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Abstract: A novel particle swarm optimisation (PSO) tuned radial basis function (RBF) network 
model is proposed for identification of non-linear systems. At each stage of orthogonal forward 
regression (OFR) model construction process, PSO is adopted to tune one RBF unit’s centre 
vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error 
(MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are 
sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted 
orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node 
RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF 
models with better generalisation performance and is often more efficient in model construction. 
The effectiveness of the proposed PSO aided OFR algorithm for constructing tunable node RBF 
models is demonstrated using three real data sets. 
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1 Introduction 

The radial basis function (RBF) network is popular neural 
network architecture for non-linear system modelling and 
identification (Chen et al., 1990a). Like other neural 
network models, the parameters of a RBF network, which 
includes nodes’ centre vectors and variances or covariance 
matrices as well as the connecting weights, can be estimated 
based on non-linear optimisation using gradient descent 
algorithms (Chen et al., 1990c; McLoone et al., 1998), the 
expectation-maximisation algorithm (Yang and Chen, 1998; 
Mak and Kung, 2000) or the population-based evolutionary 
algorithms (Gonzalez et al., 2003; Sun et al., 2006; Feng, 
2006; Cardi et al., 2008; Guerra and Coelho, 2008). 
Generally speaking, these non-linear estimation methods are 
computationally expensive. Moreover, the RBF model 
structure or the number of RBF nodes has to be determined 
via other means, typically based on costly cross validation. 
Clustering algorithms can alternatively be applied to find 
the RBF centre vectors as well as the associated basis 
function variances (Moody and Darken, 1989; Chen et al., 
1992; Chen, 1995). The remaining RBF weights can then be 
determined using the simple linear least squares (LS) 
estimate. However, the number of the clusters again has to 
be determined via cross validation. 

A most popular approach for identifying RBF network 
models, however, is to consider the training input data 
points as candidate RBF centres and to employ a common 
variance for every RBF node. The resulting fixed-node RBF 
model becomes linear in the RBF weights and a 
parsimonious RBF network can then be identified 
efficiently using the orthogonal least squares (OLS) 
algorithm (Chen et al., 1989, 1991, 2003, 2004). Similarly, 
the support vector machine (SVM) and other sparse kernel 
modelling methods (Vapnik, 1995; Gunn, 1998; Tipping, 
2001; Schölkopf and Smola, 2002) also place the kernel 
centres to the training input data points and adopt a common 
kernel variance for every kernel. A sparse kernel 

representation is then sought. Since the common variance in 
this fixed-node RBF model is not provided by the learning 
algorithms, it must be determined via cross validation. For 
the kernel methods, such as the ε -SVM (Gunn, 1998), the 
regularisation parameter and the value of ε  must also be 
specified via cross validation. The experimental results of 
(Chen et al., 2004) shows that the local regularisation 
assisted OLS (LROLS) algorithm based on the leave-one-
out (LOO) cross validation compares favourably with other 
sparse kernel modelling methods, in terms of model sparsity 
and generalisation performance as well as efficiency of 
model construction. This LROLS-LOO algorithm (Chen et 
al., 2004) offers a state-of-the-art construction method for 
fixed-node RBF models. 

In this paper we consider the tunable RBF model, where 
each RBF node has a tunable centre vector and an adjustable 
diagonal covariance matrix. However, unlike in the  
non-linear optimisation approach (Gonzalez et al., 2003; 
Sun et al., 2006; Feng, 2006; Cardi et al., 2008; Guerra and 
Coelho, 2008), we do not attempt to optimise all the RBF 
parameters together, which could be a too large and 
complex non-linear optimisation task. Instead, we adopt an 
orthogonal forward regression (OFR) to optimise RBF units 
one by one based on the LOO mean square error (MSE). 
More specifically, we use particle swarm optimisation 
(PSO) (Kennedy and Eberhart, 1995, 2001) to optimise one 
RBF node’s centre vector and diagonal covariance matrix at 
each stage of the OFR. Applying a similar OFR to construct 
the tunable RBF model has been proposed previously 
(Wang et al., 2006a, 2006b), where a global search 
algorithm (Chen et al., 2005) is used to optimise the tunable 
RBF units one by one based on the training MSE and the 
SVM method is used to compute the weights of the resulting 
RBF model. Compared with the LROLS-LOO construction 
algorithm for fixed-node RBF models (Chen et al., 2004), 
the algorithm of (Wang et al., 2006a, 2006b) offers the 
advantages of sparser models with equally good 



248 S. Chen et al.  

generalisation performance at a cost of much higher 
computational complexity in model construction. 

PSO is a population based stochastic optimisation 
technique (Kennedy and Eberhart, 1995, 2001) inspired by 
social behaviour of bird flocking or fish schooling. The 
algorithm starts with random initialisation of a population of 
individuals, called particles, within the problem search 
space. It finds the global best solution by simply adjusting 
the trajectory of each individual toward its own best 
location and toward the best particle of the entire swarm at 
each time. The PSO method is becoming very popular due 
to its simplicity in implementation, ability to quickly 
converge to a reasonably good solution and its robustness 
against local minima. It has been applied to wide-ranging 
optimisation problems successfully (Kennedy and Eberhart, 
2001; Ratnaweera et al., 2004; Guru et al., 2005; Feng, 
2006; Soo et al., 2007; Cardi et al., 2008; Guerra and 
Coelho, 2008; Sun et al., 2008). We demonstrate that the 
proposed PSO aided OFR algorithm for tunable-node RBF 
models not only produces sparser models and better 
generalisation performance but also offers computational 
advantages in model construction process, compared with 
the state-of-the-art LROLS-LOO construction algorithm for 
fixed-node RBF models (Chen et al., 2004). 

The remainder of this paper is organised as follows. In 
Section 2, non-linear system identification is considered 
using the novel tunable RBF model, while the proposed 
PSO-OFR algorithm is derived in Section 3. Our 
experimental results based on three real-life data sets are 
presented in Section 4. Section 5 offers our conclusions. 

2 System identification using tunable RBF 
models 

Consider the class of discrete-time non-linear systems that 
can be represented by the following NARX structure 

x
y uk s k– k–m k– k–m k
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y f y y u u e

   f e

=

=
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where ku  and ky  are the system input and output variables, 

respectively, um  and ym  are the known lags for ku  and ky , 

respectively, ke  is a zero-mean uncorrelated observation 

noise, ( )•sf  denotes the unknown system mapping, and 
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denotes the system input vector with the known dimension 
= +y um m m . The NARX system (1) is a special case of 

the generic NARMAX system that takes the form (Chen and 
Billings, 1989) 
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The techniques developed for the NARX structure can be 
extended to the general NARMAX system (Chen and 
Billings, 1989; Chen et al., 1989, 1990b). 

Given the training data set x 1{ } == K
K k k kD ,y , the task 

is to identify the system (1) using the RBF network model 

1

x x( ) ( ) ( ) = ( ) ( )
=

= =∑ θ
M

M M T
k RBF k i i k M M

i

ˆŷ f p kp θ  (4) 

where ( ) ( )•M
RBFf̂  denotes the mapping of the M -term RBF 

model, M  is the number of RBF units, 

1 2[ ... ]= θ θ θ T
M M  θ  is the RBF weight vector and 

1 2x x x( ) ( ) ( ) ... ( )⎡ ⎤= ⎢ ⎥⎣ ⎦
T
M k k M kk p p pp  (5) 

is the response vector of the M  RBF nodes to the input xk . 
In this study, we consider the general RBF regressor of the 
form 

1x x – x –T
i i i ip ,−⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
( ) = ( ) ( )ϕ μ μΣ  (6) 

where iμ  and 2 2
1 2i i, i, i,m, ,...,= diag{ }σ σ σΣ  are the centre 

vector and diagonal covariance matrix of the i th RBF node, 
respectively, φ(•) is the chosen RBF basis function. In this 
study, the Gaussian basis function is employed. 

Let us define the modelling error at the thk  training 
data point ( )k k,yx  as 

M M
k kˆyk – y .=ε( ) ( )  (7) 

Then the regression model (4) over the training set KD  can 
be written in the matrix form 

y = PM M ,+ ( )εθ M  (8) 

where y T
Ky  y ...y= 1 2[ ]  is the desired output vector, 

1 2
T

K=( ) ( ) ( ) ( )[  ... ]ε ε ε εM M M M  is the modelling error vector 
of the M -term model and the regression matrix 

1 2=M M...[ ]P  p p p  with the i th regressor given by 

T
i i i i K= p p  ... p ,1 2[ ( ) ( ) ( )]x x xp  (9) 

where 1 i M≤ ≤ . Note that kp  is the thk  column of MP  

while T
M k( )p  denotes the thk  row of MP . 
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2.1 Orthogonal decomposition 

Let an orthogonal decomposition of MP  be M M M=P W A , 
where 

1

1
0 1

0 0 1

M
M– ,M

1,2 1,
⎡ ⎤
⎢ ⎥
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Μα α
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and w w wM M= 1 2[   ... ]W  with the orthogonal columns 

that satisfy w w 0T
i l =  for l i≠ . The regression model (8) 

can alternatively be presented as 

y gM M ,= + ( )εW M  (11) 

where 1 2
T

M Mg  g ...g⎡ ⎤= ⎢ ⎥⎣ ⎦g  satisfies the triangular system 

M M M= gA θ . Since the space spanned by the original 

model bases ip i M• ≤ ≤( ), 1 , is identical to the space 
spanned by the orthogonal model bases, the RBF model 
output can equivalently be expressed as 

wM T
k M Mŷ k ,=( ) ( ) g  (12) 

where 1 2wT
M Mk w k w k w k⎡ ⎤= ⎢ ⎥⎣ ⎦( ) ( ) ( )... ( )  is the thk  row of 

MW . 
Orthogonal decomposition can be carried out for 

example using the Gram-Schmidt orthogonalisation 
procedure (Chen et al., 1989). Using the model (11) instead 
of the original one (8) facilitates an efficient OFR model 
construction process. In particular, calculation of the LOO 
MSE becomes very fast, making it possible to construct the 
model by directly optimising the model generalisation 
capability rather than minimising the usual training MSE 
(Chen et al., 2004). 

2.2 OFR based on LOO cross validation 

The evaluation of model generalisation capability is directly 
based on the concept of cross validation (Stone, 1974) and a 
commonly used cross validation is the LOO cross validation 
with its associated LOO test MSE (Myers, 1990). Consider 
the OFR modelling process that has produced the noden-  
RBF model. Let us denote the constructed n columns of 
regressors as 1 2w w wn n ...⎡ ⎤= ⎢ ⎥⎣ ⎦W , the kth model output of 

this noden-  RBF model identified using the entire training 
data set KD  as 

1

n
n

k i i
i

ŷ g w k ,
=

=∑( ) ( )  (13) 

and the corresponding thk  modelling error as 
n n

k k kˆy – y=( ) ( )ε . If we ‘remove’ the thk  data point from 

the training set KD  and use the remaining K – 1  data 

points K k kD ,y\ ( )x  to identify the noden-  RBF model 
instead, the ‘test’ error of the resulting model can be 
calculated on the data point k k,y( )x  not used in training. 

This LOO modelling error, denoted as n,–k
kε
( )  , is given by 

(Myers, 1990) 

n
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where n
kη
( )  is referred to as the LOO error weighting 

(Myers, 1990). The LOO MSE for the noden-  RBF model 
is defined as 
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The LOO MSE nJ  is a measure of the model generalisation 
capability (Stone, 1974; Myers, 1990). For the model (11), 

nJ  can be computed very efficiently because n
kε
( )  and n

kη
( )  

can be calculated recursively using (Chen et al., 2004) 

1

n
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i
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respectively, where 0≥λ  is a small regularisation 
parameter (Chen et al., 2004). The regularisation parameter 
can simply be set to 0=λ  (no regularisation) or a very 
small value (10−6). 

We can use an OFR procedure based on this LOO MSE 
to construct the RBF nodes one by one. At the thn  stage of 
the construction, the thn  RBF node is determined by 
minimising nJ  with respect to the node’s centre vector nμ  

and diagonal covariance matrix nΣ  

( )min
n n

n n n,
J , .

μ
μ

Σ
Σ  (18) 

In the next section, we will detail how to use PSO to 
perform this optimisation. Note that the LOO MSE nJ  is 
locally convex with respect to the model size n  (Chen et 
al., 2004). Thus, there exists an ‘optimal’ number of RBF 
nodes M  such that: for nn M  J≤  decreases as the model 
size n  increases while 

1M MJ J .+≤  (19) 
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Therefore, this OFR construction process is automatically 
terminated when the condition (19) is met, yielding a very 
small model set containing only M  RBF nodes. After 
constructing the - nodeM  RBF model using this OFR 
procedure, we may apply the LROLS-LOO algorithm of 
(Chen et al., 2004) to automatically update individual 
regularisation parameter for each RBF weight which may 
further reduce the model size. This refinement with the 
LROLS-LOO algorithm requires a very small amount of 
computation since the regression matrix MP  is completely 
specified with only a few columns. 

3 PSO aided OFR 

The task at the thn  stage of the OFR for constructing a 
tunable RBF network is to solve the optimisation problem 
(18). Since this optimisation problem is non-convex with 
respect to nμ  and nΣ , a gradient-based algorithm may 
become trapped at a local minimum. Alternatively, global 
search methods, such as the genetic algorithm (Goldberg, 
1989; Man et al., 1998), the adaptive simulated annealing 
(Ingber, 1993; Chen and Luk, 1999) or the repeated 
weighted boosting search (Chen et al., 2005) may be used to 
perform this optimisation task. In this study, we adopt PSO 
(Kennedy and Eberhart, 1995, 2001) to determine nμ  and 

nΣ . Our study demonstrates that PSO is particularly suited 
for the optimisation task (18). In fact, our experimental 
results will show that the PSO aided OFR for constructing 
tunable-node RBF models is computationally more efficient 
than the LROLS-LOO algorithm for constructing  
fixed-node RBF models. 

3.1 Particle swarm optimisation 

In a PSO algorithm (Kennedy and Eberhart, 1995, 2001), a 
group of S particles that represent potential solutions are 
initialised over the search space randomly. Each particle has 
a fitness value associated with it, based on the related cost 
function of the optimisation problem and this fitness value 
is evaluated at each iteration. The best position, pbst , 
visited by each particle provides the particle the so called 
‘cognitive information’, while the best position so far 
among the entire group, gbst , offers the ‘social 
information’. The spbst  and gbst  are updated at each 
iteration. Each particle has its own velocity to direct its 
flying, which relies on its previous speed as well as its 
cognitive and social information. In each iteration, the 
velocity and the position of the particle are updated based 
on the following equations 

1l l l l
i i i i

l l
i

rand c –

         rand c –

+ = ∗ + ∗ ∗

∗ ∗

[ ] [ ] [ ] [ ]
1
[ ] [ ]

2

() ( )

+ () ( ),

v v pbst u

gbst u

ξ
 (20) 

1 1l l l
i i i ,+ += +[ ] [ ] [ ]u u v  (21) 

l  iteration index, 1 l L,  L≤ ≤  is the maximum number 
of iterations 

i  particle index, 1 i S,  S≤ ≤  is the particle size 

l
i
[ ]v  velocity of thi  particle at thl  iteration. The thj  

elements of l
i
[ ]v  are in the range 

max maxj j–V ,V⎡ ⎤
⎢ ⎥⎣ ⎦

 

ξ  inertia weight 

jc  the acceleration coefficients, j  = 1, 2 

rand()  uniform random number between 0 and 1 

l
i
[ ]u  position of thi  particle at thl  iteration. The thj  

elements of l
i
[ ]u  are in the range 

min maxj jU ,U⎡ ⎤
⎢ ⎥⎣ ⎦

 

l
i
[ ]pbst  best position that the thi  particle has visited up to 
thl  iteration 

l[ ]gbst  best position that all the particles have visited up to 
thl  iteration 

It is reported in (Ratnaweera et al., 2004) that using a time 
varying acceleration coefficient (TVAC) can enhance the 
performance of PSO. The reason is that at the initial stages, 
a large cognitive component and a small social component 
help particles to wander around the search space and to 
avoid local minima. In the later stages, a small cognitive 
component and a large social component help particles to 
converge quickly to a global minimum. We adopt this 
TVAC mechanism as suggested in (Ratnaweera et al., 
2004), in which c1  for the cognitive component is reduced 

from 2.5 to 0.5 and c2  for the social component varies from 
0.5 to 2.5 during the iterative procedure according to 

2 02 5
1 0

. l
c . –

. L

∗
=

∗1  (22) 

and 

2 00 5
1 0

,. l
c .

. L

∗
= +

∗2  (23) 

respectively. In our experiment, we have found out that 
using a random inertia weight 

rand= ()ξ  (24) 

achieves better performance than using 0=ξ  or constant 
ξ . If the velocity in (20) approaches zero, it is reinitialised 
randomly to proportional to the maximum velocity 

1
max

l
i jj

rand V ,+ = ± ∗ ∗γ[ ] ()v  (25) 

where 1l
i j

+[ ]v  denotes the thj  element of 1l
i
+[ ]v  and  

γ  = 0.1 is a constant. 
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3.2 PSO aided OFR for tunable RBF model 

The procedure of using the PSO aided OFR to determine the 
thn  RBF node is now summarised. Let u be the vector that 

contains nμ  and nΣ . The dimension of u is thus 2m . The 
search space is specified by 

1
⎧⎪ = ≤ ≤⎪⎪ ≤ ≤⎨⎪ = ≤ ≤⎪⎪⎩

min

max

j j,k

j j,k

U  x k K
 j m,

U  x k K

min{ , 1 },

max{ , 1 },
 (26) 

and 

2 2 2
min maxj jU ,  U ,  m j m.= = ≤ ≤σ σmin max 1+  (27) 

The velocity bounds are defined by 

( )0 5 1 2= ∗ − ≤ ≤
max max minj j jV . U U ,  j m.  (28) 

Give the following initial conditions 

21 1
1

1 1k k k
KT

kN N k

y   ,  k K,

J y .
=

⎫⎪= = ≤ ≤ ⎪⎪⎬⎪= ⎪⎪⎭∑
ε η(0) (0)

0

and

=y y
 (29) 

Specify the number of iterations L and the particle size S. 

PSO initialisation Randomly generate the particles 
0 1i , i S≤ ≤[ ]u , within the search 

space defined by (26) and (27). Set 
the initial velocities 

0
2 1i m , i S= ≤ ≤[ ]v 0 , where 2m0  

denotes the zero vector of dimension 
2m . Initialise ( )nJ [0]gbst  and 

( )n iJ
[0]

pbst  for 1 i S≤ ≤  to a value 

larger than J0 . 

Iteration loop For 0l  l L  l= ≤( ; ;  + +){  

Orthogonalisation and cost function evaluation. 

1 For 1 i S≤ ≤ , generate i
n
)p  from l

i
[ ]u , the candidates 

for the thn  model column, according to (9) and 
orthogonalise them according to the Gram-Schmidt 
orthogonalisation procedure (Chen et al., 1989) 

i T i T
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2 For 1 i S≤ ≤ , calculate the LOO cost for each l
i
[ ]u  
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where ( )i
nw k)  is the thk  element of i

n
)w . 

Update cognitive and social information 

1 For ( )i  i S  = ≤ ++1; ; i  

If ( )( )i l
n n iJ J<) [ ]pbst  

( )l i
n i nJ J=[ ] );pbst  

l l
i i=[ ] [ ];pbst u  

End if; 

End for; 

2 Find 

( )
1

l
n ii S

i  J .∗
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n n ii
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( ) ( )ll
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End if; 

Update velocities and positions of particles 

1 For ( )i  i S  = ≤ ++1; ; i  
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1
1

2

l l l l
i i i i

l l
i

rand rand c

         rand c

+ = ∗ + ∗ ∗ −

∗ ∗ −

[ ] [ ] [ ] [ ]

[ ] [ ]

() ()

+ () ;

v v pbst u

gbst u

For 1j  j m  = ≤( ; 2 ; j+ +)  

If 1 0l
i j
+ ⏐ ==[ ]( )v  

 If 0 5rand .<( () )  

1
max

l
i j jrand V+ ⏐ = ∗ ∗γ[ ] () ;v  
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Else 

1
max

l
i j jrand V+ ⏐ = − ∗ ∗γ[ ] () ;v  

End if; 

End if; 

If 1
max

l
i j jV+ ⏐ >[ ]( )v  

1
max

l
i j jV+ ⏐ =[ ] ;v  

Else if 1
max

l
i j jV+ ⏐ <−[ ]( )v  

1
max

l
i j jV+ ⏐ = −[ ] ;v  

End if; 

End for; 

End for; 

2 For ( )i  i S  = ≤ ++1; ; i  

1 1l l l
i i i
+ += +[ ] [ ] [ ];u u v  

For ( )j  j m  = ≤ ++1; 2 ; j  

If 1
max

l
i j jU+ ⏐ >[ ]( )u  

1
max

l
i j jU+ ⏐ =[ ] ;u  

Else if 1
min

l
i j jU+ ⏐ <[ ]( )u  

1
min

l
i j jU+ ⏐ =[ ] ;u  

End if 

End for; 

End for; 

} End of iteration loop 

This yields the solution L= [ ]u gbst , i.e. the centre vector 

nμ  and the diagonal covariance matrix nΣ  of the thn  

RBF node, the thn  model column np , the 

orthogonalisation coefficients j,n ,  j n≤ ≤α 1 , the 

corresponding orthogonal model column nw  and the 

weight ng , as well as the n-term  modelling errors n
kε
( )  

and the associated LOO error weightings n
kη
( )  for 

k K≤ ≤1 . 

3.3 Computational complexity comparison 

The LROLS-LOO algorithm (Chen et al., 2004) is an 
efficient construction algorithm for fixed-node RBF models. 
In particular, it has significant computational advantages 
over many other sparse kernel modelling methods. We 
therefore compare the computational complexity of the 
proposed PSO aided OFR for constructing tunable-node 
RBF models with that of the LROLS-LOO algorithm for 
constructing fixed-node RBF models. 

Given the RBF variance, the LROLS-LOO algorithm 
involves a few iterations. The first iteration works on the 
K K×  full regression matrix and selects a subset of M ′  
RBF nodes, where M K′ . The computational 
complexity of the algorithm is dominated by this first 
iteration and the complexity of the rest iterations is 
negligible. For the LROLS-LOO algorithm, it is 
straightforward to verify that the computational complexity 
of one model column orthogonalisation and the associated 
LOO cost function evaluation is the order of K, (K)O . 
Thus, we can characterise the complexity of the algorithm 
by the required number of the LOO cost function 
evaluations and associated model column 
orthogonalisations, which is given by 

1

1
M

i

C K i M K
′

=

′≈ − − ≈ ×∑LROLS–LOO ( ( )) ,  (36) 

where the first approximation is due to the fact that we only 
count the complexity of the first iteration and the second 
approximation is arrived because the selected model size 
M ′  is much smaller than the training data size K . 

Since for the PSO aided OFR algorithm, the 
computational requirement of one model column 
orthogonalisation and the associated LOO cost function 
evaluation is also the order of K, (K)O , we can also 
characterise the computational requirements of the 
algorithm by the number of the LOO cost function 
evaluations and associated model column 
orthogonalisations. This number is given as 

C M S L,= × ×PSO–OFS  (37) 

where M is the constructed model size, S the particle size 
and L the number of iterations. The model size M is usually 
much smaller than the model size M ′  obtained by the 
LROLS-LOO algorithm. Our experimental results will show 
that typically <C CPSO–OFS LROLS–LOO . Note that the 
complexity of (37) is the true complexity of the PSO aided 
OFR algorithm, while the complexity of (36) is the 
complexity of the LROLS-LOO algorithm given a RBF 
variance. Since the RBF variance is not provided by the 
LROLS-LOO algorithm, it must be determined using for 
example a grid search based cross validation. If an 
N - point  grid search is used to determine the RBF 
variance, the true complexity of the LROLS-LOO algorithm 
will be approximately N C× LROLS–LOO . Taking this fact 
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into account, computational advantages of the proposed 
PSO aided OFR algorithm becomes even more significant. 

4 Experimental results 

Three real data sets were used to investigate the proposed 
PSO aided OFR for constructing tunable-node RBF models. 
For these three data sets, our previous work has shown that 
the LROLS-LOO algorithm for constructing fixed node 
RBF models (Chen et al., 2004) offers considerable 
advantages, in terms of model size and generalisation 
performance as well as computational requirement of 
modelling process, over many existing sparse kernel 
modelling methods, such as the SVM. We therefore used 
this LROLS-LOO algorithm as the benchmark in our 
experiment. 

4.1 Engine data set 

The data set contains 410 data pairs of the input ku  (the 

fuel rack position) and the output ky  (the engine speed), 
collected from a Leyland TL11 turbocharged, direct 
injection diesel engine operated at low engine speed 
(Billings et al., 1989). The data set is depicted in Figure 1. 
The first 210 data points were used in modelling and the last 
200 points in model validation. The study (Billings et al., 
1989) has shown that at low engine speed the system is  
non-linear and this data set can be modelled adequately as 

k s k ky f  e ,= +( )x  (38) 

where ( )sf •  describes the unknown underlying system to 

be identified, ke  denotes the system noise and 

1 1 2
T

k k– k– k–y  u  u= [ ]x . 
We first applied the LROLS-LOO algorithm (Chen et 

al., 2004) to fit a fixed-node RBF model with a common 
RBF variance 2σ  to the data set. An appropriate value for 
the RBF variance was found to be 1 69.2 =σ  via cross 
validation. Given the RBF variance 1 69.2 =σ , the first 
iteration of the LROLS-LOO algorithm automatically 
selected 24M ′ =  RBF nodes and the subsequent iterations 
reduced the final model size to 22 RBF nodes. The 
complexity of the algorithm given 1 69.2 =σ  was therefore 
CLROLS−LOO = 24 × 210 = 5,040. The performance of this  
22-term RBF network model are summarised in Table 1. 

We next applied the PSO aided OFR algorithm to 
construct a tunable-node RBF model. It was found 
empirically that setting the particle size to S = 10 and the 
number of iterations to L = 20 were sufficient. The model 
construction process is illustrated in Figure 2, where it is 
seen that the PSO aided OFR algorithm automatically 
constructed a tunable-node RBF network of M = 22 units 
since J22 < J23. The LROLS-LOO algorithm was then 
applied to this 22-term model set to obtain a final model of 

15 units. The performance of this 15-node RBF model are 
given in Table 1, in comparison with the benchmark results 
of the 22-term RBF model constructed by the LROLS-LOO 
algorithm. The complexity of the PSO aided OFR algorithm 
was calculated as CPSO−OFS = 22 × 10 × 20 = 4,400. Figure 3 
depicts the model prediction kŷ  and the prediction error 

k k kˆy y= −ε  generated by the 15-node tunable RBF model 
constructed by the PSO aided OFR algorithm. In 
comparison with the benchmark LROLS-LOO algorithm, 
the PSO aided OFR algorithm not only produced a smaller 
RBF model with better test MSE performance but also was 
more efficient in modelling process. Note that the 
computational advantage of the PSO aided OFR was much 
more significant than shown in Table 1 as we did not count 
the computational requirements for determining an 
appropriate RBF variance needed by the LROLS-LOO 
algorithm. 

Figure 1 Engine data set: (a) system input ku , and (b) system 

output ky  

  
(a) 

 
(b) 

Table 1 Comparison of the two Gaussian RBF network models 
obtained by the LROLS-LOO and PSO-OFR algorithms 
for the engine data set 

Algorithm RBF type Model size Training MSE 

LROLS-LOO Fixed 22 0.000453 
PSO-OFR Tunable 15 0.000426 

Algorithm Test MSE Complexity 

LROLS-LOO 0.000490 5,040 
PSO-OFR 0.000466 4,400 
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Figure 2 Leave-one-out MSE versus model size for the engine 
data set obtained by the PSO aided OFR 

 

Figure 3 Modelling of the engine data set by the 15-node RBF 
network constructed using the PSO aided OFR 
algorithm, (a) model prediction kŷ  superimposed on 

system output ky  (b) model prediction error 

k k kˆy y= −ε  

 
(a) 

 
(b) 

4.2 Gas furnace data set 

The gas furnace data set was the time series J in (Box and 
Jenkins, 1976). The data set contained 296 pairs of input-
output points as depicted in Figure 4, where the input ku  

was the coded input gas feed rate and the output ky  
represented the CO2 concentration from the gas furnace. 
From the 296 pairs of input and output data, we constructed 
296 data points { kx , ky } with kx  given by 

1 2 3 1 2 3
T

k k– k– k–  k– k– k–y  y y u u u .= [    ]x  (39) 

From Figure 4, it can be observed that the second half of the 
data set was different from the first half. Therefore, we used 
the even-number pairs of { kx , ky } for training and the odd-

number pairs of { kx , ky } for testing. Both the training and 
testing sets had 148 data points. 

For the fixed-node RBF model, an adequate RBF 
variance was found to be σ2 = 1,000.0 after a grid search 
based cross validation using the LROLS-LOO algorithm. 
Given σ2 = 1,000.0, the first iteration of the LROLS-LOO 
algorithm terminated with M ′  = 13 and further iterations 
yielded a final model of 12 RBF nodes. The modelling 
performance of the LROLS-LOO algorithm are summarised 
in Table 2, where the complexity was calculated according 
to (36) for the given RBF variance σ2 = 1,000.0. 

Figure 4 Gas furnace data set: (a) system input ku , and (b) 

system output ky  

 
(a) 

 
(b) 

Table 2 Comparison of the two Gaussian RBF network 
models obtained by the LROLS-LOO and PSO-OFR 
algorithms for the gas furnace data set 

Algorithm RBF type Model size Training MSE 

LROLS-LOO fixed 12 0.047448 
PSO-OFR tunable 8 0.041639 

Algorithm Test MSE Complexity 

LROLS-LOO 0.080491 1,924 
PSO-OFR 0.078884 1,600 
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Figure 5 Leave-one-out MSE versus model size for the gas 
furnace data set obtained by the PSO aided OFR 

 
Figure 6 Modelling of the gas furnace data set by the 8-node 

RBF network constructed using the PSO aided OFR 
algorithm (a) model prediction kŷ  superimposed on 

system output ky  (b) model prediction error 

k k kˆy y= −ε  

 
(a) 

 
(b) 

For constructing the tunable-node RBF model using the 
PSO aided OFR algorithm, we set the particle size to S = 10 
and the number of iterations to L = 20. Figure 5 depicted the 
LOO MSE as a function of the model size. It can be seen 
from Figure 5 that J8 < J9. Thus, the PSO aided OFR 
algorithm terminated with an 8-node RBF network. No 
further reduction in the model size was achieved by 
applying the LROLS-LOO algorithm to this 8-term model 
set. The performance of the 8-node RBF model constructed 
by the PSO aided OFR are given in Table 2, in comparison 
with the results of the 12-term RBF model selected by the 

LROLS-LOO algorithm. Figure 6 depicts the model 
prediction kŷ  and the prediction error k k kˆy y= −ε  
produced by the 8-node RBF model constructed using the 
PSO aided OFR algorithm. For this example, again the PSO 
aided OFR algorithm offered clear advantages in more 
parsimonious model and better generalisation performance 
as well as more efficient model construction, compared with 
the benchmark LROLS-LOO algorithm. 

4.3 Liquid level data set 
The data set was collected from a non-linear liquid level 
system, which consisted of a DC water pump feeding a 
conical flask which in turn fed a square tank. The system 
input ku  was the voltage to the pump motor and the system 

output ky  was the water level in the conical flask. A 
description of this non-linear process can be found in 
(Billings and Voon, 1986) and Figure 7 shows the 1,000 
data points of the data set used in this experiment. From the 
data set, 1,000 data points { kx , ky } were constructed with 

kx  given by 

1 2 3 1 2 3 4
T

k k– k– k–  k– k– k– k–y  y y u u u u .= [     ]x  (40) 

The first 500 pairs of the data were used for training and the 
remaining 500 pairs for testing the constructed model. 

Figure 7 Liquid level data set (a) system input ku  (b) system 

output ky  

 
(a) 

 
(b) 
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For the fixed-node RBF model with every training input 
data used as a candidate RBF centre vector, an appropriate 
RBF variance was found to be 2 0.2 =σ  via a grid search 
based cross validation using the LROLS-LOO algorithm. 
With 2 0.2 =σ , the first iteration of the LROLSLOO 
algorithm produced a model set of 30M ′ =  nodes and 
further iterations did not reduce the final model size.  
The results obtained by the LROLS-LOO algorithm are 
given in Table 3, where the complexity was computed as 
CLROLS−LOO = 30 × 500 = 15,000 for the fixed σ2 = 2.0. 

Table 3 Comparison of the two Gaussian RBF network models 
obtained by the LROLS-LOO and PSO-OFR 
algorithms for the liquid level data set 

Algorithm RBF type Model size Training MSE 

LROLS-LOO fixed 30 0.001400 
PSO-OFR tunable 20 0.001461 

Algorithm Test MSE Complexity 

LROLS-LOO 0.002532 15,000 
PSO-OFR 0.002463 4,200 

We again set the particle size to S = 10 and the number of 
iterations to L = 20. The process of constructing the tunable-
node RBF model using the PSO aided OFR algorithm is 
illustrated in Figure 8, where it can be seen that the 
algorithm produced a model set of M = 21 nodes since  
J21 < J22. Applying the LROLS-LOO algorithm to this  
21-term model set yielded the final model containing 20 
nodes. The results produced by the PSO aided OFR are also 
listed in Table 3. Figure 9 shows the model prediction kŷ  

and the prediction error k k kˆy y= −ε  produced by the 20-
node RBF model constructed using the PSO aided OFR 
algorithm. For this example, the PSO aided OFR algorithm 
has clear advantages over the benchmark LROLS-LOO 
algorithm, in terms of model size and generalisation 
capability as well as complexity of model construction. 

Figure 8 Leave-one-out MSE versus model size for the liquid 
level data set obtained by the PSO aided OFR 

 
 

Figure 9 Modelling of the liquid level data set by the 20-node 
RBF network constructed using the PSO aided OFR 
algorithm (a) model prediction kŷ  superimposed on 

system output ky  (b) model prediction error 

k k kˆy y= −ε  

 
(a) 

 
(b) 

5 Conclusions 

In this contribution we have proposed a novel PSO aided 
OFR algorithm to construct tunable-node RBF network 
models for non-linear system identification. Unlike the 
standard fixed-node RBF model where the RBF centre 
vectors are placed at the training input data points and a 
common RBF variance is used for every RBF node, the 
proposed algorithm optimises one RBF node’s centre vector 
and diagonal covariance matrix by minimising the LOO 
MSE at each stage of the OFR. The model construction 
procedure automatically determines how many tunable 
nodes are sufficient and PSO ensures that this model 
construction procedure is computationally very efficient. 
Using the best existing algorithm for constructing  
fixed-node RBF models, the LROLS-LOO algorithm, as the 
benchmark, the experimental results involving three real-life 
data sets have confirmed that the proposed PSO aided OFR 
algorithm for constructing tunable-node RBF models offers 
clear advantages over the benchmark LROLS-LOO 
algorithm for constructing fixed-node RBF models, in terms 
of more parsimonious model and better generalisation 
performance as well as more efficient model construction. 

In the proposed PSO aided OFR procedure, the RBF 
units are optimised one by one. A criticism is that this is a 
suboptimal procedure. Alternatively, one could optimise all 
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the RBF units together using the PSO, as in (Sun et al., 
2006; Feng, 2006; Cardi et al., 2008; Guerra and Coelho, 
2008). However, as emphasised in the introduction section, 
this fully non-linear optimisation approach will be 
computationally very expensive and, moreover, there is no 
guarantee that a better RBF model can always be obtained, 
compared with our much simpler approach. Our proposed 
approach can be viewed as combining both the non-linear 
and linear learning methods. It provides greater modelling 
capability of the non-linear approach while offers 
computational simplicity of the linear fixed-node approach. 
In fact, as demonstrated clearly in the experimental results, 
the computational complexity of the proposed PSO aided 
OFR procedure is simpler than the best linear fixed-node 
approach, the LROLS-LOO algorithm. 
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