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Robust H∞ Control for Networked Control Systems

with Uncertainties and Multiple-Packet Transmission

Dongxiao Wu, Jun Wu and Sheng Chen

Abstract

A class of networked control systems is investigated where the plant has time-varying norm-bounded

parameter uncertainties, both the sensor-to-controller and controller-to-actuator channels implement

multiple-packet transmission and experience random packet dropouts. Sufficient conditions for synthesis

of robust stochastic stabilisation and design of robust H∞ controller are derived in the form of linear

matrix inequalities. An example is provided to demonstrate the effectiveness of our proposed method.

Index Terms

Networked control systems, norm-bounded uncertainties, packet dropouts, multiple-packet trans-

mission, robust H∞ control

I. INTRODUCTION

A networked control system (NCS) [1]–[5] is a control system in which the control loop is

closed via a shared communication network. Compared to the conventional point-to-point system

connection, the use of an NCS has advantages of low installation cost, reducing system wiring,

simple system diagnosis and easy maintenance. However, some inherent shortcomings of NCSs,

such as bandwidth constraints, packet dropouts and packet delays, will degrade performance of

NCSs or even cause instability. Packet dropouts, which can randomly occur due to node failures

or network congestion, impose one of the most important issues in NCSs. Stochastic approaches
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based on the mean square stability [6], [7] are typically adopted to deal with packet dropouts.

Under a stochastic approach, the packet-dropout process is usually modelled as a Bernoulli

process [3], [4], [8] or a Markov chain [4], [9]–[11], and the system is viewed as a special

case of jump linear system. In some works [12]–[14], NCSs with arbitrary packet dropouts are

modelled as switched systems. The effect of packet delays has also been widely studied. In the

works [15]–[17], the NCS is modelled as a time-delay system to tackle the network induced-

delay where a state feedback controller is employed. The authors of [18] adopted the common

Lyapunov function approach to study the NCS with packet delays and dropouts. In the study

[19], the packet delays in the controller to actuator (C/A) channel are treated as the uncertainties

of the NCS while the packet dropouts only occur in the sensor to controller (S/C) channel. The

authors of [20] employed a fuzzy controller to deal with packet delays in the NCS.

In certain network or system configurations, a multiple-packet transmission policy is required

where individual sensor or actuator data are transmitted in separate network packets which may

not all arrive at the controller or plant simultaneously due to packet dropouts. By contrast, in

a single-packet transmission, all the sensors’ or actuators’ data are lumped together into one

network packet and transmitted at the same time. There are two reasons for adopting multiple-

packet transmission. Firstly, a large amount of data must be broken into multiple packets due to

the packet size constraint. Secondly and more importantly, sensors and actuators in an NCS may

be distributed over a large physical area. There has been some study on the effects of packet

dropouts to NCSs under multiple-packet transmission. In [21], the authors give a sufficient

condition for stability in scheduling networks where the two packets are alternately sent to the

controller, with each of these two packets only carrying partial information of the plant state.

In [22], the optimal LQG control problem is considered for two communication channels with

packet dropouts. In [9], the authors study stability and controller design of NCSs with packet

dropouts driven by a Markov process under the multiple-packet transmission. In [23], the authors

analyse the stability of NCSs subject to packet dropouts under the multiple-packet transmission

with the packet dropout probability of the communication channel bounded from above.

When the system has parameter uncertainties, the standard H∞ control [24] cannot provide

guaranteed H∞ performance and stability. Robust H∞ control has been investigated for both

continuous-time and discrete-time systems [10], [25]–[29]. All these references only consider

the systems with delays, such as state or network packet delays. To the best of our knowledge,
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robust H∞ control has not been studied for NCSs with packet dropouts under the multiple-packet

transmission. The novelty of this contribution is that we study synthesis of robust stochastic

stabilisation and design of H∞ control for NCSs where the plant has time-varying norm-bounded

parameter uncertainties, both the S/C and C/A channels implement multiple-packet transmission

policy and experience random packet dropouts. The controller utilises a plant model to estimate

the plant state but if any of the multiple packets succeeds in transmission, the controller can

replace the corresponding part of the model state with the received partial state information.

We formulate this class of NCSs as a stochastic jump linear system. Sufficient conditions are

derived for synthesising robust stochastic stabilisation controller and for designing robust H∞

controller. These conditions are formulated in the form of linear matrix inequalities (LMIs) that

can be solved by the existing numerical techniques [30].

The remainder of this contribution is organised as follows. In Section II, the NCS problem

is formulated. Section III addresses the synthesis of robust stochastic stabilisation control and

presents an LMI solution, while Section IV considers the robust H∞ control design. A numerical

example is provided in Section V to illustrate the proposed method, and our conclusions are of-

fered in Section VI. Throughout this contribution we adopt the following notational conventions.

R stands for real numbers and N for nonnegative integers. W > 0 indicates that W is a positive-

definite matrix. I and 0 represent the identity and zero matrices of appropriate dimensions,

respectively. The notation ∗ within a matrix denotes symmetric entries. For a discrete-time signal

w = {w(k)}k∈N with w(k) ∈ Rp, `p
2 denotes the set of ws with

∑∞
k=0 wT(k)w(k) < ∞ .

II. PROBLEM FORMULATION

The NCS P̂K , depicted in Fig. 1, contains a generalised discrete-time plant P̂ and a discrete-

time controller K̂ with the control loop closed via a shared communication network. The plant

P̂ with parameter uncertainties is described by




x(k + 1) = [A + ∆A(k)]x(k) + [B + ∆B(k)]u(k) + Bww(k),

z(k) = Cx(k) + Du(k),
(1)

for ∀k ∈ N, where x(k) = [x1(k) · · · xn(k)]T ∈ Rn, u(k) = [u1(k) · · ·um(k)]T ∈ Rm and

z(k) ∈ Rq are the state, input and controlled output vectors, respectively, w(k) ∈ Rp is the

disturbance input vector and w ∈ `p
2. A, B, Bw, C and D are the known constant matrices
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of appropriate dimensions, while ∆A(k) and ∆B(k) are the unknown matrices representing the

time-varying parameter uncertainties which satisfy the following condition

[∆A(k) ∆B(k)] = M F(k) [NA NB], (2)

where M, NA and NB are the known constant matrices of appropriate dimensions, while F(k)

is an unknown time-varying matrix with FT(k)F(k) ≤ I.

The state and input vectors are transmitted under a multiple-packet transmission policy where

at any instant k, the state vector is transmitted by at most n packets and the input vector is

transmitted by at most m packets. Network packet dropouts occur in both the S/C and C/A

channels. Assume that the n sensors and m actuators are physically distributed. Therefore, n

packets are transmitted through the S/C channel at each k, one for each element of x(k), and

similarly m packets are transmitted via the C/A channel at each k, one for each element of

û(k). Define θs,i(k) ∈ {0, 1} for i ∈ {1, · · · , n} and θa,j(k) ∈ {0, 1} for j ∈ {1, · · · ,m} as

the indicators of the single packet dropout in the S/C and C/A channels for xi(k) and ûj(k),

respectively, where a value 0 indicates that the packet is dropped while a value 1 indicates

that the packet is transmitted successfully. Further define the two matrices of packet dropout

indicators as

Θs(k) , diag(θs,1(k), θs,2(k), . . . , θs,n(k)), (3)

Θa(k) , diag(θa,1(k), θa,2(k), . . . , θa,m(k)). (4)

Remark 1: In our NCS model we mainly consider packet dropouts. This is because most of

the present NCSs are configurated over local area networks (LANs), such as wired Ethernet

and wireless LAN (WLAN). In such NCSs, packet transmission delay is negligible and the only

significant communication delay is due to access delay which is taken into account in our model.

Few if any practical NCSs are over wide area networks (WANs). Of course, when considering

potential further research of NCSs over WANs, such as control over Internet, packet transmission

delay will be significant and cannot be ignored.

The controller K̂, similar to the one in [4], consists of the state feedback gain matrix K ∈
Rm×n and the plant model. The controller output is given by

û(k) = Kx̂(k), (5)
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where x̂(k) ∈ Rn denotes the model state. Referring to Fig. 1, if ûj(k) is transmitted successfully

through the C/A channel at instant k, uj(k) = ûj(k), otherwise uj(k) = 0. Thus we have

u(k) = Θa(k)û(k). (6)

TCP-like protocol is assumed, in which there is acknowledgement for a received packet. Thus, at

each instant k, the network sends an ACK signal to the controller to indicate whether a current

control input packet is received or not by the actuator. The plant model is given by

x̂(k + 1) = Ax̂(k) + BΘa(k)û(k). (7)

If xi(k + 1) is transmitted successfully via the S/C channel at instant k + 1, the model state

variable x̂i(k + 1) is updated by xi(k + 1), otherwise the controller uses the plant model (7) to

derive x̂i(k + 1). Thus, we have

x̂(k + 1) = Θs(k + 1)x(k + 1) + (I−Θs(k + 1))(Ax̂(k) + BΘa(k)û(k))

= Θs(k + 1)(A + ∆A(k))x(k) + Θs(k + 1)Bww(k)

+
(
(I−Θs(k + 1))A + (B + Θs(k + 1)∆B(k))Θa(k)K

)
x̂(k). (8)

Define the set

S ,
{

(Ωs,Ωa)

∣∣∣∣∣
Ωs = diag

(
ω1, · · · , ωn

)
, Ωa = diag

(
ωn+1, · · · , ωn+m

)
,

ωi ∈ {0, 1}, ∀i ∈ {1, · · · , n + m}.

}
(9)

The number of elements in the set S is r̄ = 2n+m. Further define N , {1, 2, . . . , r̄} and the

mapping f from S to N :

r = f(Ωs,Ωa) = 1 +
n+m∑
i=1

ωi · 2i−1. (10)

It is easy to see that f is a one-to-one mapping. In fact, the inverse mapping of f , denoted as

(Ωs,Ωa) = (Hs(r),Ha(r)), (11)

can be implemented by the following iteration algorithm:

• Step 1: Set v = r − 1, i = 1.

• Step 2: Find q̃ ∈ N and d ∈ {0, 1} to satisfy v = 2q̃ + d. Then ωi = d.

• Step 3: If i < n + m, then v = q̃, i = i + 1, return to Step 2.

• Step 4: Ωs = diag
(
ω1, · · · , ωn

)
, Ωa = diag

(
ωn+1, · · · , ωn+m

)
, End.
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Thus the sequence {(Θs(k + 1),Θa(k))}k∈N, which specifies the packet dropout process, can

be mapped into another sequence {rk}k∈N with rk = f((Θs(k+1),Θa(k)). The inverse mapping

of f is simply
Θs(k + 1) = Hs(rk),

Θa(k) = Ha(rk).



 (12)

We now consider the case where {rk}k∈N is a discrete-time stochastic process.

Assumption 1: rks are independently identically distributed (i.i.d.)N -valued random variables.

The probability of mass function of rk is given by pi = Prob(rk = i) with i ∈ N .

The communication network of Fig. 1 is governed by the (n,m)-packet transmission policy

with the associated set N , whose size is r̄ = 2n+m. This multiple-packet transmission policy is

motivated by the fact that in many industrial plants sensors and actuators are distributed over a

large physical area and each sensor or actuator has to communicate to the controller individually

over the shared network. However, our multiple-packet transmission policy is a generic protocol,

as explained in the following remark.

Remark 2: The multiple-packet transmission policy considered in this contribution is a general

framework for packet dropouts. At each instant, the number of transmitted packets for the n-

dimensional state vector and the m-dimensional input vector are n and m, respectively, for the

(n,m)-packet transmission. This multiple-packet transmission policy is actually valid for the

case where less than n packets are transmitted in the S/C channel and/or less than m packets

are transmitted in the C/A channel, respectively, at each instant. This can simply be achieved

by lumping several state or input variables into one packet and by considering the resulting

(n
′
,m

′
)-packet transmission scheme, where n

′ ≤ n and m
′ ≤ m. The associated set N ′ in this

case has a size of r̄
′

= 2n
′
+m

′
. For example, assume that n = 3 and m = 1, and the state

variables x1(k) and x2(k) are transmitted together in one packet. Then we have the (2, 1)-packet

transmission policy and the size of N ′ is r̄
′

= 8. Let the two packet dropout indicators for

the S/C channel be θ
′
s,1(k) and θ

′
s,2(k). The packet-dropout indicator matrix for the S/C channel

takes the form Θ
′
s(k) , diag(θ

′
s,1(k), θ

′
s,1(k), θ

′
s,2(k)).

Define the state of the NCS P̂K as

x(k) , [xT(k) eT(k)]T, (13)
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where e(k) = x(k)− x̂(k). From (1) and (8), the NCS P̂K can be described by
 x(k + 1)

z(k)


 =


 Ark

Brk

Crk
0





 x(k)

w(k)


 , rk ∈ N , (14)

where

Ark
=


 A + ∆A(k) + (B + ∆B(k))Θa(k)K −(B + ∆B(k))Θa(k)K

(I−Θs(k + 1))(∆A(k) + ∆B(k)Θa(k)K) (I−Θs(k + 1))(A−∆B(k)Θa(k)K)


 ,

(15)

Brk
=


 Bw

(I−Θs(k + 1))Bw


 , (16)

Crk
=

[
C + DΘa(k)K −DΘa(k)K

]
, (17)

while Θs(k + 1) and Θa(k) are given in (3) and (4). From (2) and (10), Ark
can be written as

Ai = Φi + MiF(k)Γi for i ∈ N , where

Φi =


 A + BHa(i)K −BHa(i)K

0 (I−Hs(i))A


 , (18)

Γi =
[

NA + NBHa(i)K −NBHa(i)K
]
, (19)

Mi =


 M

(I−Hs(i))M


 , (20)

with Ha(i) and Hs(i) given in (12). We introduce the following concepts of robust stochastic

stability and robust H∞ performance for the NCS P̂K .

Definition 1: (See [10], [27]) The NCS P̂K with w(k) ≡ 0 is said to be robustly stochastically

stable if for any initial condition x(0) ∈ R2n,
∞∑

k=0

E
[
xT(k)x(k)

]
< ∞ (21)

holds for all the admissible uncertainties ∆A(k) and ∆B(k), where E[·] denotes the expectation.

Definition 2: (See [10], [27]) The NCS P̂K is said to be robustly stochastically stable with

disturbance attenuation level γ > 0 if P̂K with w(k) ≡ 0 is robustly stochastically stable and,

for any nonzero w ∈ `p
2, the response {z(k)}k∈N under the zero initial condition x(0) = 0

satisfies ∞∑

k=0

E
[
zT(k)z(k)

]
< γ2

[ ∞∑

k=0

wT(k)w(k)
]
. (22)
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III. ROBUST STABILISATION

The task of stabilisation control is as follows. Given A, B, NA, NB and M as well as the

chosen multiple-packet transmission policy with Assumption 1, determine the controller K such

that the NCS P̂K is robustly stochastically stable.

The following lemma from [31] is useful for the proofs of our main results.

Lemma 1: Let Z, U, H, G and F̃ be the real matrices of appropriate dimensions such that

G > 0 and F̃TF̃ ≤ I. Then, for any scalar ε > 0 such that G− εUUT > 0, we have

(Z + UF̃H)TG−1(Z + UF̃H) ≤ ZT(G− εUUT)−1Z + ε−1HTH. (23)

Theorem 1: For the NCS P̂K with w(k) ≡ 0 under Assumption 1, suppose that there exist

scalars εi > 0 with i ∈ N , matrices Q > 0 and Y such that the following LMI is satisfied:



−Q̃ ∗ ∗ · · · ∗
Π̃1 Υ1 ∗ · · · ∗
Π̃2 0 Υ2

. . . ...
...

... . . . . . . ∗
Π̃r̄ 0 · · · 0 Υr̄




, Λ̃ < 0, (24)

where for i ∈ N
Q̃ = diag(Q,Q), (25)

Π̃i =
√

pi[Φ̃
T

i Γ̃
T

i ]T, (26)

Υi = diag
(
εiMiM

T

i − Q̃, − εiI
)

, (27)

Φ̃i =


 AQ + BHa(i)Y −BHa(i)Y

0 (I−Hs(i))AQ


 , (28)

Γ̃i =
[

NAQ + NBHa(i)Y −NBHa(i)Y
]
, (29)

while Mi is defined in (20). Then K = YQ−1 makes P̂K robustly stochastically stable.

Proof Let P = Q−1, then P̃ = Q̃−1. From (24), it is easy to show that

Ψi , P̃−1 − εiMiM
T

i > 0, ∀i ∈ N . (30)

Now for the NCS P̂K , construct the Lyapunov function

V (k) , xT(k)P̃x(k), ∀k ∈ N. (31)
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Noticing εi > 0, (20) and (30) as well as using Lemma 1, we have

E[V (k + 1)]− V (k) = xT(k)
[ ∑

i∈N
piA

T

i P̃Ai − P̃
]
x(k)

= xT(k)
[ ∑

i∈N
pi(Φi + MiF(k)Γi)

TP̃(Φi + MiF(k)Γi)− P̃
]
x(k)

≤ xT(k)Λx(k), (32)

where

Λ =
∑
i∈N

pi

(
ΦT

i Ψ−1
i Φi + ε−1

i ΓT
i Γi

)− P̃. (33)

On the other hand, pre- and post-multiplying (24) by diag(P̃, I) yields



−P̃ ∗ ∗ · · · ∗
Π1 Υ1 ∗ · · · ∗
Π2 0 Υ2

. . . ...
...

... . . . . . . ∗
Πr̄ 0 · · · 0 Υr̄




< 0, (34)

where for i ∈ N
Πi =

√
pi[Φ

T
i ΓT

i ]T, (35)

while Φi and Γi are given in (18) and (19), respectively. By Schur complement, (34) implies

that Λ < 0. This together with (32) leads to

E[V (k + 1)]− V (k) ≤ −τxT(k)x(k), (36)

where τ = λmin(−Λ) denotes the minimal eigenvalue of −Λ. From (36), we obtain

E[V (T + 1)− V (0)] =
T∑

k=0

E
[
E[V (k + 1)]− V (k)

] ≤ −τ

T∑

k=0

E[xT(k)x(k)] (37)

for any T ≥ 1, which implies
T∑

k=0

E[xT(k)x(k)] ≤ 1

τ

(
E[V (0)]− E[V (T + 1)]

) ≤ 1

τ
V (0) < ∞. (38)

According to Definition 1, the NCS P̂K with w(k) ≡ 0 is robustly stochastically stable. ¥
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IV. ROBUST H∞ CONTROL

The task of designing robust H∞ controller is as follows. Given A, B, C, D, Bw, NA, NB,

M and γ > 0 as well as the specified multiple-packet transmission policy with Assumption 1,

determine the controller K such that the NCS P̂K is robustly stochastically stable with the

specified disturbance attenuation level γ.

A sufficient condition is proposed for designing robust H∞ controller, and our main result is

given in the following theorem.

Theorem 2: Given a scalar γ > 0, the NCS P̂K under Assumption 1 is robustly stochastically

stable with disturbance attenuation level γ, if there exist scalars εi > 0 for i ∈ N , matrices

Q > 0 and Y such that the following LMI is satisfied:




 −Q̃ 0

0 −γ2I


 ∗ ∗ · · · ∗

Ω1 Ξ1 ∗ · · · ∗
Ω2 0 Ξ2

. . . ...
...

... . . . . . . ∗
Ωr̄ 0 · · · 0 Ξr̄




< 0, (39)

where for i ∈ N ,

Ωi =
√

pi




Φ̃i Bi

Γ̃i 0

C̃i 0


 , (40)

Ξi = diag
(
εiMiM

T

i − Q̃, − εiI, − I
)

, (41)

C̃i =
[

CQ + DHa(i)Y −DHa(i)Y
]
, (42)

while Q̃, Φ̃i, Γ̃i, Bi and Mi are given in (25), (28), (29), (16) and (20), respectively. In this

case, the state feedback gain matrix is given by K = YQ−1.

Proof From (39), we can directly obtain

Λ̃ ≤ Λ̃ +
∑
i∈N


 C̃T

i

0




[
C̃i 0

]
+

1

γ2


 0

B̃




[
0 B̃T

]
< 0. (43)

where

B̃T =
[

B
T

1 0 B
T

2 0 · · · B
T

r̄ 0
]
, (44)
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while Λ̃ is defined in (24). Therefore, it follows from Theorem 1 that the NCS P̂K with w(k) ≡ 0

is robustly stochastically stable.

Next, we prove that the NCS P̂K has the required noise attenuation level γ for any nonzero

w ∈ `p
2. Let P = Q−1, then P̃ = Q̃−1. Consider the Lyapunov function V (k) defined in (31)

with the zero initial condition x(0) = 0 and V (0) = 0. It follows from (37) that for any T ≥ 1

T∑

k=0

E
[
E[V (k + 1)]− V (k)

]
= E[V (T + 1)] ≥ 0. (45)

Since εi > 0 for i ∈ N and (30) is satisfied due to (39), according to Lemma 1 we have

E[V (k + 1)] =
[
xT(k) wT(k)

]
S
[
xT(k) wT(k)

]T ≤ [
xT(k) wT(k)

]
Ŝ
[
xT(k) wT(k)

]T
, (46)

where

S =
∑
i∈N

pi

[
Ai Bi

]T
P̃

[
Ai Bi

]

=
∑
i∈N

pi

([
Φi Bi

]
+ MiF(k)

[
Γi 0

])T
P̃

([
Φi Bi

]
+ MiF(k)

[
Γi 0

])
, (47)

Ŝ =
∑
i∈N

pi

(

 ΦT

i

B
T

i


Ψ−1

i

[
Φi Bi

]
+ ε−1

i


 ΓT

i

0




[
Γi 0

] )
. (48)

Combining (14) and (46) yields

E [V (k + 1)]− V (k) + zT(k)z(k)− γ2wT(k)w(k) ≤ [
xT(k) wT(k)

]
Λ̂

[
xT(k) wT(k)

]T
, (49)

where

Λ̂ =
∑
i∈N

pi

(
Ŝ +


 C

T

i

0




[
Ci 0

])
−


 P̃ 0

0 γ2I




=
∑
i∈N

pi




Φi Bi

Γi 0

Ci 0




T 


Ψ−1
i 0 0

0 ε−1
i I 0

0 0 I







Φi Bi

Γi 0

Ci 0


−


 P̃ 0

0 γ2I


 , (50)

and Ψi is defined in (30). On the other hand, pre- and post-multiplying (39) by diag(P̃, I) as

well as applying Schur complement yields

Λ̂ < 0. (51)

June 5, 2009 DRAFT



12

Let us define the performance function

J(T ) =
T∑

k=0

E
[
zT(k)z(k)− γ2wT(k)w(k)

]
. (52)

Then from (45), (49) and (52), we derive

J(T ) =
T∑

k=0

E
[(

zT(k)z(k)− γ2wT(k)w(k) + V (k + 1)− V (k)
)− (

V (k + 1)− V (k)
)]

≤
T∑

k=0

E
[[

xT(k) wT(k)
]
Λ̂

[
xT(k) wT(k)

]T
]
− E[V (T + 1)]. (53)

∀w(k) 6= 0, (51) and (53) lead to J(∞) < 0. This completes the proof of Theorem 2. ¥
Remark 3: Theorems 1 and 2 provide sufficient conditions for robust stabilisation and robust

H∞ control, respectively, for NCSs with uncertainties and multiple-packet transmission. These

results were not seen previously in the existing literature. The main advantage of our approach is

that our results are valid for the generic case where random packet dropouts occur in the multiple

(S/C and C/A) channels independently and the plant has uncertainties. This should be contrasted

with the existing works [10], [15]–[19], [25]–[29], which only consider the NCSs with delays

and single-packet transmission. In particular, although the work of [19] also employs a plant

model, it assumes that packet dropouts never occur in the C/A channel and the uncertainties

are not about the plant but are associated with the packet delays in the C/A channel. In reality,

packet dropouts can occur independently in the C/A channel, which must be taken into account

as our approach does.

V. A NUMERICAL EXAMPLE

To illustrate the effectiveness of the proposed approach, we considered the uncertain NCS P̂K

of x(k) ∈ R3, u(k) ∈ R2, z(k) ∈ R and w(k) ∈ R, with the following plant parameters

A =




−0.2 0 0.9

0.6 −0.9 0.5

0.2 −1 0


 , B =




0.2 0.4

0.9 0.8

0.3 0.7


 , (54)

NA =
[

0.6 0.2 0.7
]
, NB =

[
0.5 0.8

]
, M =




0.1

0.1

0.2


 , (55)
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Bw =




0.1

0.1

−0.2


 , C =

[
0.2 0.3 0.3

]
, D =

[
0.7 0.9

]
. (56)

The eigenvalues of the plant were −1.0554 and −0.0233± 0.6726 i.

Synthesising robust stabilisation control

We considered the uncertain NCS P̂K with the plant parameters A, B, M, NA and NB given

in (54) and (55). At each instant k, the state vector x(k) was transmitted by two packets through

the S/C channel, with x1(k) and x2(k) lumped in one packet while x3(k) in the other packet, and

the input vector û(k) was transmitted by two packets via the C/A channel. Thus the (2, 2)-packet

transmission was implemented for the NCS P̂K (see Remark 2), and the number of elements

in the set N ′ was r̄
′
= 22+2 = 16. Without the loss of generality, pi = 1/16 was assumed for

i ∈ N ′ . This implied that the packet dropout rate was 50% for any packet. Our objective was to

design the state feedback gain matrix K such that, for all the admissible uncertainties, the NCS

P̂K with w(k) ≡ 0 was robustly stochastically stable.

By applying the Matlab LMI Control Toolbox to solve the LMI (24) we obtained the following

solution

Q =




25.1254 7.8509 −5.9615

7.8509 11.5817 1.6578

−5.9615 1.6578 18.4273


 , Y =


 −4.5417 1.2570 2.8069

0.6289 1.4668 −2.7677


 ,

ε1 = 22.9428, ε2 = 23.3998, ε3 = 25.2530, ε4 = 27.1442, ε5 = 24.8060, ε6 = 25.2977,

ε7 = 27.3540, ε8 = 29.4228, ε9 = 22.2171, ε10 = 22.6745, ε11 = 24.4595, ε12 = 26.3249,

ε13 = 24.0862, ε14 = 24.5757, ε15 = 26.5540, ε16 = 28.5913.

It followed from Theorem 1 that the robust stochastic stabilisation control problem was solvable

with the state feedback gain matrix given by

K = YQ−1 =


 −0.2564 0.2760 0.0445

−0.0895 0.2157 −0.1986


 .
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This designed controller K was then used in the following simulation, where the initial state

was chosen to be

x(0) =




x1(0)

x2(0)

x3(0)


 =




2

0

−1


 , e(0) =




e1(0)

e2(0)

e3(0)


 =




0

1

−2


 . (57)

The disturbance w(k) was assumed to be uniformly distributed within [−0.1, 0.1] for the interval

k ∈ [0, 100] and zero elsewhere. Fig. 2 (a) and (b) depict typical response of the state trajectories

for x(k) and the error trajectories for e(k), respectively. The NCS was simulated 500 times

with the same initial condition (57) and the same packet dropout rates. For any k ∈ N, we

obtained 500 observations of the random variable xT(k)x(k). The first sample moment of the

observations, denoted by Ee

[
xT(k)x(k)

]
, was computed. According to the standard statistics

theory, Ee

[
xT(k)x(k)

]
is a confident estimation of E

[
xT(k)x(k)

]
when the observation number

is large. Fig. 3 depicts the trajectory of Ee

[
xT(k)x(k)

]
where as expected it can be seen that

Ee

[
xT(k)x(k)

]
converged to zero.

Designing robust H∞ control

We considered the uncertain NCS P̂K with the plant parameters A, B, M, NA, NB, C, D

and Bw given in (54) to (56). At each instant k, the state vector x(k) was transmitted by three

packets through the S/C channel and the input vector û(k) was transmitted by two packets via the

C/A channel. Thus the (n = 3,m = 2)-packet transmission was implemented, and the number

of elements in the set N was r̄ = 23+2 = 32. We assumed pi = 1/32 for i ∈ N , which implied

that the packet dropout rate was 50% for any state or input variable. Our objective was to design

the state feedback gain matrix K such that, for all the admissible uncertainties, the NCS P̂K

was robustly stochastically stable with the specified disturbance attenuation level γ > 0.

Assuming γ = 0.5, we applied the Matlab LMI Control Toolbox to solve the LMI (39) and

obtained the following solution

Q =




1.5324 0.5912 −0.3228

0.5912 0.6050 0.0328

−0.3228 0.0328 1.0706


 , Y =


 −0.4570 −0.0826 0.1417

0.1029 0.0776 −0.0903


 ,

ε1 = 1.9038, ε2 = 2.5198, ε3 = 1.8389, ε4 = 3.4124, ε5 = 1.7918, ε6 = 1.9885,

ε7 = 2.2131, ε8 = 4.3420, ε9 = 1.9587, ε10 = 2.5863, ε11 = 1.8941, ε12 = 3.5462,
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ε13 = 1.8370, ε14 = 2.0316, ε15 = 2.2882, ε16 = 4.5561, ε17 = 1.9077, ε18 = 2.5370,

ε19 = 1.8372, ε20 = 3.3446, ε21 = 1.8092, ε22 = 2.0223, ε23 = 2.1991, ε24 = 4.1983,

ε25 = 1.9575, ε26 = 2.6013, ε27 = 1.8873, ε28 = 3.4879,

ε29 = 1.8487, ε30 = 2.0596, ε31 = 2.2694, ε32 = 4.4325.

It followed from Theorem 2 that the robust H∞ control problem was solvable with the state

feedback gain matrix given by

K = YQ−1 =


 −0.3916 0.2458 0.0067

−0.0053 0.1384 −0.0902


 .

The above NCS example clearly demonstrates that our approach can effectively design the

controller to satisfy the stochastic stability and the required H∞ performance criterion.

VI. CONCLUSIONS

In this contribution we have investigated a class of NCSs where the plant has time-varying

norm-bounded parameter uncertainties, both the S/C and C/A channels implement multiple-

packet transmission scheme and impose random packet dropouts. Firstly we have established

sufficient conditions in the form of LMI for synthesising robust stochastic stabilisation controller.

Secondly we have considered the robust H∞ controller design and have presented the LMI

solution for robust H∞ control law that stabilises this class of NCSs with a prescribed disturbance

attenuation level. A numerical example has been included to illustrate our proposed design

approach.
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Fig. 1. Networked control system P̂K .
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Fig. 2. Typical (a) state trajectories of the plant P̂ , and (b) error trajectories between the plant and model states.
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Fig. 3. Ee

ˆ
xT(k)x(k)

˜
calculated by averaging xT(k)x(k) over 500 simulations.
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