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Recursive prediction error parameter estimator for non-linear models

S. CHENt and S. A. BILLINGSt

A recursive prediction error parameter estimation algorithm is derived for systems
which can be represented by the NARMAX (non-linear ARMAX) model. A
convergence analysis is presented using the differential equation approach, and the
new concept of m-invertibility is introduced. The analysis shows that while a highly
non-linear process model may be used to capture the non-linearity of the system it is
advisable to fit a simple noise model. The results of applying the algorithm to both
simulated and real data are included.

I. Introduction
Recursive identification of parameters in linear models is now a well-established

field. Several methods of analysing recursive estimators have been proposed and an
elegant cohesive theory has been developed (Ljung and Soderstrom 1983).

In many practical applications, however, non-linear models may be required to
achieve an acceptable predictive accuracy. Subject to some mild assumptions the
NARMAX model (Billings and Leontaritis 1981, Leontaritis and Billings 1985) can be
used as a basis for identification of such systems, and several of the basic principles of
linear recursive identification can with obvious interpretations be applied to this
model (Billings and Leontaritis 1982, Billings and Voon 1984, Fnaiech and Ljung
1987).

In the present study a recursive prediction error estimator (RPEM) is derived for
the polynomial NARMAX model. In order to apply the differential equation
approach of convergence analysis developed by Ljung, the filter that generates the
prediction should be exponentially stable and for the NARMAX model this coincides
with the stability of the noise model. Whilst this is relatively easy to analyse when the
noise model is linear, the new concept of m-invertibility is introduced for the general
case of non-linear noise models. This leads to a convergence analysis of the RPEM for
polynomial NARMAX models and to the development of a practical rule for the
choice or noise model in non-linear system identification. The rule, which implies that
to ensure m-invertibility the noise model should not include non-linear terms in the
prediction errors, has important implications for all non-linear model fitting al­
gorithms, recursive or batch. The results represent an extension of a previous study
(Chen and Billings 1988 b), which considered non-linear output-affine models and,
which by definition was therefore restricted to the special case of noise models linear
in the prediction errors.

For notational simplicity the single ...input single-output case is studied throughout
although the results are valid for multi-input multi-output systems. The algorithms
are illustrated using both simulated and -real data.
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570 S. Chen and S. A. Billings

2. NARMAX model
Under some mild assumptions a discrete-time non-linear stochastic control

system can be described by the NARMAX model (Leontaritis and Billings 1985)

y(t) = f(y(t - 1), ... , y(t - n,), u(t - 1), ... , u(t - nul, e(t - 1), ... , e(t - ne )) + e(t) (1)

where y(t), u(t) and e(t) are the system output, input and noise respectively; n", .n., and
ne are the orders of the output, input and noise; {e(t)} is assumed to be a white
sequence; and f( • ) is some non-linear function. Expanding f( • ) as a polynomial of
degree L gives the representation

where

n.
y(t) = L 8i X i(t) + B(t,8)

i= 1
(2)

L

n, = L nl; no = 1, n, =n1-dn, + n., + n.r + i - 1)/i, i = 1, ... , L (3)
l=O

and

(4)

x 1(t) = 1

xl(t) = Ii y(t - ",j) · Ii u(t - nuk ) · rt e(t - ne"u 8)
j=l ':=1 "1=1

i = 2, ... , n" p, q, r~ 0, 1~ P+ q + r ~ L, 1~ n,j ~ n, (5)

By convention, p = 0, q = 0 or r = 0 indicates that xI(t) does not contain y( .) terms,
u( .) terms or e( .) terms, respectively. As 8 ranges over DM , a subset of 1R"t, (2)
describes the set of models within which the onethat best describes the recorded data
is to be selected. Denote the input-output record at time t - 1 as

. z'-1 = (z(t - 1), ... , z(o»
where

[
y(t)]

z(t) =
u(t)

Then for a given (J the one..step..ahead prediction of the output at time t is

Y(t 18) =gM(8; t, Z'-l) = 8T (j).(t, 8)

where

<I>.(t,8) = (Xl (r), ... , Xn.(t))T

The prediction error is given by

e(t, 8) = y(t) - ji(t 18)

The gradient of Y(t 18)

'I'(t. 8) = [dY<:~ 8)J

(6)

(7)

(8)

(9)

(10)

(11)
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Recursive prediction error parameter estimator 571

(12)

an ft,...dimensional column vector, plays an important role in recursive identification.
Differentiating (8) with respect to 6 yjelds

6 6 ~ [8T olP.(t, 8) ] ' 8
'1'(1, )=41.(t, )- '~1 . a£(t-~6) '1'(1-1, )

Regrouping terms in (2) gives

y(t) = fP(y(t - l), <"t y(t - n,), u(t - 1), .", u(t - n.,); 6)

+ fn(y(t ~ 1), ..<' y(t - n,), u(t - 1), ... , u(t - n.,), £(t - 1,8), ,.. , e(t - nft, 8); 8)

+£(t, 8) (13)

wherefP( • ) contains all terms 8,x,(t) with r =0 andfD( • ) contains all terms 8,x,(t)
with r -:# O.fP( • ) is referred to as the process model andfD( • ) as the noise model. A
first ...order NARMAX model with second-degree non-linearity would for example be
given by

y(t) = [8 1 + 82y(t - 1)+ 83 u(t - 1)+ 84 y 2 ( t - 1)+ 8:sy(t - l)u(t - 1)+ 66 u2 (t - 1)]

.+ [87e(t - 1,6) + ( 8)1( t - 1)£(t- 1,6) + 89 u(t - 1)£(t- 1,6)

+ 810 £2 ( t - 1,8)] + e(t, 8) (14)

Notice that unlike the output-affine model (Chen and Billings 1988 b) non-linear
power terms in y( • ) and £( • ) are present.

An important case of the model (13) is

y(t) = fP(y(t - 1), ... , y(t - n,), u(t - 1), ... , u(t - n..); 8)

n.

+ ~ c,e(t - i, 6) + e(t, 6)
ID 1

(15)

where the c, coefficients are part of 9. The off-line identification of several industrial
systems has shown that many can be modelled in the form of (15). Some examples are
a 6996 bhp industrial diesel generator (Billings et al. 1988b), a liquid level system
(Billings 1986) and a heat exchanger (Billings and FadziJ 1985, Liu et ala 1987). It is
obvious that the ARMAX model

A(q-l )y(t) = B(q-l )u(t) + C(9- 1 )£(t, 8) (16)

where A(q-l)t B(q-l) and C(q-l) are the polynomials in the backward shift operator
q-l

(17)

is a simple case of (15).

3. Recursive prediction error estimator
A generaJ class of recursive parameter estimators is derived by minimizing the

discrepancy between the measured output and the predicted output according to a
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572 S. Chen and S. A. Billings

candidate model (the prediction error) over the model set. The method of deriving
these estimators is generally referred to as the recursive prediction error method and
its application to linear system identification has been extensively studied
(Soderstrom 1973, Gertler and Banyasz 1974, Ljung 1978, 1979, Ljung and
Soderstrom 1983). In this section, the recursive prediction error method is applied to
the NARMAX model. A quadratic criterion will be used as an illustration. Extension
to the general criterion is obvious.

Based on a recursive minimization of the criterion

V(8) =E[e2 (t, 6)]

a recursive prediction error parameter estimator takes the form

e(t) = y(t) - Y(t) I
R(t) = R(t - 'I) + )'(t) ['P(t)'PT(t) - R(t - 1)]

t1( t) = O( t - 1) + y(t)R - 1(t)'fJ(t)e(t)

(18)

(19)

(20)

(2])

In the algorithm (19) '1'(t)e(t) corresponds to the gradient of the criterion (18) and R( t)
is an approximation of the Hessian of the criterion. R -1 (t)'I'(t)e(t) is therefore a
Gauss-Newton search direction. Other search directions are also feasible, and as long
as R(t) is positive definite the convergence properties of the algorithm win not be
changed. If the prediction error process is not stationary the criterion can be chosen as

1 N
V(8) =£[e2(t, 8)] = lim N L E[£2(t, 6)]

N-«:> 11:11

Notice that e(t), Y(t) and 'I'(t) depend upon all the old estimates 8(t - 1) to t1(0)
implicitly.

In practice, the algorithm (19) is implemented in the equivalent form

e(t) = y(t) - Y(t) }

1 [ - P(t - 1)'I'(t)'I'T(t)P(t - 1)]
P(t) = l(t) P(t - 1) - l(t) + 'l'T(t)p(t - 1)'I'(t)

O(t)= O(t - 1)+ P(t)'JI(t)e(t)

, where

P(t) = y(t)R - 1(t)

A(t) = y(t - 1)[1 - y(t)]/y(t)

(22)

(23)

For analysis purposes, however, it is better to work with version (] 9).
It now remains to specify recursions Y(t) and '¥(~) for the NARMAX model. From

(8) and (12) it is seen that

y< t) = (t1( t - 1»T <I»*(t) (24)

'1'(1) = 41-(1) - J, [(/1(1 - I»T a~ir~I:) ] '1'(1 - i) (25)

where <I»*(t) is obtained by replacing e(t - i, 6) in (9) by e(t - i). If the model structure
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Recursive prediction error parameter estimator

is given by (15) the recursion (25) is often written as

1
'I'(t) = C(q-l) 4>.(t)

573

(26)

(27)

"-where C(q-l) = 1+ L Ci(l - l)q-i. Notice that this is similar to the ARMAX model.
i= 1

As an illustration of recursions (24) and (25), the simple example (14) in § 2 would
result in the following definitions:

f1(t) = (81(t), •.. , 010(t»T

'I'(t) = ('1'1 (r), ... , 'l'10(t»T

q,.(t) = (1, y(t - 1), u(t - 1), y2(t - I), y(t -1)u(t - I)~ u2(t - I), t(t - t),

y(t - 1)£(t - 1), u(t - 1)£(t - 1), £2(t - I»T

1\ T 0cP·(1) 1\ 1\ 1\
r1(t - 1) oe(t _ 1) = r17(t - 1)+ r18(t - 1)y(t - 1)+ r19{t - l)u(t - 1)

+ 2010 (t - 1)£(t - 1)

4. Convergence analysis

4.1. Results for the linear model
In linear system identification it is assumed that the prediction Y(t 16) is obtained

by filtering the input-output data through a linear finite-dimensional filter

q,(t + 1,6) = F(6)q,(t, 8) + G(6)z(t)}
Y( t 16) = H( 6)q,(t, 8)

where 4>( t, 6) is an n-dimensional vector, F(6) and G(8) are matrices of appropriate
dimensions. The stability region of the predictor (27) is

D. = {81 F( 6) has all eigenvalues inside the unit circle} (28)

The predictor should be constrained to be stable. Therefore it is necessary to require
that DM c D•. Notice that D. is not the stability region for the system dynamics, and
that constraining 6 to D. does not impose a serious restriction on the model. All linear
models can bewritten in the form of (27). It can easily be shown that for the ARMAX
model (16)

where

D, = {61 C*(s) has all zeros inside the unit circle}

C·(s) =5"-C(S-l)

(29)

(30)

Before quoting the analysis results from Ljung (1977, 1979), Ljung and Soderstrom
(1983), it should be emphasized that the same analysis results hold for the predictor
model

q,(t + 1,8) = F(6)4>(t, 8) + G(8)h(z(tn}
Y(t 18) = H(lJ)tf>(t, 8)

(31)
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574 s. Chen and S. A. Billings

where h( • ) is some vector-valued function. This is apparent in the proof of Theorem 1
in Ljung (1977). In the analysis it will be more convenient to include 'JI(t, 6) as the
filter's output. Differentiating (27) with respect to 9 and rearranging the resulting
equations yields

where

~(t + 1,8) = P(8)~(t, 8) + G(8)z(t)}

[
Y< tI8)]= R(8)e(t, 8)
'1'(t, 8)

(32)

(36)

e(t, 8) = [4JT (t, 8). [a~~'18)r.... [a~~~(J) II (33)

and F(8) has the same eigenvalues as F(8) but with higher multiplicities. The following
results are from Ljung and Soderstrom (1983).

Consider the algorithm (19) with the recursion

~(t + 1)= F(t1(t})~(t} + G(t1(t))Z(t)}

[
y(t + I)] = R(l1(t))~(t + 1) (34)
'I'(t + 1)

Assume:

(a) Dft,f is a compact subset of IRIIt and Dft,f c DI •

(b) The matrices f(8), G(8) and R(8) are continuously differentiable with respect
to 8 for 8 E Dft,f.

(e) lim t • yet) = Jl > o.
(d) R(t) ~ ~1 Vt for some ~ > O.

(e) A projection is included into the algorithm to keep t1(t) inside Dft,f. That is,

t1(t) = [t1(t - 1)+ y(t)R -l(t)'JI(t)£(I)]Dw (35)

with

{

X if x e DM

W~= ... .
a value stnctly mtenor to DM otherwise

(I) The data generation is asymptotically mean stationary so that P(8) defined in
(20) and

exist, where as in (20)

£'JI(I, 8)e( t, 8) = ID(8) }

E'JI(t, 8)'JIT(r, 8) = GD(8)

1 N
E( • ) = lim - L E( • )

N-'«J N , D l

(37)

(38)

and the expectation is over the stochastic process {z(tn.

(g) The data generation is exponentially stable. That is, for each t, t l' t ~ t l' there
exists a random vector z~ (t) that belongs to" the a-algebra generated by r but is
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Recursive prediction error parameter estimator 575

(39)

independent of t l, such that

ElIz(t) - z~(t)114 < cl'-'\ c < 00, l < 1

where II • II is a chosen norm.
Then {8(t)} converges with probability 1 to a local minimum of P(6).

The analysis of the algorithm is based on the associated differential equation (d.e.)

d8(t)--;r;- = RD1(t)fD(8(t))

dRzjt)
~ = GD(8(t » - RD(t)

This d.e. is defined in the area D•. The results mean that the recursive prediction error
algorithm has the same convergence properties as its corresponding off-line al­
gorithm. Nothing is assumed about the true system other than that the data
generation is stable and asymptotically mean stationary (conditions (g) and (f». The
true system may be much more complex than the resulting model, but this model is
the best approximation to the system within the model set in terms of the chosen
.eriterion. .The only situation where it is not realistic to assume conditions (f) and (g)
apriori is when the generation of {z(t)} depends upon past estimates such as in
adapti yc.: controt.

To ensure condition (d) the computation of R(t) can be modified to

.' R(t) = R(t - 1) + y(t) ['I'(t)'PT(t) .. R(t - I)]}
{

R(t ) if R(t) ~ st (40)
R(t) =

R(t) + M ,(t) otherwise

where M,(t) is chosen so that R(t) ~ t5/. This modification can easily be implemented.
Many projection rules are possible. One example is

tT(t) = 8(t - I) + y(t)R -1 <t)'¥(t}e(t)}

~ {tT(t) if iT(t) E DM (41)
u(t) =

t1( t - I) otherwise

For a linear model, D. is usually known and there is no difficulty in incorporating a
projection mechanism within the algorithm. Take the ARMAX model (16)t for
example; once ne is given D, is specified by (29) which can bechecked by testing if the
C-polynomial is stable at each stage of the estimation using a Routh scheme. If it is
not, 8(t) can be projected into the interior of D•.

4.2. Application to the NARMAX model with linear noise model

An important class ofNARMAX models are given by (15)t where the noise model
I"! · ) is linear. The formulations of Y(t 16) and 'I'(t, 6) for this class of non-linear
models are similar to those for the linear case. In fact, a non-linear. model of (15) can
always be rearranged into a predictor form

4>(t + 1, 6) = F(6; z(t»4>(t) 8) + G«(J)h(Z(t»}

y< t 16) = H (6)4>( tt 6)
(42)
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576 S. Chen and S. A. Billings

where the eigenvalues of the matrix F(B; x(t» are 0 (with multiplicity) and the zeros of
the polynomial C*(s) given in (30). Notice that although F(8;z(t)) depends on z(t) its
eigenvalues do not. This is best illustrated using an example:

y(t) =81y(t - I) + eo« - 2)·+ 83u(t - 1) + 6.y3(t - 1)

+ 8~y(t - l)y(t - 2)u(t - 2) + 86y 2(t - 1)u(t - l)u(t - 2)

+ 8,£(t - 1,8) + 8s e( t - 2, 8) + e(t, 8)

Define

81

y(t - 1)

y(t - 2)
82

u(t - 1)
83 y(t)

y(t - 1)u(l- 1)
8. u(t)

8= <p(t, 8) = y3 (t - 1) h(z(t» =
8~

, ,
y(t)u(t)

y(t - l)y(t - 2)u(t - 2)
86 y3(t)

y2(t - 1)u(t - 1)u(t - 2)
(J,

e(l - 1,8)
8s

t(t - 2, 8)

Then
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

F(8; z(t)) = 0 0 0 0 0 0 0 0 0

0 0 0 y(t) 0 0 0 0 0

0 0 y2(t)U(t) 0 0 0 0 0 0

-81 -82 -83 0 -84 -8s -86 -87 -88

0 0 0 0 0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

G(8) = 0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

and R(8) =(81 82 83 0 8. 8~ 86 87 ( 8).
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Recursive prediction error parameter estimator 577

The eigenvalues of F(8; z(t)) are 0 (with multiplicity 7) and the two zeros of
C*(s) = S2 + 8,s + B8 • The underlines in the above example indicate that a 'trick'
has been used. The term y(t)y(t - l)u(t - 1). which is the one-step-ahead state of
y(t - l)y(t - 2)u(t - 2), can be represented as the product of y(t) and y(t - l)u(t - I),
and hence, y(t - l)u(t - 1) is included as a 'state', If the model includes all the possible
terms, this kind of trick will not beneeded. For example, representing y2(t)u(t)u(t - 1)
as the product of y2(t)U(t) and U(1- 1) does not require the introduction of any new
term because u(t - 1) is already an element of 4>(t, B).

Similar to the linear case,the augmented predictor model for NARMAX models of
the form of (15) is

,(t + 1, B) = F(B; z(t»,(t, B) + G(O)h(Z(t»}

[
Y< tI8) ] =H(B)~( I, 8)
'Y(t, 0)

(43)

The stability region D, of this predictor coincides with (29). It now becomes clear that
analysis of the recursive prediction error estimator for NARMAX models of the form
of (15) can follow the exact lines given in Ljung (1977), Ljung and Soderstrom (1983),
and the previous convergence r~sults for the linear case can be applied directly.

4.3. lnuertibility of noise models

In a general NARMAX model, the noise is multiplicative with the input and
output, and the convergence analysis for the linear case does not apply directly. It is
important therefore to investigate if it is possible to extend the previous analysis to
NARMAX models with a more complex noise structurej't'( · ), and this leads to a new
definition of invertibility called m (model) invertibility.

Before introducing the concept of m-invertibility the ideas of the differential
equation method are briefly discussed. Since, for UE DM , F(U) is exponentially stable,
exponential stability of.the time-varying difference equation (34) will be guaranteed if
l1(k) varies in a sufficiently small neighbourhood of lJ, and for sufficiently large land
some M, the influence of O(k), k = t - M - 1, ... , 0 becomes very small, that is,

,(t) = ~(l, B(t - 1), .:., 6(0» ~ ~(l, B(t - 1), ... , 8(t - M» (44)

Furthermore, because y(t) ~ 0 as t ~ 00, for sufficiently large t, yet) will bearbitrarily
small. From the algorithm (19), it is seen that {l1(t)} will change more and more slowly,
and

8( t - 1)~ ... ~ 8( t - M) ~ U (45)

As a consequence, the time-varying difference equation (34) behaves more and more
like the time-invariant difference equation (32), and problems like convergence with
probability 1, possible convergence points and asymptotic behaviour of the recursive
algorithm can thus be studied in terms of the associated differential equation (39)
(Ljung 1977). In summary, the stability of the predictor (27) is vital for the analysis
using the associated differential equation.

Consider specifically the ARMAX model (16). The stability of the predictor
requires that C(q-l) is stable, that is, C*(s) has all zeros inside the unit circle. This is
often referred to as C(q-l) being invertible in the literature of time series analysis and
stochastic control. It is not difficult to see why the convergence results for the
NARMAX model with linear noise terms (15) is the same as that of the ARMAX
model; they both have the same noise model structure. Furthermore, for NARMAX
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578 S. Chen and S. A. Billings

models where the noise model has an ARMA structure

(46)

the convergence analysis for the linear 'case can again be applied directly. An
investigation into the consequences of C(q-l) being invertible leads to the results we
seek. For a particular realization of the stochastic process {z(t)}, assume that two
sequences {e(l)(t, 6)}, i = 1,2, are generated by

e(l)(t, O} = (1 - C(q-l »e(i)(t, O) + A(q-t )y(t) - B(q-l )u(t) (47)

with any two different initial conditions

(i)(O) (1)( 1)e , ... , e -n~ + ,

Then

i = 1,2 (48)

(49)

because the influence of initial conditions decays exponentially. For almost all
realizations of {z( t)}, (49) will hold with probability 1. This suggests a new definition
of invertibility called m-invertibility that will also cover the general non-linear model.
The concept is similar to that introduced by Granger and Andersen (1978) for time
series analysis but the two definitions are not the same.

Definition: m-invertibility
Assume that the non-linear model (1) has been parametrized (not necessarily using

a polynomial expansion) with a parameter vector 8. For given observations of {z(t)},
let {e(l)(t, 6)}, i = 1,2, be generated by

e(l)(t, 8) = y(t) - f(t(t - 1), ... , y(t - n,), u(t - 1), ,

u(t - n..), e(i){t - 1,6), ,' e(l){t - n~, 6», i = 1,2 (SO)

with initial conditions given by (48). Then model (I) is said to be m-invertible if

E[ae(t, 8)]2 = £[e(1)(t, 0) - £(2)(t, 6)]2 -.0 as t ....00 (51)

Condition (51) guarantees that the two sequences e(i)(t,9), i = 1,2 become
identical as t -. 00 with probability 1 regardless of their initial conditions. If the true
system is exactly described by the model, the above definition of invertibility coincides
with that given by Granger and Andersen (1978), and (51) becomes

E[e(t) - e(t, 8}]2 -.0 as t-. 00 (52)

which implies that very good estimates of the unobserved system noise can be
obtained at least for large t. Notice, however, that given an underlying process
{z(t)} = {(y(t), U(t))T} and a modeJ parameterized by 8 (which may not be anything
related to {z(t)}) then m-invertibility says that if the generation of e(t, 6) is stable
then the model is invertible. This is easier to interpret if e(t, 6) is thought of as the
output of a non-Jinear finite-dimensional filter

~(t + 1, 8) =]{6; ~(t, 6), Z(t»}
e(t, 9) = h(8; cP(t, 9»

(53)
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Recursive prediction error parameter estimator 579

m-Invertibility means that this non-linear filter is exponentially stable. For the
~ARMAXmodel (13), it is clear that m-invertibility is a property of the noise model
fn( • ) only. This property is concerned with the stability of the noise model.

Although many practical systems can bemodelled in the fonn of ( I 5) it is unlikely
that the linear noise modelj"] · ) has sufficient generality. A convenient extension to
the model in (15) is the NARMAX model with a bilinear form for fn( • )

y(t) = fP(y(t - 1),"'f y(t - ny ) , u(t - 1), .. " u(t - nil); 8) + ~ c,G(t - i, 8)
. Ie 1

~ n. ~ ft.

+ L L dlju(t - i)&(t - j, 8) + L L hijy(t - i)e(t - j, 8) + B(t, 8)
i ••qJ et l 'al)-1

(54)

The invertibility conditions for certain types of bilinear time series models have been
investigated (e.g. Granger and Andersen 1978, Quinn 1982, Subba Rao and Gabr
1984), These results can be extended to NARMAX models with similar bilinear forms
of noise model fn( • ). Consider for example a simple case of model (54):

y(t) = fP(y(t - 1), ... , y(t - n,), u(t - 1), ... , u(t - n.,); 8)

+ (a + fJu(t - 1»&(t- 1,8) + &(t, 8) (55)

Then

A&(t,8) = -(lX + IJu(t- I»At(t - 1,6) with initial condition &(0) (56)

or

'-I
At{t, 8) = (-1)'At{O)(a + Pu(O» •n (lX + Pu(i»

1-1
(57)

Using the same analysis presented by Granger and Andersen (1978) for the time series
model

y(t) = Py(t - l)e(t - 1) + e(t)

it can be shown that

1 N
Jim N L (a + fJu(t»2

N-co '=1

exists w.p.l and this limit is less than 1, then clearly

E[&(t, 8)]2~O as t~ 00

Denote a function

g(t, 8, z(t» = K,

where g( • ) is differentiable with respect to 8 and z(t). It is known that

}' 1 f -' 1rm N c: g, = g exists w.p.
N-co '-1

(58)

(59)

(60)

(61)

(62)

(63)
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580 S. Chen and S. A. Billings

if the following two conditions are satisfied:

1 N

N
L (gr-E[g,])~O w.p.l as N~oo

I"'" 1

1 N

N
L E[g,]~g as N~oo
,~ 1

(64)

(65)

(see, for example, Ljung and Soderstrom 1983, Section 4.3.4). ConditionIe-l) is very
mild and can be assumed to hold (it corresponds to assumption (g) in Section 4.1).
This leads to the conclusion that a sufficient condition for model (55) to be
m-invertible is

1 N
E[(a + PU(t»2] = lim - L E[(a + PU(t»2] < 1 (66)

N-ooN,=l

If {u(t)} is stationary, E[(a + Pu(t»2] is independent of r,and condition (66) becomes

E[(a + Pu(t»2] < 1 (67)

Notice that this condition depends upon the input as well as the parameters.
Model (54) is a special case of the models in which fn( • ) is linear in t(t - i, 6),

1~ i ~ n~: '

y(t) = fP(y(t - 1), ... , y(t - n,), u(t - 1), ... , u(t - nul;8)

+ eo« - 1), ... , y(t - n,), u(t - 1), ... , u(t - nil); q-l )£(t, 8) (68)

where

C(y(t - 1), ... , y(t - n,), u(t - 1), ... , u(t - n..); q-l)

= 1 + ~ cl(y(t - 1), ... , y(t - n,), u(t - 1), ... , u{t - nll»q-l (69)
j"'l

and the Ci(y(t - 1), ... , y(t - n,), u(t - 1), ... , u(t - nun are polynomials. The analysis
developed for bilinear fD( • ) can be applied to this class of models. For example,
consider the modeJ .

y(t) = fP(y(t - I), ... , y(t - n,), u(t - 1), ... , u(t - nul; 8) + ay2(t - 1)£(t - 1,8) + ~t, 8)

(70)

Using a similar argument as that used for (55), a sufficient m-invertibility condition is
derived:

(71)

This condition depends upon the statistical properties of {z(t)} as well as the
parameter a.

If the power of E(t- i, 8), 1~ i ~ ne , infn( • ) of(13) is raised to a value larger than
1 it is unlikely to produce an invertible model. To demonstrate this, assume that y(t)
was generated by

y(t) = fP(y(t - 1), ... , y(t - ny), u(t - 1), ... , u(t - nil); 8) + ae2(t - 1) + e(t) (72)

Substituting e(t) by e(t, 8) + Ae(t, 8) and using

e(t, 8) = y(t} - fP(y(t - 1), ... , y(t - n,), u(t - 1), ... , u(t - n.,); 8) - (X£2(t - 1,8) (73)
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Ae(t,8) = - 2cu(t - 1,8)Ae(t- 1,8) - cx(Ae(t - 1,8»2

581

(74)

As pointed out by Granger and Andersen (1978), the solution of (74) has an explosive
component. It follows that {e(t, 8)} generated by (73) will diverge from {e(t)} and thus
the model (72) is non-invertible. Notice that this does not mean that systems like (72)
do not exist in reality. It does imply, however, that attempts to fit non-invertible
models may lead to explosive prediction errors.

So far only the invertibility conditions for polynomial NARMAX models have
been discussed. Other non-linear parametric models can however be studied in a
similar manner. The analysis for the non-linear output-affine model (Chen and
Billings 1988 b)

r

L a,(u(t - 1), ,.., u(t - r»y(t - i) + ar + J (u(t - 1), ... , u(t - r»
y(t)=i=l _

a2r. 2(u(t - 1), ,." u(t - r))

2r+ 1

L dj(u(t - 1), ... , u(t - r»e(t - i + r + 1,8)
+ jer+ 2 + e(t, 8) (75)

02,+2(U(t - 1), .. " u(t - r»
where O,( • ), i = 1, ... , 2r + 2 are polynomials of degree L which, for example, can
follow the same lines for the model in (68) because both models are linear in e( • ).
Consider a more general non-linear parametric model

y( )
_ 6(y(t - 1), "., y(t - n,), u(t - 1), ',., u(t - nil), e(t - 1,8), .." e(t - ne , 8) r-I 8)

t - _ + qt,
a(y(t - 1), "" y(t - n,), u(t - 1), ... , u(t - nil)' e(t - 1,8), .,', e(t - ne , 8)

(76)

where 6( · ) and li( • ) are polynomials of degrees L) and L2 , respectively. This model is
referred to as the non-linear rational model in Billings and Chen (1989).The analysis
for model (76) is more complex but the techniques used will be the same. For example

0-9+ £2(t - 1,8)
y(t) = 1+ y2(t _ 1) + £2(t _ 1,8) e(t - 1,8) + t(t, 8) (77)

is m...invertible because

(78)

(79)

but

0-9+ £2(t - 1,8) 2

y(t) = 1 + y2(t _ 1) + £2(t _ 1,8) s (t - 1,8) + e(t, 8)

is non-invertible and this can be verified using a procedure similar to that for
anaJysing model (72).

4.4. Extension of the convergence analysis to more complex noise models

As discussed above, the feasibility of the associated d.e. approach depends upon
the stability of the predictor model. For a NARMAX model (13), the stability of the
predictor coincides with the stability of the noise modelfn( • ). The analysis of §4.3
reveals that a general NARMAX model may not always give a stable predictor in the
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582 S. Chen and S. A. Billings

sense that its noise model may not always be m-invertible. If the model is restricted to
be of the form of(68), however, it is possible to extend the associated d.e. approach for
convergence analysis of the recursive estimator so that it applies to this case. Define

D. = {81 C(y(t - I), ... , y(t - n,), u(t - 1), ... , u(t - n.,); q-l) is m-invertibJe} (80)

The analysis results for the linear case can be extended to the model (68) at least in
principle.

D. now depends upon 8 as well as the statistical properties of {z(t)}. For non­
adaptive control, given an underlying process the statistical properties of {z(t)} are
fixed by the experimental conditions and D. can then be viewed as depending upon 8
only. The difficulty is that in general the exact shape of D. may not be known even
though it exists. Without knowing the range of D. it may not bepossible to implement
some sort of projection mechanism to ensure l1( t) e D.. .

In some simple situations D. can however bewritten down and the stability of the
estimated C( -: q-l) can be texted. Consider model (55) again. Assume that u(t) is
generated in open loop with E[u(t)] = 0 and E[u2 (t)] = O'~. Then

D. = {61cr2 + p20'~ < I} (81)

Compare this with a first-order MA noise model C(q-l) = 1 + «Q-l, whose D. is

D. = {61-1 <(X < I} (82)

The implementation of a projection rule in such a situation is straightforward.
In the original theorem {Ljung 1977) it is only required that D(t) belongs to D.

infinitely often with probability 1. A projection is included to guarantee this
boundedness condition. Many recursive algorithms nevertheless work well in practice
without incorporating some kind of projection mechanism. The situation would
however become serious if a stable region D. did not exist. It is therefore necessary that
the noise model is not too complex. By this it is meant that the noise modelfn( · ) in
(13) should be linear in £( • ). The noise model can however be non-linear in the input
and the output, even non-linear in the parameters. If the noise model is allowed to be
as general as possible the associated d.e, approach will not be applicable.

5. Pseudo-linear regression
Another class of recursive parameter estimators is based on the pseudo-linear

regression. If the prediction can be written as

Y(t 18) =8T q,(t, 8)

a pseudo-linear regression estimator is given as

. £(t) = y(t) - (t1(t - l»T q,(t) 1
R(t) =R(t - 1)+ yet)Etj)(t)q,T(t) - R(t - 1)]

t1(t) =D(t - 1) + y(t)R- 1(t)tj)(t)e(t)

(83)

(84)

A typical example is the recursive extended least squares (RELS) algorithm applied
to the ARMAX model (16). More general algorithms involving filtered tj)(t) and e(t)
have also widely been used in practice. Algorithm (84) can be interpreted as
an approximate prediction error method in the following way. If the implicit
8-dependence in t/>( t, 8) is neglected, an approximate gradient of the prediction is
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Recursive prediction error parameter estimator 583

[dji(:~ 8)J~ ¢(t, 8) (85)

Replacing '1'(t) in algorithm (19) by 4>( t) yields the estimator (84).
In linear system identification, it is well known that convergence conditions for

pseudo-linear regression algorithms are more restricted than those for prediction
error estimators. For RELS, for example, two further assumptions are required:

(i) The true system belongs to the model set, that is, there exists a (J0 such that the
data is generated according to the model

AO(q-l )y(t) = BO(q-l )u(t) + CO(q-t )e(t)

(ii) (l/CO(q- I» -! is strictly positive real, that is,

Re{CO(~i"') -~} > 0, -It < w';;; It

Then O(t) converges with probability 1 to the set

Dc= {81 Efe(t, 8) - e(t)]2 =O}

(86)

(87)

(88)

as t ...... 00. Notice however that a means of projecting 8(t) into D. (condition (e) in § 4.1)
is not required as proved by Solo (1979).

Because the prediction j( t 18) for the general polynomial NARMAX model is
linear in the parameters (§ 2) the RELS algorithm can be readily extended to this case
(Billings and Voon 1984). It is of interest to investigate whether the convergence
results for the linear case can be carried over for polynomial NARMAX models. For
model (15), the answer is obviously yes. Assume that there exists a 6°, such that the
true system is described by

y(t) = fP(y(t - 1), ... , y(t - ny ) , u(t - 1), ...., u(t - n.J; 8°) + CO(q-l )e(t) (89)

If condition (87) regarding the true system is satisfied, O(t) will converge to Dcdefined
in (88) with probability 1.This can easily be verified using the associated d.e. approach
as given in Ljung and Soderstrom (1983).The only difference will be that whereas for
the ARMAX modeJ

wilJ exist provided the limits

£[u{t)u(t- k)]}

E[e(t)e(t - k)]

(90)

(91)

exist (since 4>(t, 9) consists of elements obtained by filtering J1 and e' through constant
linear filters) for the NARMAX model (15), the existence of limits (91) will not be
enough to guarantee the existence of limit (90) because 4>(t,8) is non-linear in the
input and output. For the more general model (68), convergence analysis using the
associated d.e. method is feasible in principle. This will be investigated in a future
~ud~ .
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584 S. Chen and S. A. Billings

6. Simulation study
All the simulation studies assume that, as in the linear case, the structure of the

model has been determined by some preliminary analysis on the system. There are
several ways of achieving this when the system is non-linear (Billings and Fadzil 1985,
Billings et al. 1988 a).

Example 1
This is a simulated first-order example. In order to show the robustness of the

recursive prediction error method, the system to be identified was chosen to be open
loop unstable, and was operated in closed loop:

y(l) = 1·2y( t - 1) + O'2u(t - 1) - O'8e(t - I) + 0·1y3(t - 1)

- O'ly(t - l}u2(t - I} - O'2y(t - I}u(t - l)e(t - 1) +.e(t}

The feedback law used was given by

u(t) = w(t} - 2'Oy(t)

where w(t} was an independent sequence of uniform distribution with mean zero and
variance 1·0.The system noise e(t) was a gaussian white sequence with mean zero and
variance 0·04. An input-output sequence of 1000 points were generated. A calculation
gives

1 1000- L (-O·g - Q'2y(t - l}u(t - 1))2 = (}S5
999 ,..=2

This indicates that the noise model in the data generation is invertible for the
particular realization of {t(t)} obtained (see the derivation of a sufficient invertibility
condition for model (55) in § 4.3). This realization of {z( t)} is plotted in Fig. 1.

OD~pa~

1000

+$ [ 0 tapat

Figure 1. Inputs and outputs of Example 1.

1000
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Recursive prediction error parameter estimator 585

Using l(t) = loA(t - 1) + (1 - Ao) with initial conditions Ao = 0'99, ),(0) = 0-95, '
P(O) = 1000-01 and 9(0) =0, the recursive prediction error algorithm discussed in § 3
was used to estimate the parameters. The results obtained are given in Table 1. The
values of a normalized loss function

are shown in Fig. 2. The dashed curve in Fig. 2 is the asymptotically expected loss
under the assumption that 9(t) is asymptotically gaussian distributed with mean 0°
and covariance equal to the Cramer- Rao lower bound. The evolution of 9( t) is shown
in Fig. 3, where the dashed lines indicate the true values of the parameters. As in the
recursive identification of linear models, it is seen that the convergence of parameters
in the noise model is slower compared with that of the other parameters.

Terms Parameters Estimates True values

y(t - 1) 0, 0-12075E + 1 1·2
u(t - 1) O2 0-19718E + 0 0-2
e(t - I) 03 -(}71458E + 0 -()&

y3(t - 1) 04 Q-16287E + 0 (}I
y(t -1)u 2 (t - l ) O~ -Q-IO&35E + 0 -o-J

y(t - 1)11(1- 1)~t - 1) 06 -Q-14298E + 0 -0-2

Table 1. Results of Example I.

1.U[ 0

...

" """-------------
Figure 2. Loss function (normalized) of Example J.
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1

-t.~1[ _2L...----------------_--_-_--_-_
.18

3 (a)

, 2
a.IUI ·1

-l.tlt-1~--.....-----------------------•••
3 (b)
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1

I •
'.111 -1

(c)

•••

-'.121 tL..:...----__--_--_--_--_-_--_--_-_

'"
(d)
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, 5

~.23[ -1 '

S. Chen and S. A. Billings

·3.6(:[ 01:....-------------------------------.

(e)

• Ii
2.£SE 0

-~.UI -11.:...------------------------......------...
(I)

Figure 3. Evolution of estimates (Example 1).
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Recursive prediction error parameter estimator 589

Example 2

This is a large pilot-scale liquid level system. The input was a zero-mean gaussian
signal. A description of this process is given in Billings and Voon (1986). The inputs
and outputs of the system are illustrated in Fig. 4. The data set consists of 1000 points.

Using a combined procedure of forward-regression orthogonal and prediction
error estimation coupled with correlation and chi ...squared model validity tests
(Billings et al. 1988 c, Billings and Chen 1989, Billings et al. 1988 a), the otT-line
identification shows that the system can be represented adequately by the following
NARMAX model:

y(t) =G-56276y(t - 1)+ G-40016y(t - 2) + G-41581u(t - 1)- G-061813u(t - 2)

+ fr20941e(t -1) -o-028464e(t - 2)+o-042886e(t - 3) -0-050201y(t -l)y(t - 2)

- o-37836y(t - l)u(t - 1) + fr15928y(t - l)u(t - 2) - o-037551y2(t - 2)y(t - 3)

- fr27654y(t - 2)y(t:- 3)u(t - 2) + o-06S076y(t - 2)y(t - 3)u(t - 3)

+ frl0562y2(t - 3)u(t - 2) - fr12220u(t - 1)u2(t - 2) + e(t)

The purpose of the present study is to compare the performance of the recursive
prediction error algorithm with its corresponding off-line algorithm using the same
model structure. With initial conditions AO = 0·99, A(O) = 0·"95, P(O) = 1000-01 and f1(O)
= 0, the recursive prediction error estimator produced the estimates of the parameters
very close to those given by its off-line counterpart, as can beseen in Table 2. The loss
function V(8(t» = E[e2 (t, 8(t»] and some of the parameters in the on-line case are
shown in Figs 5 and 6. The two models obtained in off-line and on-Jine identification
both have an invertible C(q-l) (Table 3).

+3 [ 0 output

-2 [ 0

+. £-1 lDput

-D [-2

Figure 4. Inputs and outputs of ExampJe 2.

1000



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:5

7 
14

 S
ep

te
m

be
r 2

00
7 

S90 S. Chen and S. A. Billings

Term's Parameters On-line Off-line

y(t - I) 0. D-S3832E + 0 ()oS6276E+O
y(t - 2) 81 D-427S9E + 0 D-40016E + 0
II(t- I) 83 D-41146E + 0 D-41581£ +0
u(r - 2) 8. -D-SOO26E - 1 -D-61813E- 1
e(t - I) 9, D-22269E + 0 D-20941E+0
e(t - 2) 86 D-89100E - 2 -(}28464E - 1
e(t - 3) (J, (}S5900E -1 ()o42886E - 1

y(t - l)y(t - 2) 88 -D-S0813E- I -D-S0201E- 1
y(t - 1)11(1 - 1) 89 -()o371S7E + 0 -D-37836E+ 0
y(t - 1)lI(t - 2) 010 D-1S142E + 0 D-t5928E + 0

y2(t - 2»)1(1 - 3) 811 -(}37312E - I -(}375S1E - t
y(t - 2)y(t - 3)lI(t - 2) .812 - ()o26366E+ 0 -D-27654E + 0
y(t - 2)y(t - 3)u(t - 3) 813 0040384E - I 006S076E - 1

y1(t - 3)lI(t - 2) 814 G-J0379E + 0 00 JOS62E + 0
u(t - l)u1(t - 2) 815 -D-12399E+ 0 -G-12220E+0

variance of
residuals 0020184E - 2 0020046E - 2

Table 2. Results of Example 2.

1. 22E -2

1.11£ _.L-::::.....----:=======::=======:::::;:::::==:::::j
~o ••,

Figure S. Loss function of Example 2.
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-1.50[ oL....:-------------------_-__-_--_
."

(c)

'15
1.In 0

-l.It[ o~---------------------------tn

(d)

Figure 6. Evolution of some estimates (Example 2).
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Zeros s=w + 4>; (i =J=1) lsI = (w 2 + 4>2)1/2

593

On-line

OfT-line

-(}464
oJ20 + (}326i
0-120- 0-326;

-0-467
0-129 + (}274i
G-129 - (}274i

Table 3. Zeros of C*(s) (Example 2).

(}464
Q-347
Q-347

(}467
(}303
(}303

7. Conclusions
A recursive prediction error estimator for on-line identification of parameters in

NARMAX models has been presented. It has been shown that convergence analysis
for the linear model can be extended to NARMAX models. The application to both
simulated and real data has been demonstrated.

In order to apply the associated d.e. approach for convergence analysis, the filter
that generates the prediction should be exponentially stable. For the NARMAX
model, the stability of the filter coincides with the stability of the noise modeJ.
m-Invertibility has been introduced to define the stability of the noise model. The
analysis shows that while terms which are non-linear functions of the input and
output are necessary to describe the dynamics of highly non-linear systems the noise
model should be restricted to be linear in the prediction errors.

Although a polynomial expansion is used to provide a parametric representation
of the NARMAX model in the present study, alternative expansions such as the
rational parametric model (Sontag 1979, Billings and Chen 1989) are also possible.
Furthermore the output-affine model (Sontag 1979, Chen and Billings 1988 a) can be
thought of as a special parametric case of the NARMAX model. These two non-linear
models are essentiaJJy non-linear in the parameters. The recursive prediction errror
method can readily be applied to these two parametric models where the predicted
output can be viewed as the output of a non-linear finite-dimensional filter. Because
the output-affine model is linear in the prediction errors the stability of the filter is
equivalent to the invertibility of the noise model, and the associated d.e. approach can
be employed to analyse the convergence properties of the estimator (Chen and
Billings 1988 b). For the rational model, the situation is more complex and further
research is required to analyse this estimator.
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