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Abstract: A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature
amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna array′s elements,
are first utilised to provide a rough initial least squares estimate of the beamformer′s weight vector. A concurrent constant modulus
algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme
is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.
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1 Introduction

The ever-increasing demand for wireless communication
capacity has motivated the development of antenna array
assisted spatial processing techniques in order to further im-
prove the achievable spectral efficiency. A particular tech-
nique that has shown real promise in achieving substantial
capacity enhancement is the use of adaptive beamforming
with antenna arrays[1−3]. Adaptive beamforming is capa-
ble of separating signals transmitted on the same carrier
frequency, and thus provides a practical means of support-
ing multiusers in a space division multiple access scenario.
For the sake of further improving the achievable bandwidth
efficiency, high-throughput quadrature amplitude modula-
tion (QAM) schemes[4] has become popular in numerous
wireless network standards. For example, the 16-QAM and
64-QAM schemes were adopted in the WiMax standard[5].
The classical beamforming design is the minimum mean
square error (MMSE) solution, which can be realised using

the training-based adaptive algorithms[2, 6−9] Pure training-
based schemes, however, require a high proportion of train-
ing symbols, which considerably reduces the achievable sys-
tem throughput. Pure blind beamforming[10−12] does not
reduce the achievable system throughput at the expense
of high computational complexity and slow convergence.
Moreover, blind beamforming results in unavoidable esti-
mation and decision ambiguities[13, 14].

An effective means of resolving the estimation and deci-
sion ambiguities inherent in blind schemes is to employ a
few training symbols. Our presented work combines this
very short training with blind adaptive beamforming which
leads to the novel and attractive semi-blind adaptive beam-
forming algorithm. In particular, we consider an adaptive
beamforming assisted receiver for wireless systems that em-
ploy high-throughput QAM signalling[4]. Because we will
consider the low-complexity MMSE solution as the optimal
design for beamforming, the number of users supported by
the system is assumed to be no more than the number of
receiver antenna array′s elements. The proposed adaptive
beamforming method is semi-blind as we employ a mini-
mum number of pilots, which is equal to the number of array
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elements, to provide a rough least squares (LS) estimate for
the beamformer′s weight vector. In general, this initialisa-
tion is not sufficiently accurate to achieve an “opening-eye”
and, therefore, it is unsafe to carry out decision-directed
(DD) adaptation for the beamformer. We then apply a con-
stant modulus algorithm (CMA) assisted soft DD (SDD)
blind adaptive algorithm to adapt the beamformer. The
concurrent CMA and SDD algorithm was originally derived
for blind equalisation of single-input single-output QAM
systems[15], and it was extended to single-input multiple-
output systems in [16]. This blind adaptive scheme has a
very low computational complexity. In the present semi-
blind beamforming application, owing to the initial infor-
mation provided by the training pilots, the algorithm con-
verges much faster than the pure blind adaptation case, and
it is capable of approaching the performance of the MMSE
beamforming solution based on the perfect channel knowl-
edge, as will be shown in our simulation study.

To the best of our knowledge, this is the first time
that a high-performance semi-blind adaptive beamform-
ing scheme with low complexity is proposed for high-order
QAM systems. In the related multiple-input multiple-
output (MIMO) technologies, many semi-blind schemes

have been proposed[17−22]. In these schemes, a few training
symbols are first used to provide an initial MIMO chan-
nel estimate, and the channel estimator and the maximum
likelihood (ML) data detector iteratively exchange their in-
formation, where the MIMO channel estimator relies on a
DD adaptation. These semi-blind MIMO schemes, how-
ever, becomes computationally prohibitive for high-order
QAM signalling owing to the high complexity of ML data
detection. Moreover, to estimate the MIMO channel ma-
trix, training pilots must include all the users′ data. In
the beamforming system, the receiver only has access to
the desired user′s data during the training and it does not
have access to the interfering users′ data at all. Thus, these
semi-blind MIMO schemes cannot be applied to the current
beamforming system.

Recently, a spatial-equaliser based semi-blind MIMO
scheme[23] is proposed, which can potentially be applied
to high-order QAM systems. In this scheme, the spatial
equaliser is adapted by minimising the combined cost func-
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tion of the training-based sum of the squared errors and a
higher-order statistic (HOS) aided criterion using a block-
data based gradient algorithm. In [23], however, the au-
thors make an unnecessary assumption of the known MIMO
channel matrix1. By changing the training-based criterion
to include only the desired user′s training symbols, this
semi-blind scheme can be applied to the beamforming sys-
tem. In terms of computational requirements, the complex-
ity of the block-data based algorithm in [23] is significantly
higher than that of our proposed stochastic gradient algo-
rithm. In terms of the achievable performance, our simpler
stochastic gradient scheme actually outperforms the more
complex block-data based gradient scheme of [23]. This is
because the blind adaptive process in the semi-blind scheme
of [23] is based on the HOS (e.g., CMA) criterion, while our
blind adaptive process is based on the HOS (CMA) aided
SDD criterion. The latter can approach the optimal MMSE
solution more accurately and achieve a faster convergence,
as a benefit of the fact that SDD adaptation is more like
the true training.

Throughout this contribution, we adopt the following
notational conventions. Boldface capitals and lower-case
letters stand for matrices and vectors, respectively, while
IIIK denotes the K ×K identity matrix. Furthermore, (·)T
and (·)H are the transpose and Hermitian operators, respec-
tively, while ‖·‖ and |·| denote the norm and magnitude op-
erators, respectively. E [·] is the expectation operator, while
(·)∗ denotes the complex conjugate. Finally, j =

√−1.

2 Beamforming model

We consider a coherent communication system that sup-
ports nT users, where each user transmits a M -QAM sig-
nal on the same angular carrier frequency of ω. In order
to achieve user separation in the angular domain[24, 25], the
receiver is equipped with a linear antenna array consist-
ing of nR uniformly spaced elements. Further assume that
the communication is over flat fading channels. Then, the
system is described by the following model

xxx(k) = HHH sss(k) + nnn(k) (1)

where k denotes the symbol index, xxx(k) =
[x1(k) x2(k) · · · xnR(k)]T is the received signal
vector, nnn(k) = [n1(k) n2(k) · · · nnR(k)]T is the
complex-valued Gaussian white noise vector associ-
ated with the system having E

[
nnn(k)nnnH(k)

]
= 2σ2

nIIInR ,

sss(k) = [s1(k) s2(k) · · · snT (k)]T is the transmitted
symbols vector of the nT users with the symbol energy
given by E

[|sm(k)|2] = σ2
s for 1 6 m 6 nT , and HHH denotes

the nR × nT system channel matrix.
More specifically, the system channel matrix HHH = [hl,m],

where 1 6 l 6 nR and 1 6 m 6 nT , is defined by

HHH = [hhh1 hhh2 · · · hhhnT ] =
[
A1η1 A2η2 · · ·AnT ηnT

]
(2)

where Am denotes the non-dispersive channel coefficient for
user m, and the steering vector for user m is given by

ηm =
[
ejωt1(θm) ejωt2(θm) · · · ejωtnR

(θm)
]T

(3)

1If the MIMO channel matrix were known, the MMSE spatial
equaliser could be designed directly and there would be no need for
any semi-blind adaptation.

with θm being the angle of arrival for user m and tl(θm)
being the relative time delay at array element l for user
m. θm is uniformly distributed in [0, 2π) and the mag-
nitude of Am is a Rayleigh process. However, the fading
is assumed to be sufficiently slow, so that during the time
period of a transmission block or frame, all the related en-
tries hl,m in the system channel matrix HHH is deemed un-
changed. From frame to frame, hl,m are assumed to be
uncorrelated complex-valued Gaussian processes with zero
mean and E

[|hl,m|2
]

= 1.
The modulation scheme is the M -QAM and, therefore,

the transmitted data symbols sm(k), 1 6 m 6 nT , take the
values from the M -QAM symbol set defined by

S , {si,q = ui + juq, 1 6 i, q 6
√

M} (4)

with the real-part symbol Re[si,q] = ui = 2i−√M − 1 and

the imaginary-part symbol Im[si,q] = uq = 2q − √M − 1.
The average signal-to-noise ratio (SNR) of the system is de-
fined as SNR = nT × σ2

s/(2σ2
n). Without loss of generality,

user one is assumed to be the desired user and the rest of
the users are interfering ones. A beamformer

y(k) = wwwHxxx(k) (5)

is used to detect the transmitted symbols s1(k) of the de-
sired user, where www denotes the nR × 1 complex-valued
weight vector of the beamformer. With the perfect channel
knowledge, the optimal MMSE solution that minimises the
mean square error criterion E[|s1(k)− y(k)|2] is given by

wwwMMSE =

(
HHHHHHH +

2σ2
n

σ2
s

IIInR

)−1

hhh1. (6)

3 The proposed semi-blind algorithm

Let the number of available training symbols be
K, and denote the available training data as XXXK =
[xxx(1) xxx(2) · · · xxx(K)] and sssK = [s1(1) s1(2) · · · s1(K)]T.
The LS estimate of the beamformer′s weight vector based
on the training data {XXXK , sssK} is readily given as

www(0) =
(
XXXKXXXH

K

)−1

XXXKsss∗K . (7)

In order to maintain throughput, the number of training pi-
lots should be as small as possible. To ensure that XXXKXXXH

K

has a full rank, we will choose K = nR as the minimum
number of training symbols. Because the training data
are insufficient, the initial LS weight vector (7) may not
be sufficiently accurate to open the eye. Therefore, DD
adaptation is generally unsafe. However, we can apply the
concurrent CMA and SDD blind scheme[15, 16] to adapt the
beamformer (5) with www(0) of (7) as the initial weight vector.
Let the beamformer′s weight vector be split into two parts,
yielding www = wwwc +wwwd, and denote the beamformer′s output
at sample k as y(k) = wwwH(k)xxx(k). The initial wwwc and wwwd

are simply set to wwwc(0) = wwwd(0) = 0.5www(0), with www(0) given
in (7).

Specifically, the weight vector wwwc is updated using the
classical CMA[26, 27]

{
ε(k) = y(k)

(
∆− |y(k)|2)

wwwc(k + 1) = wwwc(k) + µCMAε∗(k)xxx(k)
(8)
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where ∆ = E
[|s1(k)|4] /E

[|s1(k)|2] and µCMA is the step
size of the CMA. The weight vector wwwd by contrast is up-
dated using the SDD scheme[15, 16], which has its root in
the blind equalisation scheme of [28]. The complex pha-
sor plane is divided into the M/4 rectangular regions, and
each region Si,l contains four symbol points as defined in
the following

Si,l = {sp,q, p = 2i− 1, 2i, q = 2l − 1, 2l} (9)

where 1 6 i and l 6
√

M/2. An illustration of this local de-
cision region is illustrated in Fig. 1. If the beamformer′s out-
put y(k) ∈ Si,l, a local approximation of the marginal prob-
ability density function (PDF) of y(k) is given by [15, 16]

p̂(www, y(k)) ≈
2i∑

p=2i−1

2l∑

q=2l−1

1

8πρ
e
− |y(k)−sp,q|2

2ρ (10)

where ρ defines the cluster width associated with the
four clusters of each region Si,l. The SDD algorithm
is designed to maximise the log of the local marginal
PDF criterion E[JLMAP(www, y(k))], where JLMAP(www, y(k)) =
ρ ln (p̂(www, y(k))), via a stochastic gradient optimisation.
Specifically, wwwd is updated according to [15, 16]

wwwd(k + 1) = wwwd(k) + µSDD
∂JLMAP(www(k), y(k))

∂wwwd
(11)

where µSDD is the step size of the SDD, and

∂JLMAP(www, y(k))

∂wwwd
=

1

ZN

2i∑
p=2i−1

2l∑

q=2l−1

e
− |y(k)−sp,q|2

2ρ ×

(sp,q − y(k))∗xxx(k) (12)

with the normalisation factor

ZN =

2i∑
p=2i−1

2l∑

q=2l−1

e
− |y(k)−sp,q|2

2ρ . (13)

Fig. 1 Illustration of local decision regions for the soft decision-

directed adaptation procedure for QAM constellation

The choice of the cluster width ρ, defined in the context
of the local PDF (10), should ensure a proper separation
of the four clusters of Si,l. Because the minimum distance
between the two neighbouring constellation points is 2, ρ is
typically chosen to be less than 1. If the value of ρ is too
large, a desired degree of separation may not be achieved.
On the other hand, if the value of ρ is too small, the al-
gorithm attempts to impose an overly tight control on the

size of clusters and hence may fail to achieve its goal. Apart
from these two extreme situations, the performance of the
algorithm is not overly sensitive to the value of ρ employed
and an appropriate ρ can easily be chosen from a large
range of values. More specifically, when the objective of
removing interference is accomplished, y(k) ≈ s1(k) + e(k),
where e(k) is a Gaussian distributed noise with zero mean.
Therefore, the value of ρ is related to the variance of e(k),
which is 2σ2

nwwwHwww. Thus, for high SNR situations, a small
ρ is desired, while for low SNR cases, large ρ is preferred.
Because of the information provided by the training pilots
in the form of the initial weight vector (7), a smaller ρ can
be used, compared with the case of pure blind adaptation
in [15, 16], which leads to better steady-state performance.
Soft decision nature can be explicitly seen in (12). Rather
than committing to a single hard decision Q[y(k)] as the
hard DD scheme would, where Q[·] denotes the quantisa-
tion operator, alternative decisions are also considered in
the local region Si,l that includes Q[y(k)]. Each tentative

decision is weighted by an exponential term e{·}, which is
a function of the distance between the equaliser′s soft out-
put y(k) and the tentative decision sp,q. This soft decision
nature substantially reduces the risk of error propagation
and achieves faster convergence, compared with the hard
DD scheme[15, 16].

It is interesting to point out that a generic partition of
the beamformer′s weight vector is

www = αwwwc + (1− α)wwwd (14)

where 0 6 α 6 1. It is clear that α = 1 corresponds
to a pure CMA blind spatial equaliser while α = 0 is re-
lated to a pure SDD blind spatial equaliser. By choosing
α = 0.5, we arrive at the concurrent CMA and SDD blind
beamformer derived in this contribution. Depending on the
channel condition, appropriate value of α may be chosen to
yield a potentially better beamforming performance. How-
ever, this appropriate weighting value is difficult to find. In
the absence of any a priori information, the weight vector
partition of wwwc = wwwd = 0.5www can be regarded as an optimal
choice.

4 Simulation study

A simulation study was carried out to investigate the
proposed semi-blind adaptive beamforming scheme based
on the concurrent CMA and SDD algorithm. The achiev-
able performance was assessed in the simulation using the
symbol error rate (SER). The analytical SER PE(www) for
the beamformer (5) with the weight vector www is given in
Appendix.

Stationary system. A linear antenna array with nR =
4 elements and a half-wavelength element spacing was em-
ployed to support nT = 4 16-QAM users. The angles
of arrival for the four users were 10◦, 40◦, −15◦, and
−45◦, respectively. The simulated stationary channels were
Am = 1 + j × 0, 1 6 m 6 4. The number of pilot symbols
for the semi-blind scheme was K = 4. Fig. 2 compares the
desired-user′s SERs of the proposed semi-blind beamform-
ing scheme, the training-based beamforming given different
numbers of training symbols, and the optimal MMSE beam-
forming computed with the perfect channel knowledge. In
the training-based adaptive beamforming, given K training
symbols, the LS estimate of the beamformer′s weight vector
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was obtained according to (7), and the resulting SER was
calculated. The performance of the training-based beam-
forming with K = 64 training symbols, not shown in Fig. 2,
was similar to that of the semi-blind combined CMA and
SDD beamforming. It can be seen from Fig. 2 that the
semi-blind scheme with four training symbols can closely
match the performance of the true MMSE beamforming,
while the pure training-based scheme requires at least 64
training symbols to achieve a similar performance.

Fig. 2 Desired user-one symbol error rate performance com-

parison of the proposed semi-blind adaptive beamforming given

K = 4 training symbols, the training-based adaptive beamform-

ing given different numbers of training symbols, and the true

MMSE beamforming given perfect channel knowledge, for the

stationary system of four-element array supporting four 16-QAM

users

The convergence performance of the proposed semi-blind
scheme was investigated. Given the SNR of 18 dB, K = 4
training pilots were first used to provide the initial beam-
forming weight vector according to (7). The appropriate
values for the step size of the CMA as well as the step size
of the SDD were found empirically, and they were chosen
to be µCMA = 4 × 10−6 and µSDD = 4 × 10−4, respec-
tively. A wide range of values were found to be suitable
for the cluster width of the SDD. Fig. 3 plots the learning
curves of the combined CMA and SDD adaptive algorithm
in terms of the SER averaged over ten different runs, given
three values of ρ. It is observed from Fig. 3 that, aided by
the four training pilots, the convergence rate of the concur-
rent CMA and SDD algorithm was much faster than the
pure blind adaptive counterpart of [15, 16]. Furthermore,
the proposed semi-blind scheme is capable of approaching
the optimal MMSE solution, as can be seen in Fig. 3. Given
the SNR of 18 dB, K = 4 training symbols were insufficient
for the training-based beamformer, and the eye diagram
of the beamformer′s output constellation before the blind
adaptation, i.e., with the weight vector www(0) of (7), was
completely closed. In contrast, the beamformer′s output
constellation after blind adaptation is illustrated in Fig. 4,
clearly showing that the eye was opened.

Fig. 3 Learning curves of the concurrent CMA and SDD scheme

in terms of the SER averaged over ten different runs for the

stationary system of four-element array supporting four 16-QAM

users, given the SNR of 18 dB, µCMA = 4×10−6, µSDD = 4×10−4

and three values of cluster width ρ

Fig. 4 The beamformer′s output constellation after blind adap-

tation given SNR of 18 dB for the stationary system of four-

element array supporting four 16-QAM users

Flat fading system. A beamforming system with
nT = 4, nR = 5 and the 16-QAM modulation scheme
was simulated. The system′s channel impulse response
taps hl,m, 1 6 l 6 5 and 1 6 m 6 4, were uncorre-
lated complex-valued Gaussian processes with zero mean
and E

[|hl,m|2
]

= 1, and the performance was averaged over
100 system realisations. The number of pilot symbols used
for the semi-blind scheme was K = 5. The average SER
performance for the purely training based scheme with 5,
15, and 40 training symbols, respectively, as well as the
proposed semi-blind beamforming scheme with the aid of 5
training symbols are shown in Fig. 5, in comparison with the
achievable performance of the MMSE beamforming given
the perfect channel knowledge. The step size of the CMA
as well as the step size and cluster width of the SDD were
empirically set to µCMA = 1 × 10−7, µSDD = 2 × 10−4,
and ρ = 0.4. The blind adaptive process was observed to
achieve convergence typically within 200 to 400 samples.
It can be seen from Fig. 5 that to achieve a similar perfor-
mance as the semi-blind CMA-SDD scheme, the training
based scheme required 40 training symbols.
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Fig. 5 Average symbol error rate performance of the proposed

semi-blind beamforming scheme with five training symbols, in

comparison with the cases of training only based on different

numbers of training symbols and the MMSE beamforming with

the perfect channel knowledge, averaged over 100 realisations of

the flat-fading 5× 4 16-QAM beamforming system

5 Conclusions

A semi-blind adaptive beamforming scheme of low com-
plexity has been proposed for wireless systems that employ
high throughput QAM signalling. A minimum number of
training symbols, equal to the number of receiver antenna-
array′s elements, is used to provide a rough LS estimate
of the beamformer′s weight vector for initialisation. The
CMA aided SDD blind adaptive scheme is then adopted to
adapt the beamformer. Our simulation study has confirmed
that this semi-blind concurrent CMA and SDD algorithm
converges much faster than its pure blind counterpart and
the proposed semi-blind adaptive beamformer is capable of
approaching the performance of the optimal MMSE beam-
forming solution.

Appendix

The analytical SER for the beamformer (5) with the
weight vector www is given in [29]. Define the combined sys-
tem response as wwwHHHH = [c1 c2 · · · cnT ], and assume that
c1 = cR1 + jcI1 satisfies cR1 > 0 and cI1 = 0. The MMSE
beamforming solution (6) meets this condition. For our
proposed semi-blind beamformer, this condition is gener-
ally met, as it approaches the MMSE solution. If this con-
dition is not satisfied, a rotation operation can always be
performed on the weight vector to guarantee this condition
[29]. The SER is expressed as

PE(www) = PER(www) + PEI (www)− PER(www)PEI (www) (A1)

where PER(www) and PEI (www) are the real-part and imaginary-
part SERs, respectively. Note xxx(k) = x̄xx(k) + nnn(k) and
y(k) = ȳ(k)+ e(k), where e(k) is Gaussian distributed with
zero mean and E[|e(k)|2] = 2σ2

nwwwHwww. The noise-free part
ȳ(k) takes values from the set Y that contains Ns = MnT

points. Y can be divided into the M subsets conditioned
on s1(k) as

Y(l,q) , {ȳ(l,q)
i ∈ Y, 1 6 i 6 Nsb : s1(k) = sl,q} (A2)

for 1 6 l, q 6
√

M , where the size of Y(l,q) is Nsb = Ns/M .

The subset Y(l,q) is completely specified by the system chan-
nel matrix HHH. The SER PE(www) can be calculated based on

a single subset Y(l,q)[29]. Expressing ȳ
(l,q)
i = ȳ

(l,q)
Ri

+ jȳ
(l,q)
Ii

,

it can be shown that[29]

PER(www) = γ
1

Nsb

Nsb∑
i=1

Q(g
(l,q)
Ri

(www)) (A3)

PEI (www) = γ
1

Nsb

Nsb∑
i=1

Q(g
(l,q)
Ii

(www)) (A4)

where

γ =
2
√

M − 2√
M

Q(u) =
1√
2π

∫ ∞

u

e−
z2
2 dz (A5)

g
(l,q)
Ri

(www) =
ȳ
(l,q)
Ri

− cR1 (ul − 1)

σn

√
wwwHwww

(A6)

g
(l,q)
Ii

(www) =
ȳ
(l,q)
Ii

− cR1 (uq − 1)

σn

√
wwwHwww

. (A7)
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