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Abstract 
 
The objective of modelling from data is not that the model simply fits the training data well. Rather, the 
goodness of a model is characterized by its generalization capability, interpretability and ease for knowledge 
extraction. All these desired properties depend crucially on the ability to construct appropriate parsimonious 
models by the modelling process, and a basic principle in practical nonlinear data modelling is the parsimo-
nious principle of ensuring the smallest possible model that explains the training data. There exists a vast 
amount of works in the area of sparse modelling, and a widely adopted approach is based on the lin-
ear-in-the-parameters data modelling that include the radial basis function network, the neurofuzzy network 
and all the sparse kernel modelling techniques. A well tested strategy for parsimonious modelling from data 
is the orthogonal least squares (OLS) algorithm for forward selection modelling, which is capable of con-
structing sparse models that generalise well. This contribution continues this theme and provides a unified 
framework for sparse modelling from data that includes regression and classification, which belong to super-
vised learning, and probability density function estimation, which is an unsupervised learning problem. The 
OLS forward selection method based on the leave-one-out test criteria is presented within this unified 
data-modelling framework. Examples from regression, classification and density estimation applications are 
used to illustrate the effectiveness of this generic parsimonious modelling approach from data. 
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1. Introduction 
 
Data modelling is an important and recurrent theme in all 
the fields of engineering. Various data modelling applica-
tions can be classified into three categories, namely, regres-
sion [1-3], classification [4-6] and probability density func-
tion (PDF) estimation [7-9]. In regression, the task is to 
establish a model that links the observation data to their 
target function or desired output values. The goodness of a 
regression model is judged by its generalization perform-
ance, which can be conveniently determined by the test 
mean square error (MSE) on the data not used in training 
the model. Like regression, classification is also a super-
vised learning problem. However, the desired output is dis-
crete valued, e.g. binary in the two-class classification 
problems, and the goodness of a classifier is determined by 

its test error probability or misclassification rate. Despite of 
these differences, classifier construction can be expressed in 
the same framework of regression modelling. The third 
class of data modelling, namely, PDF estimation, is very 
different in nature from regression and classification. The 
task of PDF estimation is to infer the underlying probability 
distribution that generates the observations. Because the true 
target function, the underlying PDF, is not available, this is 
an unsupervised learning problem and can only be carried 
out based on often noisy observation data. Nevertheless, this 
unsupervised task can be “transformed” into a supervised 
one, for example, by computing the empirical distribution 
function from the observation data and using it as the target 
function for the cumulative distribution function of the PDF 
estimation. This contribution adopts this unified regression 
framework for data modelling.  
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The theory and practice of linear regression modelling is 
well established [10-12], and the least squares (LS) method 
[13] has been a basic toolkit for data modelling. Since 
real-world phenomena that generate data are nonlinear to 
some extent, nonlinear models are often required in order to 
achieve adequate modelling accuracy. Over the past three 
decades, extensive efforts have been directed onto develop-
ing coherent and concise methods of nonlinear regression 
modelling [14-35]. A data modelling problem generally 
consists of two basic components: determining the model 
structure and estimating or fitting the model parameters. 
Parameter fitting is relatively straightforward if the model 
structure is known a priori but this information is rarely 
available in practice and must be learnt. Determining the 
model structure is crucial in any practical data modelling 
problem, and a fundamental principle is that the model 
should be no more complex than is required to capture the 
underlying data generating mechanisms. This concept 
known as the parsimonious principle is particular relevant in 
nonlinear data modelling because the size of a nonlinear 
model can easily become explosively large. An over com-
plicated model may simply fit to the noise in the training 
data, resulting overfitting. An overfitted model does not 
capture the underlying system structure and will perform 
badly on new data. In general, a huge model not only may 
have poor generalisation performance but also has little 
practical value in data analysis and system design. 

There exists a vast amount of works in the area of parsi-
monious nonlinear regression modelling but the most popu-
lar approach is perhaps to adopt a linear-in-the-parameters 
nonlinear model. This is typically achieved by placing a 
radial basis function (RBF) or other type of kernel on each 
training data sample and a sparse representation is then 
sought which possesses excellent generalisation perform-
ance [27-68]. Adopting a linear-in-the-parameters nonlinear 
model structure is attractive because many existing linear 
data modelling techniques can be applied successfully, pro-
viding that the model structure determination can be carried 
out effectively to guarantee a sufficiently parsimonious final 
model. Among the various linear-in-the-parameters nonlin-
ear data modelling techniques, the support vector machine 
(SVM) method and other sparse kernel modelling methods 
[54-68] have become popular in the recent years. In par-
ticular, the SVM technique [54] is widely regarded as the 
state-of-the-art technique for regression and classification 
applications, and it has also been proposed as a promising 
tool for sparse kernel density estimation [69-71]. The for-
mulation of SVM embodies the structural risk minimization 
principle, thus combining excellent generalisation properties 
with a sparse model representation. Despite of these attrac-
tive features and many good empirical results obtained us-
ing the SVM method, data modelling practicians have real-
ized that the ability for the SVM method to produce sparse 
models has perhaps been overstated. 

The orthogonal least squares (OLS) algorithm [34], de-

veloped in the late 1980s for nonlinear system modelling, 
remains highly popular for nonlinear data modelling practi-
cians, for the reason that the algorithm is simple and effi-
cient, and is capable of producing parsimonious lin-
ear-in-the-parameters nonlinear models with good generali-
sation performance. Unlike the SVM and many other sparse 
kernel modelling techniques, which work on the full kernel 
model defined on the training data set to obtain a sparse 
model, the OLS method [34] adopts the forward selection to 
build up an adequate model by only selecting significant 
regressors. Since its derivation, many enhanced variants of 
the OLS based forward regression algorithm have been 
proposed [37-53]. In particular, the local regularisation as-
sisted OLS algorithm [39,41], which employs the multiple 
regularisers to enforce the model sparsity [60], has been 
shown to be capable of producing very sparse regression 
models that generalise well. A significant improvement to 
the original OLS algorithm for sparse regression modelling 
is to enhance the algorithm with optimal experimental de-
sign criteria [39,45,47,48,50,51]. In a traditional forward 
regression procedure, a separate stopping criterion is re-
quired to terminate the selection procedure at an appropriate 
model size in order for example to avoid an over-fitted 
model. Typically, information based criteria, such as the 
AIC [72] and the minimum description length [73], were 
adopted to terminate the model selection process. An infor-
mation based criterion can be viewed as a model structure 
regularisation by using a penalty term to penalise large sized 
models. However, the penalty term in an information based 
criterion does not help to determine which model term 
should be selected. Multiple regularisers, i.e. local regulari-
sation [39,41,60], and optimal experimental design criteria 
[39,45,47,48,50,51] offer better solutions as model structure 
regularisation as they are directly linked to model efficiency 
and parameter robustness [74]. 

The basic criterion for most model construction proce-
dures, including the original OLS algorithm [34,35], is the 
training MSE. However, the goodness of a regression model 
is its generalisation capability. Therefore, a better and more 
natural approach is using a criterion of model generalisation 
performance directly in the model selection procedure rather 
than only using it as a measure of model complexity. The 
evaluation of model generalisation capability is directly 
based on the concept of cross validation [75], and a com-
monly used cross validation is the delete-one or leave-one- 
out (LOO) cross validation [2,76,77]. One of the most im-
portant improvements to the OLS algorithm based forward 
regression is the development of the OLS forward selection 
based on the LOO test score or MSE [40,46,47,49], which 
is a measure of the model generalisation performance. The 
use of the LOO estimate for general nonlinear-in-the- pa-
rameters models has been studied for example in [78-80]. 
However, even for the class of linear-in-the-parameters 
models, computation of the LOO MSE is normally expen-
sive and the use of the LOO statistic in model selection is 
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generally prohibitive. Owing to the orthogonal property of 
the OLS algorithm, the calculation of the LOO statistics 
beomes efficient and model selection based on the LOO test 
score is made computationally affordable [46]. An addi-
tional advantage of adopting the LOO test score based OLS 
algorithm is that the model construction process becomes 
truly automatic without the need for the user to specify 
some additional terminating criterion [46]. Our empirical 
modelling results for regression [40], classification [52] and 
kernel density estimation [43,44] have demonstrated that 
this OLS algorithm based on the LOO test score coupled 
with local regularisation compares favourably with the 
SVM and many other existing state-of-the-art sparse kernel 
modelling methods, in terms of generalisation capability 
and model sparsity as well as the computational complexity 
of model construction. 

This contribution is organized as follows. Section 2 pre-
sents the regression modelling framework, which unifies all 
the three classes of data modelling applications, namely, 
regression, classification and PDF estimation. In particular, 
the unsupervised density learning is converted into a super-
vised regression one by adopting the Parzen window (PW) 
estimate as the target function [44]. Based on this unified 
data-modelling framework, the OLS forward selection algo-
rithm using the LOO test criteria and local regularisation is 
detailed in Section 3. More specifically, for regression mod-
elling, the model selection criterion is based on the LOO 
test MSE, while for classification applications, the LOO 
misclassification rate is employed for model selection. In 
kernel density estimation, the kernel weights must satisfy 
the nonnegative and unity constraints, and a combined ap-
proach is adopted to tackle this constrained regression mod-
elling. A sparse kernel density estimate is first selected by 
the efficient OLS algorithm based on the LOO test score 
and local regularisation. The kernel weights of the final 
model are then updated using the multiplicative nonnegative 
quadratic programming (MNQP) algorithm [61,81] to meet 
the nonnegative and unity constraints. The MNQP algo-
rithm additionally has a desired property of forcing some 
kernel weights to (near) zero values, and thus further reduc-
ing the model size [61,81]. The experimental results are 
included in Section 4, where empirical examples taken from 
regression, classification and PDF estimation applications 
demonstrate the effectiveness of the proposed OLS algo-
rithm based on the LOO test criteria coupled with local 
regularisation within the unified data-modelling framework. 
The concluding remarks are summarised in Section 5. 
 
2. A Unified Data Modelling Framework 
 
The three classes of data modelling, namely, regression, 
classification and PDF estimation, can be unified under the 
generic regression framework of sparse kernel data model-
ling based on the appropriate modelling criteria, where the 
kernel model is interpreted in a generic sense, namely, a 

kernel or nonlinear basis is placed on each training data 
sample and the model is obtained as a linear combination of 
all the bases defined on the training data set. For kernel den-
sity estimation, a kernel should also meet the usual require-
ment of a density distribution, i.e. the area under the kernel 
is unity. The objective is to derive a sparse model represen-
tation with excellent generalisation capability based on a 
training data set. 
 
2.1. Regression Modelling 
 
Consider the general nonlinear data generating mechanism 
governed by the nonlinear model 
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where  is the k-th kernel centre vector. The ge-

neric kernel model (2) is defined by placing a kernel at 
each of the training input samples  and forming a 

linear combination of all the bases defined on the train-
ing data set. A sparse representation is then sought by 
selecting kernel model with only Ns nonzero kernel 
weights, where 

m
k c R

kx

sN N . 

At a training data point , the kernel model (2) 
can be expressed as 
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where k ˆky yk   is the modelling error at ,kx N = 
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) ]( k iK x x, . By defining 1 2[ ...N N    with k   

 for 1 ≤ k ≤ N,  and 1, 2, ,[ ...k kK K K ]T
N k 1 2[ ...y yy ]T

Ny  

= [ 1 2… N]T, the regression model (4) over the training 
data set DN can be expressed in the matrix form 
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is the k-th column of ΦN, while  

denotes the k-th row of ΦN. Let an orthogonal decompo-
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with orthogonal columns satisfying , if w w 0T
i j  i j . 

The regression model (5) can alternatively be expressed as 
 

y gN N W                   (9) 
 

where the weight vector  defined in 

the orthogonal model space satisfies the triangular sys-
tem 

1 2g [ ]T
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gN N NA  . The space spanned by the original 

model bases k , , is identical to the space 

spanned by the orthogonal model bases , 

1 k N 
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and the model is equivalently expressed by 
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where  is the k-th row of . 

A procedure that can be used to perform the orthogo-
nalisation (6) is summarised in Appendix A.  
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2.2. Classification Application 
 
Consider the two-class classification problem with the given 
training data set 1{ , }N

N k k kD y  x

kx

, where  is an 

m-dimensional pattern vector and  is the 

class label for . The task is to construct a kernel clas-
sifier of the form 
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Let us define the modelling error as k . Then 

the classification model over the training data set  

can be expressed in the regression model of (5) recited 
here again as 

ˆky y  k

ND
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or equivalently in the orthogonal regression model of (9) 
rewritten here again as  
 

gN N y W                   (14) 
 

where all the relevant notations are as defined in Subsec-
tion 2.1. It is clear that the kernel classifier construction 
can be expressed in the same kernel regression modelling 
framework of Subsection 2.1, and the only difference is 
that the target function yk in classification applications is 
discrete valued. In particular, for the two-class classifica-
tion problem, yk is binary. The objective is again to de-
rive a sparse kernel model that posses good generalisa-
tion capability and contains only Ns significant kernels. 
 
2.3.  Kernel Density Estimation 
 
Based on a finite data sample set 1{ }N

N k kD  x
mR
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 drawn 

from a density , where , the task is to 

estimate the unknown density  using the kernel 

density estimate of the form 
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where  is again the kernel weight 

vector, 
1 2[ ... ]T

N    N

  the kernel width and 1N denotes the vector of 

ones with dimension N. The kernel function ( )K  ,  is 

chosen to be the Gaussian kernel in this study. However, 
many other kernel functions can also be used in the den-
sity estimate (15). Following the approach of [44], this 
unsupervised kernel density learning is transformed into 
a supervised learning problem. 

The well-known PW estimate [7], Par Parˆ ( ; , )p x  , is 

obtained by simply setting all the elements of Par  

to   . The optimal kernel width Par  is typically de-

termined via cross validation [2,75]. The PW estimate is 

1

N

remarkably simple and accurate [7]. The PW estimate in 
fact can be derived as the maximum likelihood estimator 
using the divergence-based criterion [83]. The negative 
cross-entropy or divergence between the true density 
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( )p x  and the estimate Nˆ ( ; , )p x   is defined as  
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Minimising this divergence subject to the constraints 
(16) and (17) leads to n  1

N
 for , i.e. the 1 n N 

PW estimate. A disadvantage associated with the PW 
estimate is its high computational cost of the point den-
sity estimate for a future data sample, as the PW estimate 
employs the full training data sample set in defining den-
sity estimate for subsequent observation. This high test 
cost has motivated the research on the sparse kernel den-
sity estimation techniques [43,44,69-71,81,82]. 

We may regard the PW estimate as the “observation” 
of the true density contaminated by some “observation 
noise”, namely 
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Thus the generic kernel density estimation problem 
(15) can be viewed as the following regression problem 
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and k = ( ). Then the generic kernel density estima-

tion problem is expressed in the same kernel regression 
modelling framework of (5) recited here again as 
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subject to the nonnegative constraint (16) and the unity 
constrain (17), where all the relevant notations have been 
defined in Subsection 2.1. The regression model (21) can 
of course be written equivalently in the orthogonal form 
of (9) which is recited here again as 
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The objective is to obtain a sparse Ns-term kernel 
model, satisfying the kernel weight constraints (16) and 
(17) and yet having a test performance comparable to 
that of the full-sample optimized PW estimate. 
 
3. Orthogonal-Least-Squares Algorithm 
 
As established in the previous section, the regression, 
classification and PDF estimation can all be unified 
within the common regression modelling framework. 
Therefore, the OLS forward selection based on the LOO 

test criteria and local regularization (OLS-LOO-LR) [40] 
provides an efficient algorithm to construct a sparse ker-
nel model that generalise well. For the regression and 
kernel density modelling, the LOO MSE criterion is an 
appropriate measure of model’s generalisation capability 
for subset model selection, while for kernel classifier 
construction, the LOO misclassification rate offers a 
proper measure of classifier’s generalisation performance 
for selecting significant kernels [52]. Sparse kernel den-
sity (SKD) construction is special as it is formulated as a 
constrained regression modelling, where the kernel 
weights must meet the nonnegative and unity constraints. 
A combined OLS-LOO-LR and MNQP approach is 
adopted for this constrained regression modelling [44], 
where the OLS-LOO-LR algorithm determines the 
sparse kernel model structure by selecting a subset of 
significant kernels while the MNOP algorithm [61,81] 
computes the kernel weights of the selected SKD esti-
mate. 
 
3.1. Sparse Kernel Regression Model  

Construction 
 
The local regularization aided least squares solution for 
the weight parameter vector  can be obtained by 

minimizing the following regularised error criterion [41] 
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given in Appendix A. The criterion (23) is rooted in the 
Bayesian learning framework. According to the Bayesian 
learning theory [24,39,60], the optimal gN is obtained by 
maximizing the posterior probability of gN, which can be 
shown to be 

1 l N 

 

( | , , ) ( | , )
( | , , )

( | , )
N N N N

N N
N

p p
p

p

 





y g h g h
g y h

y h
  (25) 

 

where ( | , )N Np g h  is the prior with  

denoting the vector of hyper-parameteres and 
1 2[ ... ]T

N Nh h hh

  a 
noise parameter (the inverse of the variance of ), 

( |p , , )N N y g h  is called the likehood, and ( | )p ,N y h

N

 

is the evidence which does not depend on  explicitly. 

Under the assumption that 

g

 is the white and has a 



60 S. CHEN 
 

Copyright © 2009 SciRes.                                                                       ENGINEERING 

Gaussian distribution, the likelihood is given by 
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If the Gaussian prior is chosen, i.e. 
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maximising log( ( | ,N Np g h ) with respect to  is 

equivalent to minimising the following Bayesian cost 
function 
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where . It is obvious that the 

criterion (23) is equivalent to the criterion (28) with the 
relationship 
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The hyperparameters specify the prior distributions of 
. Since initially the optimal value of  is unknown, 

 should be initialised to the same small value, and this 

corresponds to choose a same flat distribution for each 
prior of gi in (27). The beauty of the Bayesian learning 
framework is that it learns not only the model parameters 
gN but also the related hyperparameters hN. This can be 
done by iteratively optimizing gN and hN using the evi-
dence procedure [24,39,60]. Applying this evidence pro-
cedure results in the following iterative updating formu-
las for the regularization parameters [39] 
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Usually a few iterations (typically less than 10) are suffi-
cient to find a (near) optimal . The detailed derivation 
of the updating Formulas (30) and (31), quoted from [39], 
can be found in Appendix B. The use of multiple- regu-
larisers or local regularisation is known to be capable of 
providing very sparse solutions [41,60]. 

N

It is highly desired to select a sparse model by directly 
optimizing the model generalisation capability, rather than 
minimising the training MSE. The OLS-LOO-LR algorithm 
achieves this objective by incrementally minimizing the 
LOO MSE criterion, which is a measure of the model’s 
generalization performance [2,40,46,47,78–80]. At the n-th 
stage of the OLS forward selection procedure, an n-term 
model is selected. It can be shown that the LOO test error, 

denoted as ( , )n k
k

 , for the selected n-term model is 

[40,46,47] 
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where ( )n
k  is the usual n-term modelling error and ( )n
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is the associated LOO error weighting. The LOO MSE 
for the model with a size n is then defined by  
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The LOO MSE can be computed efficiently due to the 
fact that the n-term model error ( )n

k  and associated LOO 

error weighting ( )n
k  can be calculated recursively ac-

cording to [40,46,47] 
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respectively, where wk,n is the k-th element of wn. The deri-
vation of the LOO test error (32) together with the recursive 
Formulas (34) and (35) is detailed in Appendix C. 

The subset model selection procedure is carried out as 
follows. At the n-th stage of the selection procedure, a 
model term is selected among the remaining n to N candi-
dates if the resulting n-term model produces the smallest 
LOO MSE Jn. The selection procedure is terminated when 
 

1s sN NJ J                        (36) 
 

yielding an Ns-term sparse model. It has been shown in [46] 
that the LOO statistic Jn is at least locally convex with re-
spect to the model size n. That is, there exists an “optimal” 
model size sN  such that for s nn N J  decreases as n 

increases while the condition (36) holds. This property is 
extremely useful, as it enables the selection procedure to 
be automatically terminated with an Ns-term model, 
without the need for the user to specify a separate termina-
tion criterion. The sparse regression model selection proce-
dure based on the OLS-LOO-LR algorithm is now summa-
rised as follows. 

Initialisation: Set 610i
   for 1 , and set it-

eration index I = 1. 
i N 

Step 1: Given the current  and with the following 
initial conditions 

N
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use the procedure described in Appendix D to select 
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ˆk k

model with NI terms.  
Step 2: Update  using (30) and (31) with N = NI . 

If the pre-set maximum iteration number (e.g. 10) is 
reached, stop; otherwise set I + = 1 and go to Step 1. 

N

 
3.2. Sparse Kernel Classifier Construction  
 
Since the generic kernel classifier construction takes the 
same form of regression modelling, the OLS-LOO-LR 
algorithm described in the previous subsection can be 
applied to select a sparse kernel classifier. However, the 
goal of a classifier is to minimise the misclassification or 
error rate, and the MSE in general is not an appropriate 
criterion for classifier construction. Note that the class 
label . Define the signed decision variable   1, 1ky   
 

ˆsgn( )k k ks y y y y              (38) 
 

Then the misclassification rate over the training data 

set  is evaluated as    1
,

N

N k k k
D y


 x

 

              (39) 

 

where the indication function  is defined by 
 

               (40) 

 

The classifier’s generalisation capability however is 
measured by the test error rate over data unseen in train-
ing. The same LOO cross validation concept [2,76,77] is 
adopted to provide a measure of classifier’s generalisa-
tion capability. 

Let the k-th data sample be removed from the training 
data set DN, and the resulting LOO data set is used to con-
struct and n-term classifier. The test output of the obtained 
LOO n-term model evaluated at the k-th data sample not 
used in training is again denoted by . The associated 

LOO signed decision variable is then defined by 

( , )ˆ n k
ky 

 

( , ) ( , )ˆn k n k
k k ks y y                   (41) 

 

and the LOO misclassification rate can be computed by  
 

           (42) 

 

This LOO misclassification rate is a measure of the 
classifier’s generalisation capability. Moreover, the LOO 
signed decision variable ( , )n k

ks   can be calculated very 
fast owning to the orthogonal decomposition and, there-
fore, the LOO misclassification rate Jn can be evaluated 
efficiently [52]. Specifically, the LOO n-term modelling 
error is expressed by (also see Appendix C) 
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Multiplying the both sides of (43) with yk and applying 
2 1ky   yields 
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From (44), the LOO n-term signed decision variable is 
given by  

 

2
,

, ( )1 1
( , )

2 (
,

1

w w

1
w w

n n k i
k i k i T ni i

n k i i i k
k n

n k i k
Ti
i i i

w
y g w

s
w




 





 

 


 

 


)   (45) 

 

The recursive formula for the LOO error weighting 
( )n
k  is given in (35), while ( )n

k  can be represented 

using the following recursive formula [52] 
 

2
,( ) ( 1)

, w w
k nn n

k k k n k n T
n n n

w
y g w    

         (46) 

 

The OLS-LOO-LR algorithm described in Subsection 
3.1 can readily be applied to select a sparse kernel classi-
fier with some minor modifications. These modifications 
are due to the fact that the selection criterion is the LOO 
misclassification rate (42) rather than the LOO MSE (33). 
Extensive empirical experience has also suggested that, 
for constructing sparse kernel classifier, multiple regu-
larisers or local regularisation, which is so effective in 
further enforcing model sparsity in regression, becomes 
unnecessary. Thus, all the regularisation parameters i , 

1 i N  , can be set to a small positive constant  , and 
there is no need to update them using the evidence pro-
cedure. The sparse kernel classifier selection procedure 
based on this OLS-LOO algorithm is summarised as fol-
lows. 

Setting   to a small positive number, and with the 
following initial conditions 
 

(0) (0)

00 and 1 for 1 , and 1k k=  k N J       (47) 
 

use the procedure described in Appendix E to select a 
subset model with Ns terms.  

The selection procedure of Appendix E is essentially 
the same one as described in Appendix D, with only mi-
nor modifications connected with the computation of the 
LOO misclassification rate Jn. Note that the LOO 
misclassification rate Jn is also locally convex with re-
spect to the classifier’s size n. Thus there exists an opti-
mal model size Ns such that for s nn N J  decreases as n 

increases, while 
 

1s sN NJ J                   (48) 
 

Therefore the selection procedure is automatically 
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terminated with a subset classifier containing only Ns 
significant kernels. 
 
3.3. Sparse Kernel Density Estimator  

Construction 
 
As shown in Subsection 2.3, the generic kernel density 
estimation problem can be expressed as a constrained 
regression modelling, and the regression modelling part 
itself is identical to that of regression described in Sub-
section 2.1. Therefore, the OLS-LOO-LR algorithm de-
tailed in Subsection 3.1 can be used to select a sparse 
kernel density estimate. The only problem is that the 
kernel weights obtained by the OLS-LOO-LR algorithm 
for this sparse kernel density estimate do not necessarily 
meet the nonnegative constraint (16) and the unity con-
straint (17). This “deficiency” however can easily be 
corrected by using the MNQP algorithm to modify or 
update the kernel weights of the selected sparse model 
[44]. This combined OLS-LOO-LR and MNQP algo-
rithm offers an effective means of obtaining sparse ker-
nel density estimates with excellent generalisation capa-
bility. The detailed OLS-LOO-LR algorithm has been 
described in Subsection 3.1 and, therefore, only the 
MNQP part needs to be discussed.  

After the structure determination using the OLS-LOO- 
LR algorithm of Subsection 3.1, a sparse Ns-term subset 
kernel model is obtained, where . Let ANs 

denote 

the subset matrix of AN, corresponding to the selected 
Ns-term subset model. The kernel weight vector 

sN N«

sN , 

computed from 
s sN N N g

s
 , may not satisfy the non-

negative constraint (16) and the unity constraint (17). 
Thus 

sN  must be recalculated using for example the 

MNQP algorithm [61,81]. Note that, since Ns is very 
small, the extra computation involved is small. Formally, 
this task is defined as follows. Find 

sN  for the regres-

sion model  
 

s sN Ny                  (49) 
 

subject to the constraints 
 

 i i Ns                    (50) 
 

1
s s

T
N N  1                      (51) 

 

where
sN

T

s

denotes the selected subset regression matrix 

and 1 2[ ... ]
sN N   . The kernel weight vector can be 

obtained by solving the following constrained nonnega-
tive quadratic programming 
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related de-

    (52) 

where 

sign m ... ]TNv . Although 

there exists no close optimisation 
problem, the solution can readily be obtained iteratively 
using a modified version of the MNQP algorithm [61].  

Since the elements of 

s s

sNC and 
sNv are strictly positive, 

th bovee Lagrangian for the a  problem can be formed as 
[81] 
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where the superindex 
< t > 

denotes the iteratio

L

n index and 
h is the Lagrangian multiplier. Setting  
 

1
0 and    
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leads to the following updating equations  
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It is easy to check that, if 

      (57) 

s

t
N
 

 

m

(5

eets the constraints 

0) and (51), 1

s

t
N
   updated rding to (55) to (57) 

also satisfies (50) and (51). The initial condition can be 

set as 

 acco

0 1
, 1i si N

N
  

s

   . Alternative, 0

sN
 

 

can be 

chosen he kernel weigh tor ob-
tained by the OLS-LOO-LR algorithm contains negative 
elements, these elements are replaced by a small positive 
number. The resulting kernel weight vector is then nor-
malised and used as 0

sN

as foll f tows. First, i t vec

  . During the iterative proce-

dure, some of the kern ights may be driven to (near) 
zero [61,81]. The corresponding kernels can then be re-
moved from the kernel model, leading to a further reduc-
tion in the subset model size. 
 
. Experimental Results

el we

 

he regression, classifica-
 

4
 

everal examples, taken from tS
tion and density estimation applications, were used to
demonstrate the effectiveness of the proposed unified 
regression modelling approach. For each of these data 
modelling examples, the full regression model set was 
formed by placing a Gaussian kernel (3) on each training 
data sample, and a sparse kernel model was then selected 
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ons  

his example used a Gaussian kernel model to fit the 

using the OLS-LOO-LR algorithm. For sparse kernel 
density estimate, additionally, the MNQP algorithm de-
scribed in Subsection 3.3 was applied to update the ker-
nel weight vector. The appropriate value for the kernel 
width ρ was found empirically via cross validation. The 
obtained model’s generalisation performance was evalu-
ated based on a separate test data set not used for training. 
Comparsion with some existing sparse kernel modelling 
techniques was made, in terms of the model generalisa-
tion performance, model sparsity and the complexity of 
model construction process. 
 
4.1. Regression Applicati
 
4.1.1. Scalar Function Modelling 
T
scalar function 

sin( )
( ) , 10 10

x
f x x             (58) 

x
based on noisy data. Four hundred data p
erated from , where the input 

oints were gen-
( )y f x e= x  was uni-

formly distributed in (−10, 10) and the noise e was 
Gaussian dist  zero mean and standard devia-
tion 0.2. The first 200 data points were used for training 
and the other 200 samples for model validation. The 
kernel variance 2 10.0   was found to be optimal em-

pirically for this example. As a Gaussian kernel was 
placed on each tr  

ributed with

aining data x , there were N = 200 can-
didate regressors in the regression model (5). The train-
ing data were very noisy. In a ition to use the noisy test 
data set for evaluating the model’s generalisation per-
formance, two hundred noise-free data ( )

dd

f x  with 

equally spaced x in (−10, 10) were also generated as the 
second test data set. The OLS-LOO-LR algo m was 
applied to the noisy training data set, and the algorithm 

 

rith

 
 
Figure 1. Scalar function modelling: noisy training data 

ots), underlying function
y 

(d ( )f x  (thin curve), model map-

enti

of

r 
nction modelling. 

l 
size 

training 
MSE 

noisy test 
MSE 

noisefree 
test MSE

ping (thick curve), and selected kernel centres (circles). The 
7-term kernel model was id fied by the proposed OLS 
algorithm. 

automatically selected a 7-term kernel model. The mod-
elling accuracy of the resulting 7-term kernel model is 
summarised in Table 1, and the corresponding model 
mapping generated by this 7-term kernel model is de-
picted in Figure 1, in comparison with the true scalar 
function (58).  

The relevance vector machine (RVM) algorithm [60] 
is an existing sparse kernel modelling algorithm that is 

ten regarded as the state-of-the-art. It has the same 
excellent generalisation performance as the SVM algo-
rithm but achieves a dramatically sparser kernel model 
than the SVM method. A drawback of the RVM method 
is a significant increase in computational complexity, 
compared with the SVM method. The iterative procedure 
for updating multiple regularisers in the RVM method 
converges much slower and may even suffer from nu-
merical instability, compared with the efficient OLS- 
LOO-LR algorithm. The detailed comparison for these 
two sparse kernel modelling algorithms is given in [40]. 
The RVM algorithm was also applied to fit a sparse 
Gaussian kernel model for this example, and the algo-
rithm produced the 15-term kernel model as listed in 
Table 1. The model mapping generated by the 15-term 
kernel model constructed using the RVM algorithm is 
shown in Figure 2. It can be seen that the OLS-LOO-LR 
algorithm and the RVM algorithm both had the same 
excellent generalisation performance, but the former 
produced a much sparser model than the latter. The 
OLS-LOO-LR algorithm additionally had significantly 
computational advantages in model construction. 
 
Table 1. Comparison of modelling accuracy for the scala
fu
 

algorithm
mode

OLS 7 0.038792 0.042001 0.000736

RVM 15 0  .038784 0  .041827 0.000668

 

 
 
Figure 2. Scalar function modelling: noisy training data y

ots), underlying function f(x) (thin curve), model map-
 

(d
ping (thick curve), and selected kernel centres (circles). The 
15-term kernel model was identified by the RVM algorithm. 
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(a) 

 

 
(b) 

 
Figure 3. Engine data set (a ut and (b) output 

d a model representing the rela-

         (59) 
 
 

where 

) inp ku  ky . 

 
4.1.2. Engine Data Set 
This example constructe
tionship between the fuel rack position (input ku ) and 
the engine speed (output ky ) for a Leyland TL11 turbo-
charged, direct injection diesel engine operated at low 
engine speed. It is known that at low engine speed, the 
relationship between the input and output is nonlinear 
[84]. Detailed system description and experimental setup 
can be found in [84]. The data set, depicted in Figure 3, 
contained 410 samples. The first 210 data points were 
used in modelling and the last 200 points in model vali-
dation. The previous results [84] have shown that this 
data set can be modelled adequately as  
 

( )k k ky f e x     

( )f 
ed, ke

 describes the unkn

      (60) 

Table 2. Comparison of modelling accurac

algorithm
model training 

test MSE

own system to be 

identifi  denotes the system noise, and 

1 1 2[ ]T
k k k ky u u  x    

y for the engine 
data set. 

 

size MSE 

OLS 22 0  .000453 0.000490

SVM 92 0.000447 0.000498

 

 
(a) 

 
(b) 

 
igure 4. Modelling perform for the engine data set: (a) F ance 

model prediction ˆky  (dashed) superimposed on system 

output ky  (solid), nd (b) model prediction error  a k 

k ky ŷ  he 22-term model was constructed by the pr
S algorithm.  

 
The optimal value of the 

. T
L

o-

kernel variance for the Gaus-
ia

at

 algo-
rit

posed O

s n kernel was found empirically to be 2 1.69  . As 
each kx  in the training data set was considered as a 
candid e kernel centre, there were N = 210 candidate 
kernel regressors in the full regression model (5).  

Both the OLS-LOO-LR algorithm and the SVM
hm [56] were applied to this data set, and the two 

sparse Gaussian kernel models obtained are compared in 
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Table 2. The model output ˆky  and modelling error k 

ˆk ky y   generated by the -term kernel model ob-

 the OLS-LOO-LR algorithm are depicted in 
Figure 4. The modelling performance of the 92-term 
kernel model constructed by the SVM algorithm, not 
shown here, are very similar to those shown in Figure 4. 
It can be seen that the two sparse regression modelling 
techniques achieved the same excellent generalisation 
performance but the OLS-LOO-LR method obtained a 
much sparser model than the SVM method. It should be 
emphasised that the model size is critically important for 
this particular example. The main purpose of identifying 
a model for this engine system is to use it for designing a 
controller. A large model will make the controller design 
a very complex task and, moreover, the resulting con-
troller will be difficult to implement in the real system. It 
is also worth emphasising that the OLS-LOO-LR algo-
rithm has considerably computational advantages over 
the SVM algorithm. Both the algorithms require to de-
termine the kernel width ρ. However, the SVM method 
has two more learning parameters, namely the error-band 
and trade-off parameters [56], that require tuning. There-
fore, the OLS-LOO-LR algorithm is easier to tune and 
computationally more efficient than the SVM algorithm. 
 

22

tained by

.1.3. Boston Housing Data Set 
 data set, available at 

form used in the 
ex

 

algorithm model size
training 

test MSE 

Table 3. Comparison of modelling accuracy for the Boston 
housing data set. The results were averaged over 100 reali-
zations and quoted as the mean±standard deviatio

4
This was a regression benchmark
the UCI repository [85]. The data set comprised 506 data 
points with 14 variables. The task was to predict the me-
dian house value from the remaining 13 attributes. From 
the data set, 456 data points were randomly selected for 
training and the remaining 50 data points were used to 
form the test set. Because a Gaussian kernel was placed 
at each training data sample, there were N = 456 candi-
date regressors in the full regression model (5). The ker-
nel width for the OLS-LOO-LR algorithm was deter-
mined via a grid-search based cross validation. Similarly, 
the three learning parameters of the SVM, the kernel 
width, error-band and trade-off parameters, were tuned 
via cross validation. Average results were given over 100 
repetitions, and the two sparse Gaussian kernel models 
obtained by the OLS-LOO-LR and SVM algorithms, 
respectively, are compared in Table 3.  

For the particular computational plat
periment, the recorded average run time for the 

OLS-LOO-LR algorithm when the kernel width was fixed 
was 200 times faster than the SVM algorithm1 when the 
kernel width, error-band and trade-off parameters were 
chosen. It can be seen from Table 3 that the OLS- 
LOO-LR algorithm achieved better modelling accuracy 
with a much sparser model than the SVM algorithm. 
 

n. 
 

MSE 

OLS 58.6 ± 11.3 12.9690 ± 
2.6628 

17.4157 ± 
4.6670 

SVM 243.2 ± 5.3 6.7986 ± 
0.4444 

23.1750 ± 
9.0459 

 
Table 4. Comparison of class cation accuracy for the first 

algorithm 
average 

e 
average test 

ifi
10 realizations of the breast cancer data set. The results for 
the SVM and RVM algorithms were quoted from [60]. 
 

model siz error rate 
SVM 116.7 26.9%  
RVM 6.3 29.9% 
OLS 5.8 27.4% 

 
he test MSE of the SVM algorithm was poor. This was 

.2. Classification Applications  

.2.1. Breast Cancer Data 
rk data set was originated in 

T
probably because the three learning parameters, namely 
the kernel width, error-band and trade-off parameters, 
were not tuned to the optimal values. For this regression 
problem of input dimension 13 and data size N ≈ 500, the 
grid search required by the SVM algorithm to tune the 
three learning parameters was expensive and the optimal 
values of the three learning parameters were hard to find, 
compared with for example the previous smaller engine 
data set.  
 
4
 
4
This classification benchma
the UCI repository [85] and the actual data set used in 
the experiment was obtained from [86]. The feature input 
space dimension was m =9. There were 100 realizations 
of this data set, each containing 200 training patterns and 
77 test patterns. In [60], the SVM and RVM algorithms 
were applied to the first 10 realizations of this data set, 
and the results given in [60] were reproduced in Table 4. 
The OLS-LOO algorithm described in Subsection 3.2 
was also applied to construct Gaussian kernel classifiers 
for the same first 10 realisations of this data set, and the 
results obtained are summarised in Table 4, in compari-
son with those obtained by the SVM and RVM algo-
rithms. In [86,87], seven existing state-of-the-art RBF 
and kernel classifier construction algorithms were com-
pared and the performance averaged over all the 100 
realizations were given. The OLS-LOO algorithm was 
applied to all the 100 realizations of the data set to con-
struct sparse Gaussian kernel classifiers and the results 
obtained are given in Table 5, in comparison with the 
benchmark results quoted from [86,87]. For the first 5 

1One could argue that by adopting fast implementation of the SVM 
algorithm significant reduction in run time can be achieved.
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.2.2. Diabetes Data 
ification benchmark data set in the 

or rate in % over the 

error rate model size 

methods studied in [86], the RBF network with 5 opti-
mised nonlinear Gaussian units was used. The kernel 
Fisher discriminant was the optimal nonsparse method 
that placed a Gaussian kernel on every training data 
sample. For the SVM method with the Gaussian kernel, 
no average model size was given in [86] but it was cer-
tainly much larger than 50. From Table 5, it can be seen 
that the proposed OLS-LOO algorithm compared fa-
vourably with these benchmark RBF and kernel classifier 
construction algorithms, both in terms of classification 
accuracy and model size.  
 
4
This was another class
UCI repository [85] and the data set used in the experi-
ment was obtained from [86]. The feature space dimen-
sion was m = 8. There were 100 realisations of the data 
set, each having 468 training patterns and 300 test pat-
terns. Seven benchmark RBF and kernel classifiers were 
studied in [86,87], and the results given in [86] were re-
produced in Table 6. For the first 5 methods studied in 
[86], the nonlinear RBF network with 15 optimised 
Gaussian units was used. For the SVM algorithm with 
Gaussian kernel, no average model size was given in [86] 
but it could safely be assumed that it was much larger 
than 100. The OLS-LOO algorithm was applied to con-
struct sparse Gaussian kernel classifiers for this data set, 
and the results averaged over the 100 realisations are also 
listed in Table 6. It can be seen that the proposed 
OLS-LOO method produced the best classification ac-
curacy with the smallest classifier.  
 

able 5. Average classification test errT
100 realizations of the breast cancer data set. The first 7 
results were quoted from [86]. 
 

algorithm test 
RBF-Network 27.64 ± 4.71 5 
AdaBoost RBF-Network 

not a able
iscriminant 

30.36 ± 4.73 5 
LP-Reg-AdaBoost 26.79 ± 6.08 5 
QP-Reg-AdaBoost 25.91 ± 4.61 5 
AdaBoost-Reg 26.51 ± 4.47 5 
SVM 

 Fisher D
26.04 ± 4.74 vail

Kernel 24.77 ± 4.63 200 
6. 0 OLS 25.74 ± 5.00 0 ± 2.

 
able 6. Average classification test error rate in % over the 

test error rate model size

T
100 realizations of the diabetes data set. The first 7 results 
were quoted from [86]. 
 

algorithm 
RBF-Network 24.29± 1.88 15 
AdaBoost RBF-Network 

not a ble

26.47 ± 2.29 15 
LP-Reg-AdaBoost 24.11 ± 1.90 15 
QP-Reg-AdaBoost 25.39 ± 2.20 15 
AdaBoost-Reg 23.79 ± 1.80 15 
SVM 

 Fisher Discriminant 
23.53 ± 1.73 vaila

Kernel 23.21 ± 1.63 468 
6. 0 OLS 23.00 ± 1.70 0 ± 1.

T . Average classification e in e 

test error rate model size 

able 7  test error rat % over th
100 realizations of the thyroid data set. The first 7 results 
were quoted from [86]. 

algorithm 
RBF-Network  4.52 ± 2.12 8 
AdaBoost RBF-Network 

not av able
 Fisher Discriminant

4. 0 

4.40 ± 2.18 8 
LP-Reg-AdaBoost 4.59 ± 2.22 8 
QP-Reg-AdaBoost 4.35 ± 2.18 8 
AdaBoost-Reg 4.55 ± 2.19 8 
SVM 4.80 ± 2.19 ail
Kernel 4.20 ± 2.07 140 
OLS 4.80 ± 2.20 6 ± 1.

 
4.2.3. Thyroid Data  

chmark data set was originated in 

.3. Density Estimation Applications  

imulation was used to test the proposed combined 

 

This classification ben
the UCI repository [85] and the data set used in the ex-
periment was obtained from [86]. The input space di-
mension was m = 5. There were 100 realizations of this 
data set, each containing 140 training patterns and 75 test 
patterns. Eight RBF and kernel classifiers are compared 
in Table 7, with the first seven methods quoted from 
[86,87]. It can be seen that the classification accuracy of 
the proposed OLS-LOO method is comparable to that of 
the SVM method, but the former achieved a much 
smaller model size than the latter.  
 
4
 
S
OLS-LOO-LR and MNQP algorithm and to compare its 
performance with the Parzen window estimator as well 
as the previous sparse kernel density estimation algo-
rithm [43]. The algorithm presented in [43], although 
also based on the OLS-LOO-LR regression framework, 
is very different from the current combined OLS-LOO- 
LR and MNQP algorithm. In particular, it transfers the 
kernels into the corresponding cumulative distribution 
functions and uses the empirical distribution function 
calculated on the training data set as the target function 
of the unknown cumulative distribution function. In 
other words, the regression framework is defined in the 
cumulative distribution function “space”, not the original 
PDF “space”. Converting the kernels into corresponding 
cumulative distribution functions can be inconvenient 
and may be difficult for certain types of kernels. More-
over, in the work [43], the unity constraint is met by 
normalising the kernel weight vector of the final selected 
model, which is nonoptimal, and the nonnegative con-
straint is ensured by adding a test to the OLS forward 
selection procedure. In each selection stage, a candidate 
that causes the resulting kernel weight vector to have 
negative elements, if included, will not be considered at 
all. This nonnegative test imposes considerable computa-
tional cost to the OLS selection procedure. The proposed 
combined OLS-LOO-LR and MNQP algorithm in com- 
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the simulation were 
on

parison is computationally simpler. 
The first and third examples in 
e-dimensional and six-dimensional density estimation 

problems, respectively, where a data set of N randomly 
drawn samples was used to construct kernel density es-
timates based on the regression model (21), and a sepa-
rate test data set of Ntest = 10,000 samples was used to 
calculate the L1 test error for the resulting estimate ac-
cording to 
 

1
1

1
ˆ| ( ) ( ; , ) |

testN

k k N
ktest

L p p
N




  x x         (61) 

 

The experiment was repeated Nrun different random 
runs. The second example was a two-class two-dimen-
sional classification problem taken from [6]. For all the 
three example, the value of the kernel width   was 

determined via cross validation. 
 
4.3.1. One-Dimensional Density Estimation 

d was the The one-dimensional density to be estimate
mixture of Gaussian and Laplacian given by 
 

2( 2)1 0.7x
 0.7| 2|2( )

42 2
xp x e e


           (62) 

 

The number of data points for density estimation was 
N = 100. The optimal kernel widths were found to be   

= 0.54 and   = 1.1 empirically for the Parzen window 

estimate and e proposed sparse kernel density estimate, 
respectively. The experiment was repeated Nrun = 200 
times. Table 8 compares the performance of these two 
kernel density estimates, in terms of the L1 test error and 
the number of kernels required. Figure 5(a) plots a Par-
zen window estimate obtained while Figure 5(b) illus-
trates a sparse kernel density estimate obtained by the 
combined OLS-LOO-LR and MNQP algorithm, in com-
parison with the true distribution. It can be seen that the 
accuracy of the proposed sparse kernel density estimate 
was comparable to that of the Parzen window estimate, 
and the combined OLS-LOO-LR and MNQP algorithm 
achieved sparse estimate with an average kernel number 
less than 6% of the data samples. The maximum and 
minimum number of kernels over 200 runs were 9 and 2, 
respectively, for the sparse kernel density estimator.  

The previous sparse kernel density estimator using 

 th

the 
em

sional 

method 1 test error kernel number 

pirical distribution function as the desired response 
and based on the OLS-LOO-LR algorithm only [43] was 
also applied to this example. Under the identical experi-
mental conditions, the results obtained by this sparse 
kernel density estimator are also given in Table 8, where 
it can be seen that the both sparse kernel density estima-
tors had a very similar performance, in terms of the L1 
test error and average number of kernels required. 

Table 8. Performance comparison for the one-dimen
Gaussian and Laplacian mixture.  
 

L
Parzen window 5881) 
estimate 

(1.9503 ± 0.
× 10-2 

100 ± 0 

proposed SKD 
estimate  
SKD estimate 

(1.9436 ± 0.6208) 
× 10-2 
(2.1785 ± 0.7468) 

5.1 ± 1.3 

of [43] × 10-2 
4.8 ± 0.9 

 
 

(a) 
 

 
(b) 

 
igure 5. (a) true density (dashed) and a Parzen window 

.3.2. Synthetic Classification Data 
n problem in a 

F
estimate (solid), and (b) true density (dashed) and a sparse 
kernel density estimate (solid) obtained by the combined 
OLS-LOO-LR and MNQP algorithm, for the one-dimen- 
sional Gaussian and Laplacian mixture. 

 
4
This was a two-class classificatio
two-dimensional feature space [6]. The training data set 
contained 250 samples with 125 points for each class, 
and the test data set had 1000 points with 500 samples 
for each class. The optimal Bayes test error rate based on 
the true underlying probability distribution for this ex-
ample was known to be 8%. The task was first to esti-
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mate the two conditional density functions 
0

ˆ ( ; ,
CNp x   

| 0) C  and ˆ ( ; , | 1)p x  C  from the train  

 applie sion rule 
 

ˆ ˆ( ; , | C0) ( ; , | C1), be 

1CN ing data,

and then d the Bayes deci

0 1
longs to class 0

else, belongs to class 1
C CN Nif p p 




x x x

x
 

 

(63) 

 the test data set and calculated the corresponding e
NC0 and NC1 are the number of the clas

r, the cur-
re

he underlying density to be estimated was given by  

 

to rror 
s C0 rate, where 

and class C1 training data points, respectively. 
Table 9 lists the results obtained by the three kernel 

density estimates, the Parzen window estimato
nt sparse kernel density estimator based on the com-

bined OLS-LOO-LR and MNQP algorithm, and the pre-
vious sparse kernel density estimator with the empirical 
distribution function as the desired response and based 
on the OLS-LOO-LR algorithm only [43], where the 
value of the kernel width  was determined by minimiz-
ing the test error rate. It can be seen that the proposed 
sparse kernel density estimation method yielded the very 
sparse conditional density estimates and achieved the 
optimal Bayes classification performance. This clearly 
demonstrated the accuracy of the density estimates. Fig-
ure 6(a) and (b) depict the decision boundaries of the 
classifier (63) for the Parzen window estimate and the 
sparse kernel density estimate obtained by the combined 
OLS-LOO-LR and MNQP algorithm, respectively. 
 
4.3.3. Six-Dimensional Density Estimation 
T
 

113 T ( ) ( )
2

6/2 1/2

1 1 1
( )

3 (2 ) det | |

i i i

p e
  




x x
x

1i i

 


  (64) 

 

with 

         (65) 

 

       (66) 

 

         (67) 

 
The estimate data set contained N = 600 samples. The 

ptimal kernel width was found to be ρ = 0.65 for the 
Pa

1

1

[1.0 1.0 1.01.0 1.0 1.0]

diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0,}

T 


2

2

[ 1.0 1.0 1.0 1.0 1.0 1.0

diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}

       


]T

3

3

[0.0 0.0 0.0 0.0 0.0 0.0]

diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}

T 


o
rzen window estimate and ρ = 1.2 for the sparse kernel 

density estimate based on the combined OLS- LOO-LR 
and MNQP algorithm, respectively, via cross validation. 
The experiment was repeated Nrun = 100 times. The re-
sults obtained by the two density estimator are summa-
rized in Table 10. For this example, again, the two den-
sity estimates were seen to have comparable accuracies, 

Table 9. Performance comparison for the two-dimensional 
classification data set. 

method ˆ ( | C0)p  ρ ˆ ( | C1)p    ρ 
test 
error 
rate 

Parzen 125  
kenels  0. 125 ker-

nels  3window 
estimate 

24 0.2 8.0% 

proposed
SKD 
estimate 

 
 6 kernels 0.28 5 kernels 0.28 8.0% 

SKD  
estimate 
of [43] 

5 kernels 0.20 4 kernels  0.20 8.3% 

 
T  Performance comparison for the six-dimensional 

ree-Gaussian mixture. 
able 10.

th

method L1 test error kernel number 
Parzen window (3.51
estimate 

95 ± 0.1616) 
600 ± 0 

× 10-5 
proposed SKD 
estimate  

(3.1134 ± 0.5335) 
×10-5 

9.4 ± 1.9 

 
SKD estimate 
of [43] 

(4.4781 ± 1.2292) 
×10-5 

14.9 ± 2.1

 
b roposed sp ernel density ethod 
chieved very sparse estimates with an average number 

the same experimental 
co

rk has been proposed for sparse 
odelling from data, which unifies the supervised re-

ut the p arse k estimate m
a
of required kernels less than 2% of the data samples. 
The maximum and minimum numbers of kernels over 
100 runs were 16 and 7, respectively, for the proposed 
sparse kernel density estimator.  

This example was used to test the sparse kernel density 
estimation method of [43] under 

nditions. The results obtained by this previous sparse 
kernel density estimator, quoted from [43], are also given 
in Table 10 for comparison. It is seen from Table 10 that 
for this high dimensional example the proposed sparse 
kernel density estimator outperformed the previous 
sparse kernel density estimator in terms of both the test 
performance and the level of model sparsity.  
 
5. Conclusions 
 
A regression framewo
m
gression and classification problems as well as the unsu-
pervised probability density function learning problem in 
the same kernel regression model. A powerful orthogo-
nal-least-squares algorithm has been developed for se-
lecting very sparse kernel models that generalise well, 
based on the leave-one-out test criteria and coupled with 
local regularisation. For sparse kernel density estimation, 
in particular, a combined approach of the OLS-LOO-LR 
algorithm and multiplicative nonnegative quadratic pro-
gramming has been proposed, with the OLS-LOO-LR 
algorithm selecting a sparse kernel density estimate while 
the MNQP algorithm computing the kernel weights of 
the selected final model to meet the constraints for den- 
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sity estimate. Empirical datamodelling results involving 
all the three classes of data modelling, namely regres-
sion, classification and density estimation, have been 
presented to demonstrate the effectiveness of the pro-
posed unified kernel regression modelling framework 
based on the OLS-LOO-LR algorithm, and the results 
shown have clearly confirmed that this proposed unified 
sparse kernel regression framework offers a truly 
state-of-art for data modelling applications. 
 

 
 

(a) 

 
 

(b) 

Figure 6. (a) decision boundary of the Parzen window 
timate, and (b) decision boundary of the sparse kernel 

ements 

e contributions of Dr. Xia 

 

ram-Schmidt orthogonalisation proce-

 

es
density estimate obtained by the combined OLS-LOO-LR 
and MNQP algorithm, for the two-class two-dimensional 
classification example, where circles represent the class-1 
training data and crosses the class-0 training data. 

The unified regression framework developed in this 
contribution is based on the linear-in-the-parameters 
kernel model, where the full candidate kernel set is ob-
tained by placing a kernel at each training data point 
and employing a fixed kernel width for all the kernel 
regressors. Further reseach has been conducted to de-
velop a nonlinear-in-the-parameters regression model, 
where each regressor has tunable base centre vector and 
diagonal covariance matrix. A powerful orthogonal- 
least-squares assisted forward selection procedure can 
be developed based on the leave-one-out test criteria 
and local regulation. At each stage of the construction 
procedure, a nonlinear base is constructed by optimis-
ing the appropriate LOO test criterion to determine the 
base’s centre vector and diagonal covariance matrix. 
Such sparse data modelling techniques based on tunable 
nonlinear base units have been proposed for regression 
data modelling [88] and classification application [89]. 
Sparse density estimation based on this novel tunable 
regression modelling framework is currently under in-
vestigation [90]. 
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Appendix A
 
The modified G
dure [34] calculate the AN matrix row by row and or-
thogonalises N  as follows: At the l-th stage make the 

columns j , 1l j N   , orthogonal to the l-th col-

umn and pe tion for 1l j N   . Spe-

cifically, denoting [0]

re at the opera

j j  , l j   l = 1, 

2, …, N – 1, 
 

[l
l lw

N , then for

1]

[ 1]
,

[ ] [ 1]
,

,

/ ( ), 1 ,

, 1 .

T l T
l j l j l l

l l
j j l j l

a l

a l j N



 








   


     

w w w

w

 j N       (68) 

 

The last stage of the procedure is simply N w  
[ 1]N
N

 . The elements of gN are computed by transf  
 y[0] = y in a similar way 

[ 1] / (T l T
l l l lg   w y w w

orm-
ing

[ ] [ 1]

),
1

,

l

l l
l l

l N
g

  
  y y w

        (69) 

 

where , 1l l N   , are the regularisation parameters. 
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dix B 

at the log evidence for h  and 

Appen

It can be shown th N   is [24] 

1

1
log( ( | , )) log( ) log( )

N

N i

N
p h   y h  

2 2i

2

1

1
log( )

2 2

N

i i
i

N
h g



           (70) 

1

2
 T 1

log(det( ))
2 N B  

where gN is set to the m mum a posterio

N

                                 (71)
 

Setting 

axi r probability 
solution, and the Hessian matrix BN is diagonal and is 
given by  
 

N NB H

1 1 1 2 2 2diag{ , , ..., }

T
N N

T T T
N Nh h h



  



   

W W

w w w w w w
 

 

log( ( | , )) / 0Np    y h  yields the recal- 

culation formula for   
 

 T  = 
1

TN
i i

T
i i i ih


  w w

w w
            (72) 

 

Setting 

N 

log( ( | , )) / 0N ip h y h  

rmula for ih  


u

yields the recal- 

c lation fo
 

2 ( )

T
ih




w w i
i T

i i i ig h  w w
                   (73) 

 

Note /i ih    and define 

1

N

i
i

                               (74) 

with 
 

T T
i i i i

i T T
i i i i ih


 

  
  

w w w w

w w w wi

        (75) 

 

Then the recalculation formula  for i is  
 

               (76)

 

 
ppendix C 

l N-term model first. The regularised 

(77) 
 
 

with N . The modelling error at the 

aining sample is gi

 

A
 

onsider the fulC
least squares solution for the parameter vector is  
 

1 1( ) y BT T T   g W W W W y   N N N N N N N

T
N N N B = W W 

k-th tr ven by 
 

k = ( )T
k N N k

1B ( )T
N N Ny k y  g w ky W w   (78) 

 

Let t -th data sample be deleted from the t
data set N, and the resulting leave-one-out training 
is 

he k raining 
D set 

used to estimate the model parameter vector. The 
corresponding regularised least squares solution is de-
fined by 
 

( ) ( ) ( ) 1 ( ) ( )(( ) ) ( )k k T k k T k
N N N N N
      g W W W y  

   1( ) ( ) ( )Tk k
N N

 k   B W y                 (79)
 

 

where ( )k
N
W  and ( )y k  de

ression matrix and LOO desired output vector, re-
ly. T

note the resulting LOO 

reg
spective he model output for this LOO model 
evaluated at the k-th data sample not used in training is 
given by 
 

 ( ) ( )ˆ ( )k N Ny g  w
Tk k k                 (80) 

By definition, it can be show
 

           (81) 

n that 

( ) ( ) ( )k T
N N N Nk k  B B w w    

 ( ) ( )Tk k T
N N ky   y W y W ( )T

N kw        (82) 
 

The LOO test error evaluated at the k-th
not used for training, denoted as , is given 

 data sample 
by 

 

( )k
k
 =  ( ) ( )

Tk
k N Ny k g w                 

    ( ) ( )Tk k
k Ny k  y W  1( ) ( )k

N N

 B w      

 (83) 
 

Applying the matrix inversion lemma to (81) yields 
 

 
1 1

1( ) 1

1

( ) ( )T
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k k 
 


 

B w w B
B B

  
     (84

1 ( ) ( )N N Nk kw B w
) 

 

and  

 
1

1( )

1

( )
( )

1 ( ) (
k N N

N N T
N N N

k
k

k k








B w

B w
w B w


 )

     (85) 

Substituting (82) and (85) into (83) results i
 

n  

( )k = k

  1

1

( ) ( )T T
N k N N N

k

y k k
y




y W w B w
 

1 ( ) ( )T
N N Nk kw B w

1

1

( )

1 ( ) (

T
k N N N
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y W B w
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where the N-term modelling err
 

or 

k ,
1

k k i i
i

y w g


      
N

              (87) 

 

and the associated LOO error weighting 
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1) ( )k N N N k   w  1 ( )(T T
N Nk w W W

2
,1

N
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T

w
 

 
w w

        
1i i i i

         (88) 

 

Now consider the subset model consisting of n model 
columns. Denote the corresp
ssion matrix as 
 

 of  as 

 n- modelling error at the k-th 
data sample as 

onding n-column regre- 

1 2[ ... ]n nW w w w                    (89) 
 

and the k-th row nW
 

,1 ,2 ,( ) [ .T
n k kk w ww .. ]k nw                (90) 

 

Further denote the term 
( )n
k  and the as

weighting as 

sociated LOO error 
( )n
k . Substituting Wn N for W  and ( )kw  n

for ( )N kw , respectively, in the above derivation leads 
naturally to 
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as well as the LOO test error of the n-term model 
evaluated at the k-th data sample n
 
 

ot used for training 

        (93) 

 
Appendix D 
 

t the beginning of the l-th stage of the OLS forward 
ure, the l–1 regressors have been se-
ression matrix is expressed as 

z , which 
specifies the zero threshold and is use
avoiding any ill-conditioning or singu

h

A
selection proced
lected and the reg
 

[ 1] 1 [ 1]
1 1... ...l l l

N l l N   
   w w             (94) 

 

Let a very small positive number T  be given
d to automatically 
lar problem. With 

t e initial conditions as specified in (37), the l-th stage of 
the selection procedure is given as follows. 
 

Step 1. For l j N  : 

● Test – Conditioning number check. If  [ 1] [ 1]Tl l
j j    

zT , the j-th candidate is not considered. 
● Compu

 

te  

    { } [ 1] [ 1] [ 1] [ 1]/
T Tj l l l l

l j j j jg        y          (95)
 

    (96)

 

                

 

where 

    (97) 

[ 1]l
ky   and  are the k-th elements of [ 1] ( )l

j k 

[ 1]ly   and l
j
[ 1]  , respectively. Let the index set lJ  be 

 

{ and passes }l l j N j   TestJ            (98) 

Step  

    

-th column of is interchanged with the 

f

 

2. Find
 

{ } { }min{ , }lj j
l l l lJ J J j   J             (99) 

 

Then the jl
l-th column o

[ 1]l
N
  

 [ 1]l
N

l

 of 

, the the -th column of  is in-
terchanged with the -th colum
ro

 jl

n o
of N

N

f NA  up to the (l-1)-th 
A

w, and the jl-th element  is inter- changed with 
the l-th element N . This effectively select e jl-th 
candidate as the l-th regressor in the subset model. 
 
Step 3. The selection procedure  terminated with a (l – 
1)-term model, if 1l l

s th

 is
J J  . Otherwise, perform the 

orthogonalisation as indicated in (68) to derive th


e l-th 
row of NA  and to transform N  into N ; Let l

[ 1]l [ ]l g  
{ }lj
lg  and update [ 1]ly  into [ ]ly  in the way shown 

in (69); Update the LOO error weightings 
 

2
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w
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d go to Step 1. an
 

Appendix E 

gorithm for selecting a subset kernel 
ally the same one described in Appendix 

e minor modifications. These required 

 
The OLS-LOO al
classifier is basic

, except for somD
modifications are explicitly given here. The initial condi-
tion is now defined by (47), and all i  are fixed to the 

constant  . In Step 1, the calculation of the candidates’ 
LOO misclassification rate 
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In Step 3, in addition to update  acco
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