thus, the joint ML channel and data estimation is obtained as

(S,H) = arg{mip JML(S./I:I)} . 4
SH

The joint ML optimization search defined in (4) is computa-
tionally prohibitive. The complexity of this optimization process
may be reduced to a tractable level, if it is decomposed into an
iterative search carried out over all the possible data symbols
first and then over the channel matrices as

(S, I:I) = arg {mjn [mjn JML(S, I:I)} } . 5)
H S

At the inner or lower-level optimization we use the OHRSA-
aided ML detector [14] to find the ML data estimate for the given
channel. The detailed implementation of the OHRSA-aided ML
detector can be found in [14] and will not be repeated here. In
order to guarantee a joint ML estimate, the search algorithm
used at the outer or upper-level optimization should be capable
of finding a global optimal channel estimate efficiently, and we
employ the RWBS algorithm [13] to perform the upper-level

optimization. Motivations and analysis of the RWBS algorithm
as a global search algorithm are detailed in [13] and will not be
repeated here. Conceptually, a joint ML channel estimation and
data detection can be carried out using the following iterative
loop.
Outer-level Optimization: The RWBS algorithm searches
the MIMO channel parameter space via evolving a popu-
lation of channel matrices to find a global optimal estimate
H by minimising the mean square error (mse)

Tmse(H) = Jur (S(H), H) (6)

where S(H) denotes the ML estimate of the transmitted
data for the given channel H.

Inner-level Optimization: Given the MIMO channel matrix
H the OHRSA-aided ML detector finds the ML estimate
of the transmitted data and feeds back the corresponding
ML metric Jys.(H) to the upper level.

Pure blind joint data and channel estimation for MIMO
systems has an inherent permutation and scaling ambiguity
problem. Scaling ambiguity refers to the fact that the detected
data and the estimated channel matrix columns can only be
resolved within a complex-valued factor. In the permuta-
tion ambiguity, the detected data and the estimated channel
matrix columns are reordered. The reason for this is clear
from the cost function defined in (3), which is invariant with
respect to a re-ordering and scaling of the channel matrix
and the data matrix. In fact, let a pair of the MIMO channel
and data estimates be S and H. Define H* = H T and
S* = THQ, where T is any np X np unitary matrix [5]. Then
JML(I:I, Q) = JML(I:I*, S*) To resolve the permutation and
scaling ambiguities, a few training symbols can be employed
to identify the correct unitary matrix T. Let the number of
training symbols be ¢, and denote the available training data as
Y= [y(1) y(2)...y(t)] and S; = [s(1) s(2)...s(0)]
The correct unitary matrix T is determined from all the possible
realizations T by solving the following optimization:

2
} . (7

The training data S; and Y can also be utilised to provide an
initial LSCE, defined by

T = argmjn{HYt - H TS,
T

. -1
Hisce = Y8 (S:8/) ®)

for aiding the RWBS channel estimator. This not only improves
the achievable convergence speed but also helps to resolve
the above-mentioned ambiguities associated with pure blind
schemes. Therefore, it is no longer required to solve the op-
timization problem (7). We can now summarise the proposed
semi-blind joint ML estimation scheme based on the RWBS
channel estimator and the OHRSA data detector.

Specify the three RWBS algorithmic parameters, namely
the population size Pg, the number of generations N¢ and the
number of iterations in weighted boosting search Ny, as well
as the control parameter y for channel population initialization.

O Algorithm initialization: I:Ig)?st =Hscr

O Generation loop: for (g = 1;9 < Ng;9+ +) {
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Generation initialization: FI\”) = H{Y_") and

HY = HY + ALn,xny + ilnpxng), 2<i< Ps

where A is a uniformly distributed random variable taking
values from [—, 7]

Weighted boosting search initialization: Assign the initial
distribution weightings 6,(0) = 1/Ps, 1 < i < Pg, and
compute the cost function of each channel

JI(I?s)e(i) = Jmse (ﬂgg)) = JumL (S (I:IEQ)) 7I:Iz(g))
where S (') is the ML data estimate for channel H?,
provided by the OHRSA-aided ML detector
O Weighted boosting search: for (I = 1;1 < Np; i+ +) {
Step 1. Boosting:

1) Find ibest = arg Inin1<7;gps J[(Ii]s)e@') and
Iworst = arg Maxi<;< Py J,@e(i). Denote ﬂﬁf}t = Iv{f)go)st and
I:Igf,z,.sf = I:Ix(zfczrst' u
2) Normalize the cost function values
(9) (;
TG = 50y cicps
se PS
> Jie(q)
q=1

3) Compute a weighting factor (3; according to

Ul
B =

Ps
m = Z 6L(l - l)Jlgigs)e(Z)’ o 1-— -
1=1

4) Update the distribution weightings for 1 < ¢ < Pg

749 (4
gy = 8= 0B0, o<1
(1l —1)8 "D for g > 1

and normalize them

Step II. Population updating:

1) Construct the (Ps + 1)th point using the formula
Ps
Hpop1 =Y 6i(DHY
i—1

and construct the (Pg + 2)th point using the formula
I:IPS+2 = I:Ilgge)st + (Izlége)st - I:IPs-H) .

2) Compute the cost function values JmSC(I:I Ps+1) and

Jmse(Hpg42). Then find

Jmsc(I:Ii)~

1y = arg min
i=Ps+1,Ps+2
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The pair (H;,, Jyse(FL;,)) then replaces
(Iilgfgrst7 JmSe(I:I(g)

Worst)) in the population

O} End of weighted boosting search
O Solution: Hf)g )

est

O} End of generation loop
O Solution: (H — o) §-§ (H(Nc>))

best 7 best
Let Conrsa (V) be the complexity of the OHRSA algorithm
to decode the N-sample data matrix S and let Noygrsa be
the number of calls for the OHRSA algorithm required by the
RWBS algorithm to converge. Then the complexity of the pro-
posed semi-blind method is expressed as

C = Noursa X Conrsa(N). (€))

The complexity of the OHRSA detector depends on the
SNR [14]. The RWBS algorithm is a simple yet ef-
ficient global search algorithm. It can be shown that
Noursa = N¢ ((Ps — 1) + 2N7). Appropriate values for the
RWBS algorithmic parameters, Ps, Ng and Ny, depends on
how hard the objective function to be optimized. Generally,
these algorithmic parameters have to be found empirically
but some rules are discussed in [13]. The control parameter
v in the channel population initialization also influences the
performance.

IV. SIMULATION STUDY

A simulation study was carried out to investigate the pro-
posed semi-blind joint ML channel estimation and data detec-
tion scheme. We considered a MIMO system with n7 = 4 and
nr = 4. The modulation scheme was quadrature phase shift
keying. The number of pilot symbols used was ¢ = 4. The
achievable performance was assessed in the simulation using
three metrics, and these were the mse defined in (6), the mean
channel error (MCE) defined as

Juce(H) = |H - H|? (10)
with H denoting the true MIMO channel matrix, and the
bit error ratio (BER). The three algorithmic parameters of
the RWBS were found empirically and the values used were
Ps =5, Ng > 200 and Ny = 30.

Fig. 1 shows the MCE performance after 1000 OHRSA evalu-
ations over arange of -y values. The results were averaged over 50
different channel realisations. It can be seen from Fig. 1 that the
optimal value of 7y for this case was 0.04. This value of v was used
for all the other simulations. Figs. 2 and 3 depict the convergence
performance of the proposed semi-blind scheme averaged over 50
different channel realisations and given v = 0.04 in terms of the
mse and MCE, respectively, for different SNR values as well as
for two frame lengths N' = 50 and 100. It can be seen from Fig. 2
that the mse converged to the noise floor. Fig. 4 shows the BER im-
provement of the semi-blind scheme over the training based one
with the same number of pilot symbols, in comparison with the
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Fig. 1. Mean channel error as a function of ~ after 1000 OHRSA evaluations
and averaged over 50 different channel realizations, for two different values of
E, /N, and two different values of V.
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Fig. 2. Convergence of mean square error averaged over 50 different channel
realizations and given v = 0.04, for different values of E, /N, and N.
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Fig. 3. Convergence of mean channel error averaged over 50 different channel
realisations and given v = 0.04, for different values of E; /N, and N.

case of perfect channel knowledge. It was also observed in our
simulation study that, for the training-based scheme to achieve
the same BER performance of the semi-blind one having a frame
length N = 50 and with only 4 pilot symbols, the number of
training symbols had to increase to at least 16. For the graphic
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Fig.4. Biterrorrate of the proposed semi-blind scheme with y = 0.04 and two
different values of frame length /V after 1200 OHRSA evaluations, in comparison
with the training-based case using only four pilot symbols and the case of perfect
channel knowledge.

clarification, the BER curve of the training-based scheme with
16 pilot symbols was not shown in Fig. 4.
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