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WiIID: Wi-Fi Based Intelligent Indoor Intrusion
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Abstract—Wi-Fi sensing has emerged as a promising paradigm
for indoor intrusion detection, as it offers a robust and
high-accuracy solution without the need for extra hardware
deployment. However, existing schemes often compromise the
inherent structure of channel state information (CSI) during
feature extraction through lossy preprocessing, causing high false
alarm rates and poor generalization. As a remedy, we propose
a novel tensor-based framework for indoor intrusion detection,
which enables reliable perception of fine-grained human activities
through structured feature extraction, even in motion-ambiguous
scenarios. Our approach integrates tensor-based feature extrac-
tion, multi-dimensional feature consolidation, and a modified
deep learning (DL) network for accurate intrusion recognition. To
validate our framework, we collected a comprehensive through-
wall CSI dataset under the IEEE 802.11n standard, encompassing
five common human activities in realistic scenarios. Extensive
experimental results demonstrate the superior performance of
our method compared to existing state-of-the-art schemes.

Index Terms—Wi-Fi sensing, channel state information (CSI),
indoor intrusion detection, tensor decomposition.

I. INTRODUCTION

THE PROLIFERATION of ubiquitous sensing technolo-
gies presents a significant opportunity to reimagine indoor

safety and security, particularly through the development of
more intelligent and nuanced intrusion detection systems.
Despite this potential, the existing intrusion detection field has
been slow to move beyond conventional approaches, which
primarily rely on devices such as cameras and passive infrared
(PIR) sensors, and exhibit significant drawbacks [1]. Vision-
based systems [2], for instance, are limited to line-of-sight
(LoS) scenarios, constrained by variable lighting conditions,
and raise substantial privacy concerns. Similarly, sensor-based
networks are expensive to deploy and scale, particularly in
complex indoor layouts [3]. These limitations highlight the
urgent need for a robust and cost-effective alternative.
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Recent advancements in Wi-Fi sensing present a promis-
ing solution to these challenges. This solution can leverage
existing Wi-Fi infrastructure, eliminating the need to deploy
dedicated devices or for individuals to carry specific devices.
By analyzing the subtle perturbations in channel state
information (CSI) induced by human movement, Wi-Fi based
systems can achieve device-free human activity recognition
(HAR). This capability facilitates passive, real-time monitor-
ing in both LoS and non-line-of-sight (NLoS) scenarios, thus
offering a robust method for modern indoor intrusion detection
systems [4].

The development of Wi-Fi based intrusion detection shows
a clear trajectory from employing simple statistical metrics to
utilizing multifaceted features extracted and optimized by deep
learning (DL) models. Unlike general Wi-Fi sensing tasks,
intrusion detection requires extracting fine-grained features
from subtle CSI variations to precisely map them to spe-
cific anomalous human activities. Early approaches primarily
leveraged statistical features from CSI, such as mean and vari-
ance, to train classical machine learning (ML) classifiers like
support vector machines (SVMs), while others used principal
component analysis (PCA) for dimensionality reduction [5].
However, these handcrafted features are inherently sensitive to
environmental variations and struggle to isolate subtle motion-
induced changes from ambient interference.

As a remedy, research has shifted towards DL-based Wi-Fi
sensing approaches, which can automatically learn hierarchical
and more discriminative features directly from CSI. Early
schemes primarily focused on learning temporal features from
raw one-dimensional (1D) CSI sequences by using recurrent
neural networks (RNNs), such as long short-term memory
(LSTM) [5], gated recurrent unit (GRU) [6] and attention-
based bidirectional LSTM (ABLSTM) [7]. To further enhance
feature richness, subsequent works employed convolutional
neural network (CNN)-based methods, which convert CSI into
two-dimensional (2D) image representations and achieve HAR
by extracting spatio-temporal features [8]. However, these
methods inherently cause feature information loss by compro-
mising the native multi-dimensional structure of CSI. Such
loss significantly weakens their ability to capture subtle motion
patterns, which are crucial for reliable intrusion detection.

Motivated by limitations of existing solutions and practical
challenges, we propose a novel tensor-based framework for
indoor intrusion detection. The framework first constructs a
third-order tensor from the phase differences between adjacent
antennas. Then, tensor decomposition is employed to extract
the underlying low-rank feature components. These feature
components are then processed by a multi-dimensional feature
consolidation module to yield a set of compact features,
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Fig. 1. System model of Wi-Fi based indoor intrusion detection.

which are fed into a modified ABLSTM network for accurate
classification. Our main contributions are recapped as follows:

• We propose a novel tensor-based framework that enables
accurate recognition of subtle human activities through
structured feature extraction.

• We collect a comprehensive through-wall CSI dataset
under the IEEE 802.11n standard, which encompasses
five common human activities in realistic scenarios.

• Extensive experimental results demonstrate the superior
performance of our proposed scheme over existing state-
of-the-art schemes.

II. SYSTEM MODEL CHARACTERIZATION

We consider a Wi-Fi based passive intrusion detec-
tion system employing the orthogonal frequency-division
multiplexing (OFDM) technique. As illustrated in Fig. 1, a
typical case of smart home applications, we assume a single-
antenna transmitter participates in wireless communication
with the NR-antenna receiver equipped with a uniform linear
array (ULA). The presence of a human intruder is detected
by monitoring the resultant variations in the wireless channel.
To enable intrusion detection through the analysis of Wi-
Fi channel variations, we develop a multi-class recognition
framework that maps multi-dimensional CSI features to human
activity labels.

A. Wi-Fi Based Channel Model

For the gth OFDM symbol, the received signal Ym(fn , g) ∈
C on the nth subcarrier at the mth antenna is modeled as:

Ym(fn , g) = Hm (fn , g) X (fn , g) + Nm(fn , g), (1)

where X (fn , g) ∈ C represents the transmitted data symbol
modulated on the nth subcarrier for the gth OFDM symbol,
and Nm (fn , g) ∼ CN (0, σ2) denotes the additive white
Gaussian noise (AWGN). The time-varying channel response,
Hm(fn , g) ∈ C, captures both quasi-static effects from
the environment and dynamic variations caused by human
movement, and can be decomposed as [6]:

Hm(fn , g) = H static
m + H dynamic

m (fn , g) + ΔH noise
m (fn , g),

(2)

where H static
m ∈ C represents the quasi-static environmental

components, H
dynamic
m (fn , g) ∈ C captures the human-

induced dynamic variations, and ΔH noise
m (fn , g) ∈ C denotes

the residual channel estimation error, respectively.

B. Phase Difference Feature Construction

Through pilot-assisted channel estimation methods, we can
obtain CSI measurements and extract features for accurate
intrusion detection. We leverage the phase component derived
from CSI as the core feature due to its high sensitivity to
subtle human motion, as evidenced by prior work [5], [6], [9].
While the amplitude component is more robust to noise,
it is less sensitive to slight channel variations induced by
human movement. In contrast, the phase component is better
suited to capturing small-scale multipath effects, making it a
particularly informative metric for motion detection [5].1

However, the raw phase measurements are susceptible to a
combination of deterministic and stochastic distortions. These
originate from key imperfections: sampling frequency offset
(SFO), carrier frequency offset (CFO), and phase-locked loop
(PLL). Formally, the measured phase on the nth subcarrier
at the mth antenna for the gth OFDM symbol, denoted as
φ̃m(fn , g), can be expressed as:

φ̃m (fn , g) = φm (fn , g) + nsn + ncg + φPLL + φnoise, (3)

where m ∈ {1, · · · ,NR}, n ∈ {0, 1, · · · ,Nc − 1} with
Nc denoting the number of subcarriers, φm(fn , g) ∈ R

denotes the true phase, φPLL ∈ R is the initial phase offset
caused by the PLL, and φnoise ∈ R represents environmental
noise. The terms nsn and ncg denote deterministic phase
shifts introduced by SFO and CFO, respectively [5]. Since the
phase error components nsn and ncg are common across all
receiving antennas, we can eliminate them by taking the phase
difference between adjacent antennas, which is defined as:

Δφm′(fn , g) = φ̃m′+1(fn , g)− φ̃m′(fn , g) = Δφm′(fn , g)

+ΔφPLL +Δφnoise + εm′(fn , g), (4)

where m ′ ∈ {1, · · · ,NR − 1}, Δφm ′(fn , g) =
φm ′+1(fn , g) − φm ′(fn , g) is the true phase difference,
ΔφPLL is the constant offset induced by the PLL, Δφnoise

is the noise difference. The residual perturbation εm ′(fn , g)
can be reasonably modeled as a zero-mean Gaussian variable
N (0, σ20), which enables both analytical tractability and real-
istic robustness evaluation.

To enhance the structured signal patterns and jointly model
multi-dimensional dependencies, we first convert each time
series into a 2D Hankel matrix to preserve time-shift patterns
and reveal the intrinsic low-rank structure of repetitive human
motions. Specifically, for the nth subcarrier, the Hankel matrix
constructed from the phase difference sequence between the
m ′th and (m ′ + 1)th antennas over all OFDM symbols, i.e.,
Hn,m ′ ∈ R

I×J , where I ∈ Z
+ and J ∈ Z

+ denote
the window length and embedding dimension, respectively, is
given as:

Hn,m ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Δφm ′(fn , 0) · · · Δφm ′
(
fn ,

G−1
2

)

Δφm ′(fn , 1) · · · Δφm ′
(
fn ,

G+1
2

)

...
...

...

Δφm ′
(
fn ,

G−1
2

)
· · · Δφm ′(fn ,G − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5)

1Other motion-related features, such as Doppler and direction of arrival, are
not considered in this letter, as their extraction typically requires specialized
hardware or large antenna arrays, limiting their practicality in lightweight
sensing systems.
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Fig. 2. The proposed tensor-based indoor intrusion detection framework.

Here we have g ∈ {0, . . . , G − 1}, and we set I = J =
(G + 1)/2 to balance the temporal and delay dimensions of
Hankel matrices. This configuration preserves the low-rank
structure, improves numerical stability, and provides balanced
embeddings suitable for tensor decomposition [10].

To capture joint features across multiple dimensions and
separate low-rank structures, we construct a third-order tensor
Y ∈ R

I×J×K by stacking all Hankel matrices {Hn,m ′}NR−1
m ′=1

across subcarriers and antenna pairs, where K = Nc× (NR−
1) [11]. This formulation enables comprehensive modeling of
global temporal evolution (I) and local delay structures (J), as
well as subcarrier-domain variations induced by human motion
(K), thereby providing a structured input for subsequent low-
rank decomposition.

III. TENSOR-BASED INTRUSION DETECTION FRAMEWORK

The proposed tensor-based framework is shown in Fig. 2.
To enable fine-grained human motion perception, we extract
from Y the human-induced and noise-robust features, which
are then used as input of a DL network for classification.
Specifically, tensor decomposition is employed to extract
mode-separated and low-rank features from Y . Then, we refine
component-wise features and merge structurally similar com-
ponents to reduce redundancy. Finally, the extracted features
are passed into a modified ABLSTM network for detection.

A. Step I: Tensor-Based Feature Decomposition

Directly processing the high-dimensional tensor Y to extract
features is computationally expensive and may include noise.
Therefore, to extract compact and mode-separated features,
we decompose Y into a set of low-rank latent components by
using the CANDECOMP-PARAFAC (CP) decomposition. As
a result, Y can be factorized into a sum of rank-one tensors,
each representing an underlying factor. The uniqueness of this
decomposition is guaranteed under mild conditions.

The decomposition rank R must be selected prior to decom-
position, as it directly determines the number of resolvable
targets. For a signal comprising L dominant propagation paths,
its representation via the stacked Hankel matrices in (5) results
in an effective rank of approximately 2L [12]. Accordingly,
to capture these motion-related components, we set the rank

to R = 2L. Then, the decomposition problem is formulated as
the minimization of the following reconstruction error [13]:

P1: min
X,Y,Z

∥∥∥∥Y −
∑2L

l=1
xl ◦ yl ◦ zl

∥∥∥∥
2

F
, (6)

where ‖ · ‖F denotes the Frobenius norm. The terms X =
[x1, . . . , x2L] ∈ R

I×2L, Y = [y1, . . . , y2L] ∈ R
J×2L, and

Z = [z1, · · · , z2L] ∈ R
K×2L denote the factor matrices

corresponding to temporal dynamics, delay embeddings, and
subcarrier-domain variations, respectively. The operator ◦
denotes the vector outer product.

To efficiently solve P1, we employ the alternating least
squares (ALS) algorithm, initialized via higher-order singular
value decomposition (HOSVD) [13]. Each ALS step updates
the factor matrices X, Y, and Z in turn by solving a least-
squares subproblem. To reduce computational complexity,
we exploit the structure of the Khatri-Rao product in these
updates [14]. Y is unfolded into its mode-1 matricization, Y(1),
as:

Y(1) ∈ R
I×(JK ) = X(Z�Y)T, (7)

where � denotes the Khatri-Rao product. This transforms P1
into the following least-squares problem with respect to X:

P2: min
X

∥∥∥Y(1) −X(Z�Y)T
∥∥∥2
F
. (8)

The closed-form solution is given by X̂ = Y(1)(Z�Y)(ZTZ∗
YTY)† ∈ R

I×2L, where † denotes the Moore-Penrose
pseudo-inverse and ∗ denotes the Hadamard (element-wise)
product. The factor matrices Ŷ ∈ R

J×2L and Ẑ ∈ R
K×2L are

updated analogously using the mode-2 and mode-3 matriciza-
tions of the tensor, namely, Y(2) and Y(3), respectively.

By exploiting the structure of the Khatri-Rao product, the
pseudo-inverse calculation is simplified from a large-scale
JK × 2L matrix to a 2L × 2L matrix. This reduces the
complexity per iteration from O(JK (2L)2) to O(L3), given
that L � min{JK , IK , IJ}. This approach is highly efficient
in practice, as the CP-ALS algorithm described above typically
converges in just a few dozen iterations.

B. Step II: Multi-Dimensional Feature Consolidation

The factor matrices X̂, Ŷ, and Ẑ each contain 2L com-
ponents, yet only about L of them capture truly informative
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motion patterns. The remaining components are often redun-
dant or noisy, and their direct use introduces unnecessary
complexity. As a remedy, we propose to identify and con-
solidate similar components into L representative ones for
each mode, while preserving the multi-dimensional feature
structure.

Let u ∈ {1, 2, 3} denote the mode index corresponding
to factor matrices X̂, Ŷ, Ẑ, where each mode u contains
a set of 2L components {f̂ (u)l }2Ll=1, with f̂

(u)
l ∈ R

du and
du ∈ {I , J ,K} denoting the component length in mode u.
To enhance periodicity and stabilize representation of motion
patterns2, we compute the full autocorrelation sequence of
each component, denoted by â

(u)
l ∈ R

2du−1:

â
(u)
l [τ ] =

∑du−1−|τ |
n=0

f̂
(u)
l [n] · f̂ (u)l [n + |τ |], (9)

where τ ∈ {1− du , . . . , du − 1} is the lag index.
Then, our goal is to identify and consolidate redundant

components characterized by shape similarity. To effectively
capture similarity despite temporal misalignment, we adopt
dynamic time warping (DTW) [15], which robustly aligns
periodic sequences to accurately measure their structural sim-
ilarity. The DTW-based dissimilarity between components i
and j is computed as:

Dij = min
W

∑
(p,q)∈W

∣∣âi [p]− âj [q ]
∣∣, (10)

where W = {(pk , qk )}Kk=1 denotes a valid warping path of
K-length, ensuring valid alignment. For each sample, based on
{Dij }2Li ,j=1, we perform stable matching to iteratively merge
each pair into a single representative sequence, resulting in L
components per mode.

Due to different sequence lengths among the modes, we
truncate the feature matrices to a common length, T =
min
u

(2du − 1), to simplify further processing. The resulting
matrices are then stacked along a new axis to form the final
input three-dimensional (3D) feature F ∈ R

3×L×T , which is
used as input to the downstream DL network.

C. Step III: DL-Based Multi-Class Activity Recognition

The high inter-class similarity and subtle differences among
human motion patterns make it challenging to conduct the
multi-class classification task. To fully leverage the structured
3D feature obtained in the previous steps, we design a modified
ABLSTM network that effectively models features across
all modes. Specifically, to preserve temporal continuity and
enable early-stage fusion across modes and components, the
input feature F is reshaped into a time-distributed format.
Subsequently, we apply time-distributed 2D convolutional
layers to the 3D input features, extracting local spatial patterns
across mode and component dimensions at each time step.

Then, we stack multiple bidirectional LSTM (Bi-LSTM)
layers to model temporal evolution in both directions, captur-
ing contextual information from both past and future. To better
distinguish activities with subtle differences despite similar
overall dynamics, residual connections are employed between

2Human motion-induced variations typically exhibit pseudo-periodic fluc-
tuations. Autocorrelation is effective in capturing these patterns and offers
more stable features than conventional transforms.

Bi-LSTM layers to facilitate deeper temporal feature learning.
The output of the lth Bi-LSTM layer at time step t is:

h
(l)
t = Bi - LSTM(l)

(
h
(l−1)
t

)
, h

(l)
t ∈ R

dh , (11)

where dh ∈ Z
+ denotes the hidden size.

To enhance the capability to discriminate subtle differences
among activities, we apply a multi-head attention mechanism
to adaptively emphasize multiple motion-sensitive segments
within the temporal sequence. Finally, global average pooling
aggregates the weighted temporal features, followed by a fully
connected classification layer that outputs activity predictions,
enabling robust and effective multi-class activity recognition.

IV. EXPERIMENTS

This section details the experimental setup and results to
validate the effectiveness of the proposed scheme for indoor
intrusion detection. Existing public datasets for indoor intru-
sion detection rarely address fine-grained scenarios and often
overlook critical pre-intrusion activities, which are essential for
early detection. To bridge this gap, we conducted experiments
on a CSI dataset collected from a real-world indoor envi-
ronment, thus capturing the progressive stages of intrusion3.
Specifically, the dataset comprises five representative human
activities and can be structured into three categories: 1) no-
intrusion, where no activity is present in the monitored area;
2) pre-intrusion, where a person approaches the area but does
not enter; and 3) intrusion, where a person remains inside and
performs actions such as standing, walking, or running.

To comprehensively evaluate the performance, the proposed
scheme was benchmarked against several state-of-the-art meth-
ods, including WiHGR [6], which employs a modified GRU
model, and WiDSAR [8], which is based on a CNN-LSTM
architecture; as well as classic DL models, LSTM [5] and
ABLSTM [7]. We set L to 3 and the evaluation was performed
using a comprehensive suite of metrics, including detection
accuracy ↑, precision ↑, recall ↑, F1 score ↑, false positive rate
(FPR) ↓, false negative rate (FNR) ↓, and area under the curve
(AUC) ↑, where ‘↓’ indicates ‘the smaller the better’, while
‘↑’ indicates ‘the larger the better’.

Firstly, we evaluate the overall intrusion detection
performance under the binary classification scenario in Table I.
The proposed scheme surpasses all the baseline methods
by achieving the highest detection accuracy and F1 score,
indicating balanced and reliable classification. Notably, it also
achieves the highest precision, AUC and the lowest FPR,
reflecting the ability to detect intrusions while suppressing
false alarms.

Then, we evaluate the capability of all methods to dis-
criminate between different types of intrusion-related human
activities. As illustrated in Fig. 3, the proposed scheme
achieves the highest classification accuracy in the majority of
five predefined scenarios. This demonstrates its ability to effec-
tively capture the critical boundaries between non-intrusion,
pre-intrusion, and intrusion states. Notably, an ablation study
using only Mode-3 features shows a marked accuracy drop,
underscoring the importance of preserving multi-dimensional

3For brevity, detailed information regarding the experimental setup and the
CSI acquisition methodology, along with the full dataset, can be found at:
https://github.com/ddduan0817/WiFi-CSI-indoor-intrusion-detection-dataset
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TABLE I
BINARY CLASSIFICATION PERFORMANCE COMPARISON (INTRUSION: STANDING, WALKING,

RUNNING VS NON-INTRUSION: NO ACTIVITY, APPROACHING)

Fig. 3. Detection accuracy comparison across five intrusion scenarios.

Fig. 4. Detection accuracy versus different phase noise intensity σ20 ∈ [0, 1].

correlations. These results validate the effectiveness of our
design in preserving structured features and leveraging the
modified DL model for fine-grained behavior discrimination.

Finally, we evaluate the model robustness against signal
disturbances by adjusting Gaussian phase noise (σ20 ∈ [0, 1])
in (4), which effectively simulates the performance of schemes
under different phase disturbance levels. As depicted in Fig. 4,
the accuracy decreases for all the methods as noise variance
increases. Notably, the proposed scheme consistently maintains
the highest accuracy across the entire noise range. In contrast,
other methods not only start with lower accuracy but also suffer
greater degradation as the noise increases. This robustness
of our proposed scheme stems from the joint effect of its
feature extraction and modified DL network, which effectively
suppresses noise while preserving informative patterns.

V. CONCLUSION

To achieve high-precision and robust Wi-Fi based intrusion
detection, we have proposed a tensor-based framework, which
can capture subtle motion-induced features by transforming
CSI into multi-dimensional tensors. Our approach integrates
tensor-based feature extraction, multi-dimensional feature con-
solidation, and a modified DL network. Extensive experiments
on a comprehensive through-wall CSI dataset have validated
the superior performance and generalization of our proposed
framework compared to existing state-of-the-art methods.
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