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ABSTRACT The Digital Twin (DT) technology is considered as a backbone in the Industrial 4.0 revolution
as it is playing a vital role in the digitization of various industries. A DT is a virtual representation of
a physical entity, thus having the ability to simulate real data generated at physical space to optimize,
estimate, control, monitor and forecast states/configurations. Despite enormous benefits, DT technology
has several implementation challenges. Although deploying DT on edge or cloud platforms yields a plethora
of services, its implementation in both spaces faces certain limitations. These limitations include latency,
data communication overload, transmission energy consumption, privacy concerns, and communication
inefficiencies. It is evident that these shortcomings could significantly impact real-time monitoring and
control. Therefore, when considering whether to deploy DT on the edge or on the cloud, it is necessary
to make a trade-off, or alternatively, adopt a hybrid approach. However, it is important to acknowledge
that even with a hybrid approach, the aforementioned issues will persist to some extent. To address these
challenges, this article introduces two innovative approaches. Local DT (LDT) and Distributed DT (DDT).
These deployment strategies are designed tomitigate latency,minimize data communication overload, reduce
energy consumption, improve communication efficiency, and strengthen privacymeasures. Thus, resulting in
environmental and economic sustainability. Consequently, these advancements facilitate superior real-time
monitoring and control capabilities. Through the utilization of LDT and DDT methodologies, organizations
can harness the full potential of DT technology, thereby maximizing its benefits.

INDEX TERMS Digital twin, Industry 4.0, Industrial Internet of Things, latency, cloud computing, edge
computing.

I. INTRODUCTION
In recent years, Digital Twin (DT) technology has emerged
as a transformative paradigm for accurately modeling,
simulating, and monitoring physical systems, enabling real-
time control, optimization, and predictive analysis [1], [2].

The associate editor coordinating the review of this manuscript and
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By creating a dynamic virtual replica of a physical asset,
process, or system, DTs facilitate data-driven decision-
making, predictive maintenance, and enhanced operational
efficiency [2]. Unlike conventional simulation tools, DTs
leverage real-time data streams, typically collected via sen-
sors embedded within physical entities, to enable continuous
monitoring, adaptive control, and predictive simulations.
This real-time feedback loop allows DTs to not only
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reflect the current state of physical systems but also predict
future behaviors and enable proactive decision-making.
As a result, DTs have proven invaluable in optimizing
system performance, enhancing fault detection mechanisms,
reducing operational downtime, and lowering maintenance
costs, thereby revolutionizing the management and operation
of physical systems [3].

Furthermore, the integration of DT technology into wire-
less networks has led to the conceptualization of Digital Twin
Networks (DTNs)—an innovative framework for creating
virtual representations of communication environments [4],
[5]. DTNs enable network operators to simulate, monitor,
and optimize wireless communication systems, providing
a robust platform for testing and fine-tuning network
configurations before real-world deployment. The synergy
between DTNs and Artificial Intelligence (AI) presents
significant opportunities for enhancing network performance
through intelligent resource allocation, improved network
management, and accurate prediction of system behav-
ior [5]. This integration empowers communication systems
to adapt dynamically to changing network conditions,
optimize spectrum usage, and improve overall service
quality.

MOTIVATION AND CONTRIBUTIONS
DT technology represents the convergence of advanced sens-
ing, data analytics, and computational intelligence, enabling
the development of intelligent virtual representations of
physical systems that facilitate seamless interaction between
the physical and digital realms. In the era of Industry
4.0, ensuring real-time synchronization between physical
assets and their digital counterparts is critical for achieving
operational efficiency and driving innovation [6]. However,
several challenges impede this synchronization, particularly
in Industrial Internet of Things (IIoT) environments, the
process of collecting, exchanging, and analysing data in
industrial settings via internet-connected smart sensors,
gadgets, andmachines.The vast volume of real-time data gen-
erated by interconnected physical systems places significant
strain on communication infrastructure and computational
resources.

Furthermore, the limitations of available bandwidth, com-
putational capacity, and latency ( the amount of time or delay
that occurs in a system while data moves from its source to its
destination.)constraints further exacerbate the difficulties of
maintaining accurate and timely synchronization between the
physical and digital domains [6], [22]. These challenges high-
light the urgent need for novel strategies that can efficiently
manage large-scale, real-time data streams while addressing
the inherent constraints of communication networks and com-
putational resources. Developing such innovative solutions is
essential for unlocking the full potential of DT technology
in industrial applications, facilitating robust, scalable, and
energy-efficient digital-physical interactions.

To fully leverage the potential of DT technology, estab-
lishing seamless, real-time, and secure connectivity between

the physical and digital worlds is crucial. This connectivity
must meet stringent performance requirements in terms of
latency and reliability [5], [6]. A critical question arises:
Where should the digital replica of the physical environment
be deployed to optimize system performance? In addressing
this question, especially in critical communication scenarios,
i.e., smart industries, smart health care, and smart cities
there is an inherent risk of data breaches during information
exchange. To mitigate these risks, we also propose potential
data privacy techniques to ensure secure communication. The
primary contributions of this article can be summarized as
follows:

• Proposed Deployment Strategies: We introduce two
novel DT deployment frameworks designed to optimize
system performance:
– Local Digital Twin (LDT): A deployment strategy that

situates DTs in close proximity to physical assets,
aiming to minimize latency, enhance responsive-
ness, and reduce reliance on remote computational
resources.

– Distributed Digital Twin (DDT): A scalable, dis-
tributed framework that allocates DT functionalities
across multiple nodes, effectively balancing computa-
tional loads, reducing communication overhead, and
improving overall data efficiency ( the best possible
use of data by reducing redundancy, increasing
accuracy, and making sure information is processed,
stored, and sent efficiently in order to get the intended
results.).

These strategies aim to minimize latency, operational
costs, transmission energy consumption, and commu-
nication overhead while improving data efficiency and
ensuring privacy preservation in DT environments.
By reducing unnecessary data transmission between the
cloud and the edge, the proposed approach contributes
to environmental sustainability through lower energy
consumption. Furthermore, the reduction in latency
and improvement in communication efficiency lead to
optimal resource utilization, thereby decreasing infras-
tructure usage and maintenance demands. This results
in reduced operational costs and supports economic
sustainability, making the solution not only technically
robust but also environmentally and economically
viable.

• Development of a Five-Layer Architectural Frame-
work: We propose a structured five-layer architec-
ture that systematically defines the critical functional
components required for efficient DT deployment,
facilitating effective real-time data synchronization and
resource management.

• Mechanism Analysis and Performance Evaluation:
We conduct a thorough analysis of the proposed LDT
and DDT strategies, demonstrating their effectiveness in
fulfilling the requirements of efficient DT deployment.
The evaluation focuses on key performancemetrics such
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as latency reduction, data efficiency enhancement, and
privacy preservation.

• Exploration of Critical Application Domains:
We investigate the applicability of the proposed
deployment strategies across several critical domains,
addressing fundamental challenges associated with DT
deployment:
– Smart Industries: Improving real-time decision-
making and enhancing operational efficiency in
industrial environments.

– Smart Healthcare: Enabling efficient healthcare
management through real-time data monitoring and
analysis.

– Smart Cities: Facilitating intelligent infrastructure
management and resource optimization while ensur-
ing secure, low-latency communication.

The remainder of this article is organized as follows.
Section II provides an overview of the existing DT lit-
erature, highlighting the gaps and limitations. Section III
briefly discusses DT Architecture. Section IV introduces
the proposed mechanisms, the LDT and DDT, discussing
their deployments. Section V adds distinguished features of
the proposed mechanisms, and Section VI presents the use
cases. Section VII describes the challenges involved in the
proposed mechanisms. Finally, Section VIII concludes the
article, summarizing the contributions and outlining future
research directions.

II. RELATED WORK
Cloud or edge platforms were suggested for the DT
deployment in the literature. Though, edge servers with
communication and computational resources provide low
latency and high-reliability services [7]. Some researches
adopted a hybrid approach to obtain the benefits from both
platforms. Ouahabi et al. [8] introduced an architecture
that effectively combines the advantages of edge computing
and cloud computing. For delay-sensitive applications like
production control, cloud computing has certain limitations.
To address these limitations, the DT architecture for shop
floor monitoring proposed in [8] integrates edge computing,
which involves migrating specific DT algorithms, including
real-time control, closer to the data sources. In this archi-
tecture, edge computing is responsible for data preprocess-
ing and local DT tasks, while cloud computing handles
global DT tasks and persistent storage. This integration
not only enhances the real-time capabilities of the DT
but also alleviates the pressure on the cloud, leading to
improved cloud performance. In the work [9], a cloud-edge
collaborative framework was introduced for power system
regulation, utilizing multi-agent deep reinforcement learning.
This approach efficiently decomposes centralized tasks and
transfers them to the edge side. This alleviates the load
on the cloud center and enhances the robustness of system
operation. Moreover, in a few papers, DT was integrated into
the system to enhance network management and scheduling.

For example, Dai and Zhang [10] proposed the integration
of DT into Vehicular Edge Computing (VEC) to enhance
the network management and policy scheduling. Various
challenges, such as vehicle mobility, dynamic vehicular
environments and complex network scheduling, can be
addressed by integrating DT into VEC, to reduce latency and
alleviate network congestion for vehicular applications and
multimedia.

In [11] Campolo et al. have proposed a comprehensive
model by using edge-based DT for interacting with remote
applications and with the vehicle and Gautam et al. have
worked on providing secured communication between vehi-
cle and its DT and also between DTs which is indeed
a significant issue in DT based vehicular networks [12].
Wang et al. [13] have explored the unpredictability factor of
DT for connected vehicles. They presented their observation
by stating that even if the digital model is perfectly derived
using cutting edge deep learning techniques it is sometimes
difficult to achieve synchronization between the physical
object and its digital counterpart. They presented an example
and have tried to present their point that small noise or
delay in the initial location of vehicle could result in large
deviation in vehicle mobility simulation which will result in
wrong trajectory prediction. So, as stated by them delay is
one of the factors that greatly affect the long term activities.
Hence, techniques are needed to eliminate this issue along
will the reduction of noise. The study [14] introduces a new
approach called DSC-DT, which uses digital twin technology
and diversified search techniques to create a more varied
and effective top-k service composition in order to overcome
service overload and inefficient use of edge resources.

In comparison to traditional industries, intelligent indus-
tries exhibit a greater demand for computing resources
and heightened sensitivity to latency. In order to meet
these requirements, the study [15] presented a computing
platform that integrates edge and cloud resources. The
platform primarily consists of edge computing nodes, a cloud
system, and an Artificial Intelligence (AI) component. The
network and computing offload services are provided by
edge computing nodes thereby enabling swift response to
industrial tasks. On the other hand, the resource-intensive
tasks within the industry are supported by the cloud
system providing computing resources and storage services.
A noticeable improvement in productivity and accelerated
task completion is resulted by the implementation of this
platform. A edge-cloud collaborative architecture for 3D
printers presented in [16], utilizing the DT for the cloud
manufacturing. The proposed architecture addresses the
issue of network reliability by deploying time-sensitive
services at the edge. In [17], an edge-cloud architecture
aimed at driving the sustainable development of intelligent
power plants was proposed. It offers a detailed exploration
of the edge-cloud architecture from multiple perspectives,
including hardware infrastructure, data architecture, and
cloud-edge collaboration. The work by Lai et al. [18]
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presented the architecture and essential technology of a
DT system for helicopter equipment, incorporating edge-
cloud integration. It describes how real-time simulation
of the helicopter equipment is achieved by harnessing
the computational capabilities of edge computing, thereby
reducing reliance on cloud computing. This approach
enhances the overall system’s computational power and
minimizes time and costs associated with data transmission
processes.

Hence, in the literature, edge-cloud collaboration is used
to enhance robustness, computational power and storage and
reduce costs, time and load. It is informative to dive deep
into the cloud and edge platforms from DT perspective and
examine their pros and cons. The data from physical space are
transmitted to the cloud servers in cloud-based architectures,
where DT models are present, and thereby advanced data
analytics are used on the gathered data. However, cloud
servers are commonly set up in remote locations, which
makes it difficult for cloud-based deployments to meet the
latency requirements of different applications because of the
large amount of data being transmitted and the significant
distance between end-users and the cloud servers [6].
On the other hand, edge computing resources are deployed
locally to the physical space, allowing them to establish
connections with surroundings and handle large amounts of
data locally [19]. Implementing a twin object at a remote
cloud location can provide greater computational and storage
capacity, but it comes with the trade-off of increased latency
as well as high load and costs on infrastructure [20].
Conversely, twin objects deployed at the network edge may
have limited computational and storage capabilities but less
latency as well as less costs and load on infrastructure [21].
Therefore, a twin at the network edge can be preferably
used for latency-constrained applications, whereas a twin
deployed at the cloud can be used for the applications
that require more computing power and storage [22]. Since
different applications have different requirements in terms
of reliability, latency, storage, and computation, in general,
whether to deploy the DT at cloud or at edge network depends
on the application.

A hybrid approach can be used to obtain the benefits of
both the cloud and edge based DTs thereby deploying twins
at both places, which was briefly discussed by the authors
in [22]. However, this approach also has its limitations. The
entire data collected from the physical space have to reach
edge-cloud platform, creating burden on communication
infrastructure and also on both the cloud and edge servers,
resulting in reduced data efficiency. In addition to increased
cost and time, the data reaching edge or cloud server may
contain redundant or missing data, which may be useless
and may result in wrong decisions. Therefore, to improve
efficiency and to reduce load on platforms and infrastructure,
there is a need to intelligently preprocess the data locally
at physical space, so that only enriched data is sent to the
platforms for action.

Despite the significant advancements in integrating cloud
and edge computing within DT environments, existing
solutions still face critical limitations concerning latency,
communication load, and data inefficiency, particularly when
handling massive real-time data streams. While hybrid
edge-cloud frameworks attempt to leverage the strengths of
both platforms, they often result in increased communication
overhead, redundant data transmission, and underutilization
of computational resources. Furthermore, these frameworks
generally overlook the importance of localized data prepro-
cessing, which is crucial for reducing infrastructure load and
improving system responsiveness. Additionally, challenges
such as synchronization delays, data privacy concerns,
and the effective management of redundant or noisy data
remain largely unaddressed. Motivated by these gaps, this
paper introduces novel LDT and DDT mechanisms. These
approaches aim to intelligently preprocess data at the physical
layer, ensuring that only enriched, relevant information is
transmitted to edge and cloud platforms. By addressing
latency, transmission energy consumption, overloading, and
associated costs, our proposed mechanisms offer an efficient
and privacy-preserving solution that significantly enhances
the performance and scalability of DT deployments in
complex industrial and IoT environments.

III. DIGITAL TWIN ARCHITECTURE
Even though DT has been demonstrated to be a paramount
enabling technology but there exists insufficient evidence
on its’ modeling [6]. A four layer reference architecture
is proposed in [23] comprised of physical space, net-
work interfaces, sensing and computational infrastructures.
In literature, several models presented are based on the
five-layer architecture proposed by Tao et al. [24]. Thus,
different modeling approaches for DT have been suggested
in the literature, with seemingly no consensus on a unified
architecture. The reason may be owing to the versatile nature
of DT. In our proposed model, we also adopt a five-layer
architecture depicted in Fig. 1. Which is based on the
concepts provided byAlcaraz and Lopez [25].We now briefly
discuss these five layers.

1. Physical Space Layer (PSL): In the PSL, data collection
and dissemination take place using smart devices placed
near to a physical object/process/system. In this layer, the
technologies that play a role are IIoT and cyber-physical
systems.

2. Communication Layer (CL): The CL plays a crucial role
in facilitating the exchange of data and information between
the physical entity and its digital counterpart. It serves as a
bridge that connects the physical world with the virtual world,
enabling real-time monitoring, control and analysis.

3. Data Preprocessing Layer (DPL): This layer carries out
data management and synchronization. Preprocessing of data
is performed here. Data received is normalized and enriched
before further processing. Dealing with missing or duplicate
data is also the responsibility of this layer. Moreover,

VOLUME 13, 2025 72145



S. Rauf et al.: Novel Digital Twin Deployment Approaches: Local and Distributed Digital Twin

it is critical to keep both the physical and digital worlds
synchronized, so as to maintain a true virtual representation
of the physical object/process/system.

4. Twin Layer (TL): This layer contains logical twin
objects that are virtual representations of the physical
object/phenomenon, i.e., the digital models of physical coun-
terparts. AI and big data techniques are used here, providing
application programming interface, predictive maintenance,
anomaly detection, diagnostics analysis, and other services.
Furthermore, cyber security services may also be added here.

5. Services Layer (SL): The SL provide an interface for
users to use DT for their required tasks. It enables users
to visualize simulation results and contain interfaces for
applications that allow user to request a service from the DT
system.

FIGURE 1. Schematic representation of the digital twin architecture,
featuring a hierarchical structure across five layers— physical space layer,
communication layer, data processing layer, twin layer, and service
layer —facilitating seamless data flow and synchronization.

After this brief discussion on the different layers of the
DT architecture, we move to the presentation of our proposed
deployment mechanisms in the next section.

IV. PROPOSED MECHANISMS
As the scope and complexity of DT applications expand,
several challenges arise, particularly in terms of latency,
data communication load, data efficiency, and privacy. The
advent of autonomous vehicles, smart cities, and industrial
automation has accentuated the need for efficient and
privacy-preserving DT deployment techniques. In certain
critical applications, even a slight delay can have severe
consequences, such as causing accidents in autonomous cars.
Moreover, the centralized approach to DT implementation

raises concerns about privacy leakage due to the transfer of
end-devices’ data to a centralized cloud server. To address
these challenges, this article proposes two novel mechanisms,
the LDT and DDT.

The LDT concept focuses on creating digital repli-
cas within the physical space, leveraging computational
resources available within the objects or systems themselves.
This approach is particularly suited for the scenarios where
only low computational resources are required for DT realiza-
tion, or where enough computational resources are available
in physical space. The LDT results in minimized data com-
munication load on infrastructure and reduced latency, caused
by the long distance between the physical space and cloud
server. Hence, leads towards overall efficiency improvement
and paving the way for real-time monitoring and controlling
of physical environment. Additionally, privacy is enhanced
due to the coexistence of the LDT and its physical counterpart
thereby eliminating the need for transferring sensitive data to
external servers [22].

On the other hand, DDT technique utilizes local compu-
tational resources in addition to the edge and cloud servers
for DT deployment. It is pertinent to mention here that DDT
is a suitable candidate for both low-resource-demand and
resource-intensified DT applications, hence offering a more
flexible and scalable deployment approach. By distributing
the DT functionalities among the physical entity, edge layer,
and cloud layer, DDT optimizes resource utilization based on
the complexity of processes. Complex tasks can be offloaded
to the cloud, while simpler computations can be performed
locally or on the edge. This distributed architecture not
only reduces latency but also improves data communication
efficiency, leading to reduced data communication overload
and improved overall system performance. Furthermore, real-
time data synchronization is achieved through the integration
of IoT devices and sensors, which continuously capture and
transmit data from the physical environment to the DT. For
example, in industrial settings, sensors such as temperature,
vibration, and pressure monitors provide real-time feedback,
enabling the DT to simulate and predict system behavior.
This continuous interaction ensures that the DT remains an
accurate and up-to-date representation of the physical entity,
facilitating real-timemonitoring, predictivemaintenance, and
control. In addition, to improve the accuracy of the DT, sensor
fusion techniques are used to combine data from multiple
sources. For example, Kalman filtering integrates data from
temperature, vibration, and pressure sensors to create a
unified and accurate representation of the physical system.
In addition, AI-driven sensor fusion uses machine learning
algorithms to dynamically weigh and combine sensor input,
accounting for noise and inconsistencies. This results in a
more robust DT capable of supporting advanced analytics and
decision making.

A. LOCAL DIGITAL TWIN
In the situations where only low computational resources are
required, e.g., DT for a simple object, or where there are
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FIGURE 2. Illustration of the local digital twin framework, demonstrating
localized data processing for autonomous vehicles, smart cities, and
industrial systems, with cloud-based duplicates for backup and control
continuity.

sufficient computational resources residing with the physical
object/process/system, the DT model can be created locally
within the physical space to perform simulations locally and
respond promptly to the physical space. Consider the case
that an automotive car is moving in an unplanned area and an
unexpected scenario arises. The LDTwould be a better option
in responding to such an scenario in real-time, particularly if
connectivity is unavailable in the area.

An LDT will not overload the infrastructure as it only
needs the minimal data transfer. This is extremely attractive,
particularly in the future when massive introduction of DTs
for industry, smart cities, automotive and healthcare, etc.
occur, which requires transferring massive amount of data.
LDTs will not compete with these vital DT applications
for resources. The minimal data transfer implies that nearly
all data generated in the physical space will be processed
locally so that there is nearly no need for data transfer.
Additionally, a duplicate or image DT for LDT can be created
on the cloud which only needs concise data. If the LDT is
corrupted or the local hardware/software system is updated,
the duplicate DT on cloud can be used as a backup and it
can also control the physical space until the LDT is made
functional again. Hence, this duplicate/image of LDT is
beneficial in two ways. It can control the physical space
in the absence of LDT, and it provides all the necessary
data after the local hardware/software is reinstated. However,
the LDT for complex systems will only be possible if high
computational resources matching the needs are available
within the physical space.

An application deployment for the LDT is depicted in
Fig. 2. Where the LDTs for autonomous cars, smart city and
industry are shown on Local Digital Twin Layer and their
duplicates/images are shown on the cloud. Here, the data gen-
erated in real environment will be communicated to the LDT
where simulations will be done and possible decisions will

take place. So, because of its first-hand availability, an LDT in
each environment will process all data locally, and this results
in improved real-time monitoring and controlling. Moreover,
in case that an LDT becomes malfunction or local hardware/
software needs repair or upgradation or new hardware/
software installation is underway, its duplicate/image DTwill
control all the processes, and after the necessary repair or
upgradation, the same responsibility is dropped back to the
LDT.

B. DISTRIBUTED DIGITAL TWIN
Khan et al. [22] discussed that a hybrid approach can be
used to obtain the benefits of both the cloud and edge-based
DTs thereby deploying twins at both places, keeping in mind
that edge has limited storage and computation capacities
as compared to cloud. For a system, such as DT-enabled
infotainment system in an automotive car where low latency
is essential, edge-based twin can be used, while for other
systems, e.g., an industrial water boiler where latency is not
an issue, cloud-based twin can be used.

Our proposed architecture goes one step further. A DDT
is distributed among the physical entity as well as in the
edge and the cloud. Therefore, the proposed DT deployment
is split into three parts. One is with the physical space, the
second part is on the edge, and the third is on the cloud.
This distribution can be based on the level of the processes’
complexities in a system. Specifically, the complex part is
implemented on the cloud, the moderate part on the edge, and
the simple part is with the physical object. In the case that
sufficient computation and storage resources are available
especially with the physical space, this distribution can also
be based on the latency for achieving real-time monitoring
and controlling. Additionally, the physical layer DT can
decide which data need to be sent to edge or cloud. Thus, the
physical layer DT only sends needful data to other DT part
on edge or cloud, and this can be achieved based on a number
assigned to each process similar to the port number in data
communication.

The proposed DDT architecture can be well explained by
the scenario presented in Fig. 3, where three-tier architecture
is shown. The physical layer DT part is shown within the
industrial setting, smart city and automotive, while the second
part of DT is shown on the edge layer, and the final part of
DT is shown on the cloud layer. In this environment, data
processing will done in physical layer DT, where urgent or
lesser complex tasks will take place. On the hand, moderate
processes will be forwarded to edge layer DT and complex
processes will take place at cloud layer DT. Moreover,
physical layer DT will be authorized to make decisions
regarding dealing of data on either platform. As aforemen-
tioned, the reason for introducing this DDT architecture
is to reduce latency, data communication overload and
transmission energy as well as increase data efficiency
between DT and its physical counterpart but in a much more
viable way than other DT deployment approaches. For those
parts of physical objects/processes/systems that only require
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FIGURE 3. Distributed digital twin architecture featuring a three-tier
structure with physical, edge, and cloud layers, enabling efficient task
distribution based on computational complexity to optimize latency, data
efficiency, and energy consumption.

low computation resources, models for them are created
locally, i.e., within objects/processes/systems, while for those
parts that demand high computational resources to perform
functions, i.e., simulations, etc., DT models are created on
edge or remotely on a cloud. As mentioned earlier, a function
can be added to the physical layer DT to empower it for
making the decisions regarding which data is worthy to be
sent to remote DT models. As the entire data collected from
the physical space is gathered at the physical layer DT, it has
the decision power to send only needful data to remote DT
models and discard redundant or useless data. This improves
data efficiency, saves data transmission energy as well as
reduces the burden on the communication infrastructure and
also on the remote DT models.

V. DISTINGUISHED FEATURES OF PROPOSED
MECHANISMS
We now discuss the eminent features of the presented
deployment approaches, which are achieved by implementing
the proposed techniques.

1) Reduced Latency: By deploying LDTs and DDTs,
a significant reduction in latency is achieved compared to
centralized approaches. LDTs enable prompt response within
the physical space without relying on remote cloud severs,
while DDTs distribute the computational load among the
local space, the edge and the cloud, minimizing the latency
based on the system’s requirements.

2) Decreased Data Communication Load: LDTs minimize
data transfer on the communication infrastructure by pro-
cessing data locally within the physical space. This reduces
the burden on the infrastructure, preventing overload as DTs
becomemore prevalent across industries. DDTs also optimize
data communication by distributing the processing among
physical layer, the edge and the cloud, avoiding unnecessary
data transfer.

3) Increased Data Efficiency: Both LDTs and DDTs
improve data efficiency. LDTs process data locally, avoiding
the need to transfer all data generated in the physical space but
only sends essential data to imageDT for recovery. TheDDTs
empower the physical layer DT to decide which data is worth
sending to remote DT models, ensuring that only useful data
is transmitted. This reduces the burden on communication
infrastructure and improves overall data efficiency.

4) Improved Privacy: LDTs enhance privacy by keeping
the DT and its physical counterpart together. This avoids
privacy leakage when end-device data is transferred to a
centralized cloud or edge server. By processing data locally,
LDTs minimize the risks associated with data transfer, thus
improving privacy. DDTs transfer much less data from end
devices to remote servers than centralized approaches, which
also improves data privacy.

5) Backup and Redundancy: LDTs have duplicate or
image counterparts created on the cloud. This backup
functionality ensures that if a LDT becomes non-functional
or requires maintenance, the duplicate/image DT can control
the processes and provide necessary backup data. This
redundancy helps maintaining continuity and minimizing
downtime. Similarly, in DDTs, if physical space DT starts
malfunction, edge/cloud servers canwork to control the entire
situation.

6) Resource Optimization: LDTs fully utilize available
computational resources within the physical space. DDTs
allocate tasks based on complexity or latency requirements.
This resource optimization ensures that the right level of
computational power is dedicated to each part of the system.
Thus, the distribution of computational resources in DDTs
allows for efficient utilization of available resources.

7) Real-Time Monitoring and Controlling: LDT and DDT
both can achieve real-time monitoring and controlling. For
LDT, virtual twin resides within physical space and the
time required for data transmission is nil. If sufficient
computational resources are available within physical space,
then real-time monitoring and controlling can be achieved.
For DDT, latency constrained applications are dealt locally,
which help achieving real-time decision making.

8) Cost and Energy Reduction: The proposed architectures
can result in significant cost and energy savings. By reducing
data communication, optimizing data transfer, and leveraging
available computational resources, the overall cost and
transmission energy can be reduced. This has considerable
benefits to industries and systems that rely on DTs.

VI. USE CASES
Various industries can benefit from implementing LDT and
DDT. Below some use cases for LDT and DDT are discussed.

A. SMART INDUSTRY
In the context of the smart industry, the deployment of the
proposed LDT and DDT can bring numerous benefits. Some
potential use cases are listed here.
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1) Equipment Monitoring and Predictive Maintenance:
By creating LDTs/DDTs for machinery and equipment,
real-time monitoring of their performance and condition
can be achieved. LDTs/DDTs can simulate the behavior
of the physical counterparts and detect anomalies or signs
of potential failures. This enables predictive maintenance,
where maintenance actions are scheduled based on the
LDT’s/DDT’s insights, reducing downtime and minimizing
maintenance costs.

2) Process Optimization: LDTs/DDTs can be used to
model and simulate complex industrial processes. By leverag-
ing the computational resources available, these LDTs/DDTs
can perform real-time simulations, identify bottlenecks, and
propose optimization strategies. This allows for continu-
ous process improvement, increased efficiency, and cost
reduction.

3) Supply Chain Management: Implementing DDTs in the
smart industry domain can improve supply chain visibility
and coordination. By creatingDDTs that span across different
entities in the supply chain, such as manufacturers, distribu-
tors, and retailers, real-time data sharing and synchronization
can be achieved. This enables better inventory management,
demand forecasting, and collaborative decision-making,
resulting in optimized supply chain operations.

4) Automotives: LDTs/DDTs can be implemented for
cars. The available computation resources within the car
can be utilized for LDTs/DDTs to reside. By processing
data locally, safety can be improved. For more complex
processes/systems, such as vehicular networks, the benefits
of cloud/edge can be leveraged while using DDTs.

The use cases identified in this subsection highlight
the potential role of LDTs and DDTs in the Industry
4.0 revolution.

B. SMART HEALTHCARE
The utilization of LDTs and DDTs for smart healthcare
can revolutionize healthcare delivery and improve patient
outcomes. Here are a few potential use cases.

1) Remote Patient Monitoring: LDTs/DDTs can be
used to create virtual representations of patients, capturing
their physiological data from wearable devices or sensors.
This enables remote patient monitoring, where healthcare
providers can continuously monitor patients’ vital signs,
detect abnormalities, and provide timely interventions.
LDTs/DDTs allow for real-time simulations and analysis of
patient data, facilitating early detection of health issues and
proactive care.

2) Personalized Treatment Planning: DDTs can be
deployed to the healthcare domain to facilitate patients.
By doing so, treatment plans can be simulated and optimized
by creating patient-specific models. DDTs also help to
generate personalized treatment options by integrating data
from electronic health records, medical imaging, and genetic
information. Healthcare department also gets benefit from
DDTs to predict treatment outcomes and ultimately select the
most appropriate one.

3) Healthcare Resource Optimization: LDTs and DDTs
assist healthcare departments by optimizing healthcare
resource allocation and utilization. LDTs aid in minimizing
the potential bottlenecks of inefficiencies. They also model
and simulate the hospital operations and patient flow
respectively. LDTs help to optimize resource allocation in
real-time by leveraging healthcare computational resource
facilities. DDTs have the ability to integrate data from
multiple healthcare facilities that coordinate resource sharing
and allocation, thus improving resource optimization.

C. SMART CITIES
The implementation of LDT and DDT can assist in different
aspects of urban management to facilitate the quality of life
for citizens. Some potential use cases are as follows:

1) Urban Infrastructure Management: By utilizing
LDTs/DDTs, different urban infrastructure entities such
as buildings, roads, bridges, and utility networks can be
managed. This will also enable real-time monitoring of
structural health, energy consumption, and maintenance
needs. City authorities can monitor the system by making
informed decisions regarding maintenance, repairs, and
infrastructure upgrades by simulating and analyzing data
from LDTs and DDTs. This will help ensure the optimal
performance and safety of smart cities.

2) Traffic and Transportation Optimization: DDTs can also
aid the transportation sector by modeling and simulating
the traffic flow, transportation systems, and public transit
networks within a city. DDTs play a significant role in traffic
management and optimization by integrating real-time data
from sensors, cameras, and connected vehicles. It will enable
city planners to enhance the efficiency of public transporta-
tion routes, lessen congestion and improve mobility.

3) Environmental Monitoring and Sustainability: LDTs
and DDTs can play a crucial role in monitoring andmanaging
the environment within a smart city. By integrating data
from various sensors and environmental monitoring devices,
LDTs/DDTs can provide real-time insights into air quality,
noise levels, waste management, and energy consumption.
City authorities can leverage LDTs/DDTs to identify the
areas for improvement, develop sustainable initiatives, and
implement policies to reduce environmental impact and
promote a healthier living environment for citizens.

4) Citizen Engagement and Participation: LDTs/DDTs can
serve as platforms for citizen engagement and participation
in decision-making processes. By creating LDTs/DDTs
that represent public spaces or specific projects within the
city, citizens can virtually explore and visualize proposed
developments or changes. LDTs/DDTs can facilitate public
consultations, allowing citizens to provide feedback, express
concerns, and actively participate in shaping their city’s
future.

5) Emergency Management and Resilience: LDTs and
DDTs assist emergencymanagement and city resilience plan-
ning by providing a better understanding of potential risks,
the impact of natural disasters or incidents, and evacuating
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plans through modeling and simulating emergency scenarios.
LDTs and DDTs can also facilitate coordination among
different agencies and enable real-time information sharing
during emergency situations.

The use cases discussed in this subsection highlight
the potential of LDTs and DDTs in enabling data-driven
decision-making, optimizing urban services, enhancing sus-
tainability, promoting citizen engagement, and improving
overall city management and resilience. By leveraging DT
technologies, smart cities can achieve greater efficiency,
sustainability, and livability for their residents.

VII. CHALLENGES
While we have demonstrated several potential benefits of
deploying LDTs andDDTs, there are also research challenges
and considerations that need to be addressed in order to fully
realize the benefits of LDTs and DDTs. The key challenges
associated with the proposed approaches are as follows.

1) Computational Resources Limitations: Creating and
deploying LDTs within physical objects or processes may
be limited by the availability of computational resources.
Complex systems or processes may require high compu-
tational capabilities that are currently not feasible to have
locally. Lightweight methods like pruning and quantisation
can reduce processing demands for systems with limited
resources without compromising efficiency. For DDTs, the
physical layer DT also requires sufficiently high computa-
tional resources to deal with the enormous data generated
at the physical space and to decide which data should be
dealt locally and which should be sent to edge/cloud DTs.
Computational loads in local and remote environments can
be balanced by hierarchical scheduling and dynamic task
allocation. Additionally, by facilitating decentralised model
training, federated learning minimises data transfer.

2) Data Synchronization and Consistency: When using
distributed DTs across different locations or layers (phys-
ical, edge, and cloud), ensuring data synchronization and
consistency becomes crucial. It is vital to develop effective
and efficient mechanisms and protocols for managing
data updates, maintaining coherence between multiple twin
instances, and handling potential inconsistencies caused by
delays or other network issues.

3) Bidirectional Communication: Bidirectional communi-
cation is a critical feature of DT technology, enabling the
DT to influence the physical entity. Through feedback loops
and control mechanisms, the DT can send actionable insights
and commands back to the physical system. For example,
in a smart manufacturing setup, the DT can adjust machine
parameters in real-time to optimize performance or prevent
failures. This two-way interaction ensures that the DT is not
merely a passive replica but an active participant in system
control and optimization.

4) Network Infrastructure and Connectivity: Successful
deployment of DTs relies on reliable and robust network
infrastructure. However, in some areas, especially remote
or underdeveloped regions, network connectivity may be

limited, unstable, or even unavailable. Moreover, the current
infrastructure may not be able to handle the massive
data generated by smart industries, smart cities, and smart
healthcare, etc. Research is needed to address the challenges
related to connectivity, network latency, and bandwidth
limitations, particularly when real-time or near-real-time
responses are required.

5) Security and Privacy Concerns: While LDTs can
offer enhanced privacy by keeping data within the physical
space, there are still security challenges associated with DT
deployments. Ensuring secure communication and protecting
sensitive data within the distributed twin architecture is cru-
cial. These difficulties include the possibility of unauthorized
access, data breaches, and communication vulnerabilities
between dispersed elements. Strong encryption techniques
for data in transit and at rest, as well as secure communication
protocols (such as TLS and DTLS), are essential for
reducing these hazards. Advanced threat detection systems
and tamper-proof technologies are necessary in DDTs due
to the possibility of man-in-the-middle attacks or data
tampering during communication between remote nodes.
Furthermore, distributed designs are vulnerable to cloud
or edge node compromise, which could cause system
disruptions or expose sensitive information. In order to
address this, multifactor authentication techniques and access
control policies (such as role-based or attribute-based access
control) should be put in place to regulate access to crucial
system components. Researchers need to explore secure
communication protocols, encryption mechanisms, access
control, and authentication methods to mitigate potential
security threats.

6) Scalability and Interoperability: As the adoption
of DTs increases across various industries and domains,
ensuring scalability and interoperability becomes a signif-
icant challenge. Dynamic resource allocation approaches,
in which storage and computational resources are modified
in real-time according to system demands, can be used to
address scalability in high-complexity systems. Furthermore,
complicated systems can be divided into smaller, more
manageable sub-twins that can function independently while
coordinating with one another by implementing modular
digital twin (DT) design principles. This modular strategy
streamlines the integration process while simultaneously
increasing scalability. Developing standardized interfaces,
data models, and communication protocols that can facilitate
the integration and interoperability of different DT instances
is essential. This requires extensive research efforts to define
common frameworks and standards that enable seamless
interactions between local and distributed twins.

7) Real-time Simulation and Processing: Achieving
real-time or near-real-time simulation and processing capa-
bilities withinDTs can be challenging, especially for complex
systems. High-fidelity simulation models and algorithms
may require significant computational resources and may
not be feasible to run in real-time. Researchers need to
explore techniques such as parallel computing, optimization
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algorithms, and distributed computing to overcome these
challenges and enable efficient real-time simulations within
DTs.

8) Cost and Energy Efficiency: The implementation of
DTs requires additional cost and energy constraints. Further
research is needed to develop new approaches tominimize the
overall cost and environmental impact of DT implementation.
The proposed techniques should cover the cost-effective,
energy-efficient, and resource-optimization barriers.

VIII. CONCLUSION
In this paper, we have presented two novel DT deployment
approaches, called LDT and DDT. Both techniques offer
appreciable improvements in enhancing data efficiency,
minimizing latency, and reducing data communication load
on the infrastructure. Hence, reducing overall transmission
energy and the cost related to it in comparison to the current
deployment mechanisms for DT. By utilizing, the available
computation and storage resources in physical space, the
LDT technique particularly enables the implementation of
DTs within the local environment. As a result, it will reduce
latency and data communication load consequently, will
result in real-time monitoring and decision-making. How-
ever, the LDT has a potential constraint of the availability
of limited resources in the local environment. To ensure the
scalability and flexibility of LDT implementation, organiza-
tions must be vigilant to evaluate the available computation
and storage capacity. On the other hand, the DDT approach
addresses challenges in large-scale and in complex systems
by distributing features across different platforms. This will
enable efficient data processing and decision-making. Hence,
minimizing latency, data communication load, and improving
efficiency. However, the burden of bifurcating the features
of the physical space for distribution and the allocation of
computation resources within the physical layer DT can
pose additional challenges. In short, the LDT and DDT
can assist organizations to overcome the barriers related
to data communication load, latency, and communication
efficiency in the implementation of DT. Both approaches
help optimize operations, improve decision-making, and
enable predictive maintenance. It is pertinent to consider the
resource constraints and carefully allocate resources to ensure
the successful implementation of the LDT and DDT. Key
metrics like energy consumption, latency, communication
overhead, efficiency, and privacy will be analyzed in a future
study to highlight our techniques’ strengths. Additionally,
AI-driven sensor fusion and edge computing offer promising
enhancements for DT systems by improving real-time
interaction and data flow. Future research will explore their
integration to enhance responsiveness and scalability.
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