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Representations of non-linear systems: the NARMAX model

S. CHENY and S. A. BILLINGS#

Input-output representations of non-linear discrete-time systems are discussed. It is
shown that the NARMAX (Non-linear AutoRegressive Moving Average with
eXogenous inputs) model is a general and natural representation of non-linear
systems and contains, as special cases, several existing non-linear models, The
problem of approximating non-linear input-output systems is also addressed and
several properties of non-linear models are highlighted using simple examples.

1. Introduction

than the impulse response function. An analogous situation exists for non-linear

- discrete-time systems._ The non-linear difference. equation. model known as_ the

NARMAX (Non-linear AutoRegressive Moving Average with eXogenous inputs)
model (Leontaritis and Billings 1985) provides a unified representation for a wide
class of non-linear systems and has obvious advantages over functional series
representations such as the Volterra series.

With the aim of unifying input-output models for non-linear systems, the present
study shows that the NARMAX model provides a natural representation for a wide
class of non-linear systems and includes severa] known non-linear input-output
models as special cases. For practical applications, there is a need to approximate

The paper is organized as follows. Section 2 reviews various non-linear input-
output representations and shows that the NARMAX model provides a unified
representation for finitely realizable non-linear systems. The way in which the
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1014 S. Chen and S. A. Billings

was presented by Sontag (1979 a) and Fliess and Normand-Cyrot (1982), is also
briefly discussed. The extension to stochastic non-linear systems is presented in § 6
where an important property of the stochastic input—output model, namely m-
invertibility, is briefly introduced.

Unless otherwise specifically stated, the single-input single-output case is used for
notational simplicity. However, most of the discussions are valid for multi-input
multi-output systems (Leontaritis and Billings 1985).

2. System representations
Consider the discrete-time time-invariant system

x(k + 1) = g(x(k), u(k))}
x(0) = x, (1)
(k) = h(x(k), u(k))

where k=1, 2, ..., x(k) is the state vector at k, x, is the initial state, u(k) and y(k) are
the input and output, respectively, g( - ) is the one-step ahead state transition function
and h( +) is the output function.

The function that describes the input—output behaviour of a system is of primary
importance in systems theory because this is all an external observer can see. Let U be
the input set and Y be the output set with the assumption that U and Y are real
Banach spaces. Denote as U™ the union of all U¥, k> 1, where U* is the set of all
sequences (u(1), ..., u(k)) of length k: U* = {(u(1), ..., u(k)): u(i) € U,i=1,..., k}. When

- the- system-is-initially-- at- the-state- x5 the-response- function-that- describes- the -

input—output behaviour of the system is defined asf, : U* > Y. Forevery k=1,2, ...,
the response function f,, |, : U*—Y is a different function since the domain U* is a
different ome. A strictly causal response function is one where, for each k,
Jeote(u(1), ..., u(k)) is independent of u(k). f,, is said to be finitely realizable if and only
if it has a state-space realization, (1), with the state vector x(k) having a finite
dimension. When x, =0, f,, and f , is written as f and f,. If x, is an equilibrium
state, a simple variable change can transfer the system into zero-initial-state.

2.1. Volterra series
If each f | is a real analytic function the system can be represented by a Volterra
series

90 = 3 heguulD), .. (k) 2)

where h,|,; is a homogeneous degree i polynomial in u(1), ..., u(k). For a zero-initial-
state or equilibrium-initial-state response function, h,,,; is simplified as h,;. The
Volterra series or related Wiener series represent a large class of non-linear systems,
and have been extensively studied (e.g. Marmarelis and Marmarelis 1978, Schetzen
1980, Rugh 1981). The functional series expansions of Volterra or Wiener, however,
map past inputs into the present output and this inevitably means that an excessive
parameter set, often extending to well in excess of 500 kernal values, is required to
describe even simple non-linear systems and consequently few practical applications
have been reported.

2.2. General non-linear model
Input-output descriptions that expand the current output in terms of past inputs
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and outputs provide models that represent a broad class of non-linear systems and
that may avoid the difficulty of excessive parameters associated with Volterra series.
The model

Wk)=F(y(k—1), ..., y(k— W), wk—1), ..., u(k —n,)) (3)

where F( ) is some non-linear function, is about as far as one can go in terms of
specifying a general finite non-linear system. Model (3) is referred to as the NARMAX
(non-linear ARMAX) model by Billings and Leontaritis (1982) for its resemblance to
the linear model

s =ao+ 5 (ki) + 3 bt~ 0

Leontaritis and Billings (1985) rigorously proved that a non-linear discrete-time
time-invariant system can always be represented by the model (3) in a region around
an equilibrium point subject to two sufficient conditions:

(i) the response function f of the system is finitely realizable;

(i) a linearized model exists if the system is operated close to the chosen

equilibrium point.

Notice that condition (i) simply excludes distributed parameter systems and condition
(i) implies that if the system is perturbed with a small amplitude input in the linear
..region around the equilibrium point, a linearized model of the system exists. .

The derivation of the NARMAX model (3) is based on zero-initial-state response
by Leontaritis and Billings (1985). The result can, however, be carried over to the non-
zero-initial-state case using similar arguments. Notice that whereas the response
functions of a system are different for different initial states, the input-output model
(3) for the system will always be the same regardless of the initial state of the system
provided that the system is maintained within a region around an equilibrium point.
This is clarified with two examples.

Example 1
x(k + 1) = x(k) + u(k)
} x(0) = x,

k) = x(k) + x*(k)

The origin is an equilibrium point. The response function Srolk 18

-1 -1 2
Y(K) = feouu(1), ..., u(k — 1), u(k)) = Xo + k; u(i) + (xo + k; u(i))

which is obviously different for different Xo. The NARMAX model that describes the
system is
Wk +1) = y(k) + u(k)(1 + 4y(k)) 2 + u?(k)

(see Leontaritis and Billings 1985) for

x(k) = xo + kil u(@) > —05
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Example 2
x(k + 1) = x(k) + u(k)
x(0) = xo
(k) = exp (—x(k))
The input-output model of the system is
Yk +1) = y(k) exp (—u(k))
which is globally valid and is independent of initial state. The response function f, |, is
obviously dependent upon initial state. Further illustrations are given later.

Several known non-linear input—output models can be thought of as special cases
of the NARMAX model (3).

2.3. Bilinear model
A general bilinear input-output model takes the form

W =a0+ 3 ark=i+ & butk=0+ 5 3 cppe—iuk—p 9

This is obviously a simple case of the NARMAX model (3). The bilinear state space
model

(6)-

X(k + 1) = Ax(k) + Bu(k) + u(k) Cx(k)
T ;Dux("k‘)}h
for example, gives rise to a bilinear input-output model
Wk +1)=DA(D™D)~*Dy(k) + DBu(k) + u(k)DC(D™D)~*D"y(k) (7

Bilinear system theory has been widely studied in the content of continuous-time
systems where the bilinear state space model

dx(t)
— = Ax(1) + Bu(t) + u(t)Cx(t)} (8)
Mt) = Dx(z)

plays an important role. This is because, roughly speaking, the set of bilinear systems
is dense in the space of continuous-time systems and any continuous causal functional
can be arbitrarily well approximated by bilinear systems within any bounded time
interval (see for example Fliess and Normand-Cyrot 1982). Moreover, many real
continuous-time processes are naturally in bilinear form. A few examples are
distillation columns (Espafia and Landau 1978), nuclear and thermal control
processes (Mohler 1973).

Sampling the continuous-time bilinear system, however, produces a NARMAX
model which is more complex than a discrete-time bilinear model. Assume that a zero-
order-hold (ZOH) device is used, i.e. u(t) =u(ty), t, <t <ty,,,afixed sampling rate is
employed with a sampling period 4 and k is used to replace t,. For t € [, t, , ,), from
(8)

dx(t)

—2 = [A+u()CIx(1) + Bu(k) (9)

W) = Dx(t)



Representations of non-linear systems 1017

Let t—1t,,, and using h= te+1 — L yields
h

x(k+1)=exp[[4+ u(k)Ch]x(k) + {f exp [[A4 + u(k)C](h—1)]B dt} u(k) (10)
0

Wk +1)=Dx(k+1)
The input—output difference equation of the system (10) is a NARMAX model

Wk+1)=Dexp[[4+ u(k)CIh](D™D)~*DTy(k)

h

+ D{f exp [[4 + u(k)C](h—1)]B dt}u(k) (11
0

that cannot be expressed in the form of (7) or (5). Whatever initial state the system (10)

or (8) started from, the NARMAX model for the system is always (11).

To end this subsection it is important to note that, unlike the continuous-time
case, it is impossible to approximate all discrete-time systems within the class of
discrete-time bilinear systems. A mathematical explanation is that the set of discrete-
time bilinear systems is not closed with respect to the product operation so that the
product of two discrete-time bilinear state space systems is not necessarily bilinear
(Fliess and Normand-Cyrot 1982).

2.4. Output-affine and rational models
The response function f of a system is sa

id to be a polynomial response function if

- for each k, f, is a polynomial of finite degree in all variables, although this degree may
tend to oo as k— c0. A polynomial response function f7is said to be bounded if for all k
the maximum power that any individual variable is raised to in Jiis less than a certain
bound. The realization of polynomial response functions has been investigated in
detail by Sontag (1979 b).

It is known that a polynomial response function f’is finitely realizable if and only if
it satisfies the rational difference equation (Sontag 1979 b)

a(y(k—1), o k=1),u(k—1), ..., u(k —r))y(k)
=b(yk—1),..., yk—r), u(k —1), ..., u(k —r)) (12)

or

bk —1), ..., yk—r), u(k — 1), ..., u(k — r))
(k) Calyk—1), . y(k—r), utk—1), ..., u(k —r)) (13)

where r is the order of the system, a( ) and b( -) are polynomials of finite degree.
Sontag (1979b) further showed that J is a finitely realizable and bounded
polynomial response function if and only if it satisfies an affine difference equation

ao(uk— 1), ..., u(k — r)) y(k) = .; ai(uk— 1), .., u(k — 1)) y(k — i)

+ 4 (u(k— 1), ..., u(k — 1)) (14)

or

k)=

!

~ o afuk—1),..., u(k —r) o G s(u(k—1), ... u(k—r))
; ao(u(k—1), ., uk—r)) "k~ + ao(uk—1), . uk—r) 1
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where a,(-), i=0,1,....,r+1 are polynomials of finite degree. Such a response
function admits a state-affine representation

x(k + 1) = A(u(k))x(k) + B(u(k))}
(k) = C(u(k))x(k)

where A(u(k)), B(u(k)) and [C(u(k))]" are matrix and vector valued polynomials of
finite degree.

Sontag (1979 a) showed how to remove the zero-initial-state assumption for
systems and the above results are also satisfied for the non-zero-initial-state case. As
an illustration consider Example 1 again. The output-affine model for the system is
(see Leontaritis and Billings 1985)

u(k) y(k + 2) = (u(k) + u(k + D)y(k + 1) — u(k + 1)y(k) + u?(k + 1)u(k)
+ u(k + 1)u?(k)

which can be derived independently of the initial state.

The output-affine model (15) and the rational model (13) are globally valid. The
response function of the system is, however, restricted to a polynomial response. For
example, the response function in Example 2 is not a polynomial function and the
results for polynomial response functions do not therefore apply. By choosing the
particular forms in (15) and (13) for F(-), it is easily seen that the NARMAX model

~(3) can be interpreted to contain, as special cases, the output-affine and rational
models.

Fliess and Normand-Cyrot (1982) showed that on a finite-time interval and with
bounded inputs, a discrete-time input-output system can be arbitrarily well approx-
imated within the set of state-affine systems. As an example, consider the sampled
continuous-time bilinear system of (10). Approximation of the system of (10)
by state-affine systems involves the approximation of exp [[A4 + u(k)C]h] and

(16)

h
f exp [[4 + u(k)C](h— 7)]B dt using matrix and vector valued polynomials in u(k).
0

3. Interpretation of the NARMAX model

The NARMAX model (3) is a natural representation for sampled non-linear
continuous-time systems. One example is that the discretization of the bilinear
continuous-time system produces a NARMAX model as shown in §2.3. A few more
illustrations are given in this section,

Example 3

dy(t)
dt

This differential equation, for instance, can be used to model a simple non-linear

circuit consisting of a linear capacitor, a linear resistor and a non-linear resistor in

parallel with the current source i(t) (Bussgang et al. 1974). The non-linear differential

equation relating the current excitation i(t) and the voltage 1(z) across the capacitor is
do(t)

i(z) =C7+K1v(t)+szz(t) (18)

= a; )(1) + a,y*(1) + bu(t) (17)
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Equation (17) is obtained by identifying i(t) with u(t) and v(¢) with y(z). Assume again
that ZOH is used and the sampling period is h. The discretization of (17) gives rise to
an integration equation
yk+1)
f dy =h (19)

s @2¥* + agy + bu(k)

This integration can be completed and although the explicit input—output relation-
ship may be very complicated it is clear that it takes the form

Wk + 1) = F(y(k), u(k)) (20)
Going into slightly more detail, the analytic expression of y(k) depends upon the two
roots of the equation

ay* +a,y + bu(k) =0
Obviously the value of u(k) affects the nature of the two roots (i.e. real or complex) and
in turn the form of non-linear function Fi (*). Therefore, (20) may not be valid globally.
If the sampling period is sufficiently small, using the forward difference scheme

Wk+1) = y(k)
h

and an approximation of (20) is given by

~ a, y(k) + a,y*(k) + bu(k) (21)

Wk + 1) = (1 + ha,)y(k) + ha,y*(k) + hbu(k) (22)
Example 4
A delignification process (Ljung 1987: 133)
dy(t) _ EL M a B
=K exp( ) DO L) u(0)] (23
where
y(t) lignin concentration at time ¢
u,(z) absolute temperature at time ¢
(24)

u,(t) concentration of hydrogen sulfite, [HSO3 ]
u3(t) concentration of hydrogen, [H*]

and K, E;, M, a and f are constants associated with the chemical reaction. It is easily
seen that discretization of (23) yields

yk+1) dy h EL "
=5 = —hK;exp | ——— | [u, (k)1 u.(k 25
L =K p( ul(k))[ 201 Tu()] (25)
and the explicit ‘input-output’ relationship takes the form
Yk +1) = F(y(k), u(k)) (26)

where u(k) = (u,(k), u,(k), u5(k))™. If h is sufficiently small, an approximation of (26)
can be obtained as

yk+1)=y(k) — hK, exp <— EL

u, (k)

) Cy(k) 1Mz (k) 1" Lus (k)17 (27)

using the forward difference scheme.
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For a general differential equation

Y1) _ _[(d" W) dy()
PR (T’ e g n), u(t)) (28)
defining the state vector as
[ w0 ]
x,(1) dy(1)
dr
x(t) = xz_(t) = _t (29)
x,(1) d"" (1)
[ dr

a state-space equation is obtained

dx(t)
dt

1) = Dx(1)

= &(x(1), u(1))
(30)

where D=(1,0,...,0). The discretization of (30) gives rise to a NARMAX model.

- Assume that a ZOH_is used and a fixed sampling period h is employed. For.

LE [ty by s y)
x(t) = x(k) + f &(x(7), u(k)) dz | (31)

Let t— 1, ,, the exact discrete model of (28) is obtained

111

x(k+ 1) = x(k) + f " #0z), u(k)) dx

ke

(32)
Y(k+1)=Dx(k + 1)

The exact input-output equation isa NARMAX model in the form of (3). Notice that
the form of the non-linear function F(-) may change if the input varies over different
-egions. A NARMAX model may therefore be valid only in a region around some

verating point.
If h is sufficiently small, an approximate difference equation model is given by

x(k + 1) = x(k) + hg(x(k), u(k))}
(33)

(k) = Dx(k)

Terent approximation schemes may be used to obtain different approximate
‘he stability properties of these approximate models may differ from the
1 (for a simple illustration, see Potts 1982). The input-output relationships
ate or exact discrete models are, however, all in the form of (3) and an
'AX model exists in a region around some operating point even though

¢ non-linear function F(-) may be very difficult to obtain.
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The NARMAX model was referred to as the recursive representation of the system
by Hammer (1984) where the problem of uniqueness of the representation was
addressed. It is easily seen that a system has infinitely many different but input-output
equivalent NARMAX models. In fact, let

(k) = F(y(k — 1), ..., y(k — L), u(k—1), ..., u(k —n,))

be a NARMAX model of the system. Another NARMAX model differing from the
above can be obtained as follows

Wk)=F(F(y(k—2), v Wk—n,—1), u(k—2),...,u(k—n,,—1)),
Wk=2),..., y(k— W, u(k—1), ..., u(k — n,))
=F[y(k— 1),..., Wk —(n, + 1)), uk—1),..., u(k — (n, + )]

All these representations are input-output equivalent to the system and form an
equivalence class F. Within F, there exists a minimal NARMAX model that has the
smallest n, and n,. For example, the minimal NARMAX model for Example 2 is
(k) = y(k—1) exp (—u(k— 1)) where n, =n, =1, but another equivalent model is

k) = y(k — 2) exp (—u(k— 2)) exp (—u(k — 1)

where n, = n, = 2. The minimal NARMAX model can be derived fromany FeFina
finite number of successive reduction steps (see Hammer 1984). By the NARMAX

model of the system, we are therefore often referring to this minimal representation.

" Notice that the situation is similar for linear models such as (4).

4. Justification of the polynomial NARMAX model

The NARMAX model (3) is a very general model and it represents a wide class of
discrete-time non-linear systems. In some cases, the non-linear form F(-) is known
and the task of specifying the input-output relationship of the system is reduced to
determining some unknown parameters. For many real sampled non-linear systems,
however, their exact NARMAX models are very difficult to determine and in general
the non-linear structure of F() is unknown. A means of approximating F( ) using
some known function is therefore desired and often necessary. If the system is
operated close enough to the desired operating point, a linear model of the form of (4)
may be used to approximate F (). The usefulness of such a linearized model, however,
is restricted. Model (4) is a polynomial of degree 1in y(k— 1), ..., Wk—n,), u(k—1),
««» U(k —n,). Tt is reasonable to believe that higher order polynomial functions will in

polynomial NARMAX models (Billings 1986, Billings and Fadzil 1985, Billings et al.

1988 a, 1989). The remaining part of this section is devoted to the theoretical justifica-

tion for using polynomial NARMAX models to represent non-linear systems.
Define the real Banach space Z as

Z=Y" x ym (34)
and let n=n, + n,, z(k) = (z4(k), ..., 2,(k))T where

Wk —1i), i=1,..,n
z(k) = ’ (35)
u(k—i+ny), i=n,+1,..,n
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C°(Z) will be denoted as the real Banach space of continuous functions from Z into Y.
Define

pg:Z->Y (36)
a polynomial function of degree m
ps(2(k)) = .Zo Lyz(k) (37)

with
Lgz(k) = 6,

Liz() = ¥ 6,2k

Lxk)= 3 ¥ Oz (R (k) - (38)
T T e e L;,"z(k) '='i 2*;".. i;—l 0114—1;221(1() B Z;‘(k)J T T T

where 6o, 0;,0;,,,...,0;, . are real constants. It is obvious that the set of all
polynomial functions is a subset of C°(Z). A polynomial function pJ multiplied by a
real scalar p is done by multiplying each coefficient in (38) by p. The sum of two
polynomial functions pJ and p/ (assume J<m) is a polynomial function of degree
m=max {m, j}

(0 + p2(a(0) = 3, b+ a9 + 3 Liath (39

with
(Lg + Lg)z(k) = 60 + ao

(L + LYzt = 3 6+ )2(K
SN

(L§ + LE)z(k) = ) Zl Zl (0s,...i, + i, i )2, (K) ... z;(k) J
= =
The product of pg and p! is a polynomial of degree m +j

(75 > PD(:00) = alk) =%, Lieth ay
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with
L/?Z(k) =pfo= Bocto
Ljz(k) = (L§ x L} + Ly x LY2(k) = 3" (ot + Bi0) (k)
=)

Ljz(k) = (LY x L2 + L§ x L} + L2 x L9)z(k)

= X X (Ootti, + 0,0, + 6, 000)z,, (K)z, (K) r (42)

i1=1i=1

L5 z(k) = (L§ x L)z(k)

n n n n
= Z Z Z Z 9.',...:',.,“:,,.+....i,,,,,zi,(k)~--Zi,,.+,-(k)J
=1 im=lims1=1  imay=1

It is clear that the set of all polynomial functions from Z into Y is a sub-algebra.

Theorem
Assume that Z is compact. Then the set of all polynomial functions from Z into Y
is dense in C°(2).

If Y and U are compact subsets of some Banach spaces, the theorem is also held.

The proof is based on the Stone-Weierstrass theorem (e.g. Dieudonné 1960,
Simmons 1963). Let E be a compact Banach space. If a sub-algebra S of the Banach
space C°(E) of continuous functions E — R separates points and contains constant
functions, then S is dense in CYE).

The separation property means that for x,y € E, x # y, there exists g € S such that
g(x) #g(y).

The set of all polynomial functions from Z into Y obviously contains constant
functions (p§). To prove the separation property, take two distinct points z(k) and
z(k). We may assume that zy(k) # z,(k). Then a degree-1 polynomial function with a
set of coefficients 6, =0, 6, #0 and 0;=0,i=2, ..., n satisfies pa(z(k)) # pi(z(k)).

The theorem implies that for an F e C°(2) and given & > 0, there exists a degree-m
polynomial function with a set of coefficients § such that

I1F(2(K)) — pg(z(k) | <&, ¥ z(k) ez (43)

Using polynomial NARMAX models to represent non-linear input—output systems is
therefore well justified. As an illustration, consider a polynomial approximation of the
NARMAX model for Example 1 given in § 2.2, Specifically, assume that

Z = {z(k) = (y(k), u(k)) : | (k) | < 0-25 and [u(k)| < 1}
and the required accuracy is ¢ = 0-04. If a polynomial model of degree 4
Wk + 1) = pi(z(k) = p(k) + u(k) + 2u(k) y(k) — 2u(k) y(k) + 4u(k)y*(k) + u?(k)
is used, then

I1F(2(K) = p3(z(k)) Il = lu(k)[(1 + 4y(k))*/2 (1 + 2y(k) — 2y*(k) +4y* (k)]



1024 S. Chen and S. A. Billings

However, for (y(k), u(k))eZ

(1+4y(k))*? = 1 +2y(k) — 2y*(k) + 4y*(k) —1758(4)7)4

where j lies between y(k) and the origin. Therefore

5
1 F(2(k)) — ps(z(k) || < <& VdkeZ
The linearized model cannot achieve the required accuracy. If ¢ is decreased, the
degree of polynomial can be increased to achieve the desired accuracy.

5. Comparison of output-affine, polynomial and rational models

Three parametric input-output models, namely the output-affine, polynomial
NARMAX and rational models, have been introduced and, from the point of view of
formulation, these can all be considered as special forms of the general NARMAX
model (3). This section presents a brief comparison of these three models.

As mentioned in § 2.4, state-affine models can be used to represent non-linear
systems, particularly systems that appear naturally affine-in-the-states. For example,
the exact sampled model (10) of the continuous-time bilinear state—space system is
affine-in-the-states. In such a situation, the reason for using a state-affine model to
approximate the system is apparent and the approximation can be achieved

“effectively. One way of using state-affine models to approximate the general -

state-space system (1) is as follows. For simplicity assume that x, = 0. First replace (1)
by an approximate state-space model based on a degree-2m polynomial

xk+1)= Y Y Ayx®(ulk), Age=0
i —m0 J —m0 (44)
k)= Z Z Bijx(i)(k)uj(k), Boo=0

0j=0

where x9(k) = x(k) ® ... ® x(k) (i terms of x(k)) and ® is the Kronecker product
symbol. Next define a new state vector

x(k)

x@(k)

x*(k) = (45)

x™(k)

Then a state-affine model for the augmented state x*(k) can be obtained (see Rugh
1981: 254-255). Methods of constructing state-affine models from measurements have
been discussed by Dang Van Mien and Normand-Cyrot (1984) and Neyran et al.
(1987). A system admits an output-affine model if and only if it is a finite state-affine
system (Sontag 1979 a). Output-affine models can therefore be employed to represent
non-linear input-output systems. Identification of the output-affine model has been
studied by Billings et al. (1988 b) and Chen and Billings (1988 a, b). Notice that the
output-affine model does not contain power or cross-product terms in the outputs and
this seems to be a restriction. For non-linear systems like those given in Examples 3
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and 4, using output-affine models to approximate the systems may require more terms
and it is not obvious how the approximation of terms like y*(k — 1) is achieved. Of
course, if the response function of the system is a bounded polynomial, the system can
then be modelled exactly by an output-affine model. The polynomial NARMAX
model is more suitable as an approximation to the general system (3), and because
power terms in both the inputs and outputs are allowed more parsimonious models
can be obtained.

When the system is operating close to an operating point where the linear
approximation will be valid, it is desirable that the non-linear model degenerates to
the linear model that is satisfied by the linearized system. A polynomial model can
naturally be reduced to the linear model in such a situation. However, it is not clear
how an output-affine model can achieve this. The linearized system around the origin
for Example 1 is y(k + 1) = p(k) + u(k), and in this case the output-affine model fails
completely to degenerate to this model when the system is operating close to the
origin. For Example 1 it is also seen that the order of the {minimal) polynomial model
is lower than that of the (minimal) output-affine model (n,=n, = 1 compared with
r=2). Evidently, a lower order representation is easier to implement in practice. To
compute Wk + 1), we need to store (k) and u(k) for Example 1 using the polynomial
model, compared with y(k — 1), u(k — 1), u(k) and y(k) using the output-affine model.

It is obvious that the rational model contains the polynomial model as a special
case, and it seems possible therefore that more efficient approximations of non-linear
systems can be found by searching in this wider class. A prediction error estimation :

- algorithm for rational models has been derived by Billings and Chen (1989).

For the output-affine model, from (14) or (15), it is seen that

aglu(k —1),...,u(k—r)) #0 (46)

is always required in any practical application, and if a,( - ) is different from zero but of
small magnitude, high accuracy in the execution of the algebraic operations is
necessary. The rational model suffers the same drawback but the polynomial model !
does not. The biggest advantage of the polynomial NARMAX model over the output- ;
affine and rational models is perhaps that it is linear in the parameters. Many linear
identification results can easily be extended to the polynomial non-linear model and j
several combined routines of structure determination and parameter estimation have j
been developed (Billings and Voon 1984, 1986, Leontaritis and Billings 1988, ;
Korenberg et al. 1988, Chen and Billings, 1989).
Finally, advantages of using NARMAX models rather than Volterra series are
highlighted through simple examples.

Example 5
x(k + 1) = x(k) + uz(k]}
x(0) = x,
k) = x(k)

For this system, the input-output behaviour can be determined by the NARMAX
model

wk)=apk—1)+bud(k— 1) with a=b=1 and y0)=x, (47)

[
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The Volterra series is
1

YR = 5 B, ) = wol) + 5 Wi x0Julh = )

k=1 i
+,Z Y. waliy, ia; Xo)u(k — iy)u(k —iy)

f1=1i=1

+..+ kf i"z" Warliss vy s Xk —iy) .o u(k — i) +...  (48)

i1=1 im=1

Notice that the response function f; |, is

k-1
vk =xq+ ) ui(k—i) (49)
i=1
Therefore
wo(Xo) = x¢
i;x0) =0
Vf)l(l.l o) ' ‘ (50)
w,(iy, i35 Xo) = o(iy — ip)
Woeli1y oy Ing Xo) =0. m>2
_where L L B
i b i=0 (51)
=
) 0, i#0

Even for such a simple non-linear system, the NARMAX model is more convenient to
use than the Volterra series. If the system structure is unknown, much more
computational effort is required to estimate kernels in (48) than to estimate constant
parameters in (47). The necessity to use special input signals and the difficulty of
interpreting and using the identification results are further disadvantages of using the

Volterra series.
For example 2 in § 2.2, the exact NARMAX model is

y(k) = y(k— 1) exp (—u(k — 1)) (32)

Polynomial models can be used to approximate (52) to an arbitrary accuracy. If the
first four terms in the infinite series

exp(—x)=iio(—1)‘?—: —0<X<® (53)
are employed an approximate polynomial NARMAX model is obtained
y(k) = plk— 1) — pk — Du(k — 1) + $p(k — DuP(k — 1) =dpk ~ NPk —1)  (54)
The response function of the system is

k-1 0 (_1)1’ k-1 i)

y(k)=f,o.k<u(1),...,u<k))=y(0),n1exp(—u(f))=exp(_xo)< 5 ( Zu(k——i)))
= j= . i=1

(55)
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The Volterra series is the same as in (48) with all the kernels w,(i,, ..., i Xo), m20
non-zero
Wo(xo) =exp(—xo)

wy(is; xo) = exp(—xo)H,(i;)

.. . (56)
wa(iy, ig5 Xo) = exp (—Xo) (1 — $0(i; —i,))
where
B 1, i=0,1,2,.. (57)
)= 0, i<0

For m > 2, the expressions for the kernels w,(iy, ..., I, X,) become complicated. The
simplicity of the NARMAX model compared with the Volterra series is obvious.

6. Non-linear stochastic input—output models
It is more appropriate to define a model in the stochastic environment if the model
is to be used as a basis for the development of identification and digital controller

design techniques. Define
S, e - e o . uk_:_: (u(l)., -,.,.’ u(k))-]-} P
Y=(A1), .., MHT

Adopting the view of Leontaritis and Billings (1985) and Ljung (1987: Chap. 5) and
regarding »* as a random variable which we observe for different realizations. Then

the conditional probability density function of y* given u*

SOk 1) (59)

fork =1, 2, ... specifies completely a causal stochastic system. Using Bayes’s rule, it is
seen that the conditional probability density function of y(k) given u* and y*~*

FAGTLIIV Ty (60)

for k=1, 2,... equally specifies the system. If the system is strictly causal, (60) is
equivalent to

(38)

SRy~ uk ™Y (61)
Based on (60), we can compute the conditional mean of (k) given u* and y*~!
k) = E[p(k)|y*~ 1, k] = gu(y* 1, ) (62)
and express y(k) in a prediction-error or innovation form
Wk) = (k) + e(k) (63)
where
e(k) = yk) — (k) = y(k) — gi(y* %, u) (64)

is the prediction error or innovation at time k. In the model (63) the output is
separated into two components. The part of the output that can be predicted from the
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past is given by a deterministic function g,(y*~*, ¥*) and the unpredictable part is
defined as the innovation e(k). Let

e = ((1),..., (k)T (65)
The vector ¢~! can be evaluated from the vectors y*~! and u*~! using (64)

iteratively. Similarly, the vector y* ~! can be obtained from ¢~ ! and u*~!. Therefore
the information contained in (y* ™", u*) is equivalent to (¢~ ', u*) and

TR Y~ Y =T k)| e~ 2, uf) (66)
Thus, the prediction y(k) can be given alternatively by
(k) = E[y(k)|e* ™%, ] =fr(e* ™7, u) (67)

J¥ can be considered as the response function of a deterministic system where the
input is (u(k),e(k))T and the output is $(k). Now the results for input—output
representations given in § 2 can be applied to f;*. If, for example, i satisfies two
sufficient conditions given by Leontaritis and Billings (1985) the system can be
represented by the NARMAX model

Wky=F¥¥k—1), ..., k—n),uk—1),..., u(k — n)) (68)
or equivalently
WKy =F(y(k—1),..., Mk —n,), u(k—1), ..., u(k — n,), e(k — 1), ..., e(k — n,)) + e(k)

e e (69)._,

If ¥ is polynomial and finitely realizable, the system can be modelled by the stochastic
rational model (Billings and Chen 1989)

k) = bylk—=1), ..., yk—r),ulk—1),...,ulk—1r),edlk—=1),...,e(k —1))
aly(k—=1), .., k—=r),ulk—1),...,uk—r),elk—1),...,e(k — 1))

where a(+) and b(*) are polynomials of finite degree. If further £ is a bounded
polynomial for all k, a suitable stochastic output-affine model is (Chen and Billings

1988 a)
& afuk—1),...,u(k—r))
WO =2 kD) alk 7))
i a4 1+i(u(k — l)a seey u(k_ r))
=1 aguk—1),...,uk—r))

+ek)  (70)

4y (k= 1), ..., u(k — 1))
ao(u(k — 1), ..., u(k — 1))

yk—1i)+

e(k — 1) + e(k) (71)

+

where a{-),i=0, 1, ..., 2r + 1 are polynomials of finite degree. Models (70) and (71)

are special forms of the general model (69).
If the inputs are removed from (69), a general NARMA (non-linear ARMA) time

series model is obtained

Wk) = F(ytk= 1), ..., k—ny), ek = 1),...,elk—n)) +ek) . (72
The polynomial AR time series model
yk) = p(pk—1), ..., Wk —ny)) + e(k) (73)

where p(+) is a polynomial of finite degree, has been criticized for being explosive
(Granger and Andersen 1978, Ozaki 1985). It was argued that power terms like
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yi(k — i) will almost certainly cause the model to be explosive unless the associated
parameters are small and the distribution of e(k) is truncated and limited in extent,
and therefore, polynomial models may not be very useful in modelling non-linear time
series whose underlying process is stable and non-divergent. Notice, however, that the
criticisms do not carry over to control systems. Non-linear control systems are
capable of being unstable and divergent unless the input is restricted to some regions.
This feature is well reflected in polynomial models. Moreover, control action will
influence system behaviour and often changes the nature of the system. For example

y(k) =2k —1) + u(k — 1) + e(k)

is an explosive linear time series if u(k) =0 for all k. By introducing the feedback
control

u(k) = —1-5y(k)
the system becomes stable and behaves like
y(k) =05k — 1) + e(k)

a stationary time series. It should be emphasized that there are time series (such as
bacterial growth) that exhibit explosive behaviour and these can certainly be modelled
by polynomial time series models. In practice, for stable and non-divergent, non-linear
time series, polynomial models often fit the observed time series values better and
produce more accurate predictions than linear models. For the ship-rolling time series

" given by Ozaki (1985), the polynomial model works well. Explosive behaviour may
arise when using polynomial models to simulate their underlying processes under the
assumption that e(k) is white gaussian noise, If the system noise is really gaussian
distributed, it may have a large value (although the probability of e(k) taking such a
value is very small). When this occurs, y(k) may jump out of the stability region of the
model, causing the divergence of future time series values. The gaussian assumption is
an idealized one. The real system noise may well have limited amplitude values and
therefore the time series values may in reality never be outside the stability region of
the model. It seems that the question of explosive behaviour is due to a large extent on
the assumptions regarding the system noise and the usefulness of polynomial time
series models cannot be ruled out, This aspect will be discussed further in another
publication.

One of the most important uses for time series models is to provide forecasts or
predictions. In order to use the general non-linear time series model (72) for
forecasting, we must be able to estimate the unobserved system noise sequence ¢* from
observed time series values y* and the given model. This leads to the generalized
definition of invertibility (Granger and Anderson 1978). Assume that the system is
modelled exactly by (72) and all y(k) are known. Let a residual sequence

&=(e(1), ..., e(k)T (74)
be generated by
E(k) = y(k) - F(y(k - 1)1 seey Y(k - "y)1 S(k - 1)’ sery 8(’( - ne)) (75)

with some initial conditions &(i),i= —n,+ 1, ..., 1, 0 given. Then the model (72) is
said to be invertible if

E[e(k)—¢(k)]>*>0 ask— oo (76)
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This definition of invertibility for time series is not very suitable for control
systems because the system is often much more complex than the models that are
estimated. Model-invertibility or m-invertibility has been introduced to deal with this
aspect (Chen and Billings 1989). By the system is meant the data generation
{(y(k), u(k))}, which is a stochastic process. The model is defined by (69) and can be
parameterized with a parameter vector § of dimension n,

.V(k) = F(.V(k"‘ 1)5 vevy }’(k - ny)’ u(k - 1)’ LR
ukk—n),8k—1,0),...,e(k—n,8);0 +ek, 8 (77)
As 0 ranges over D,,, a subset of R™, (77) describes the set of models. Identification, for
example, consists of selecting a model within D,, that best describes the recorded data.
It does not require that the system is modelled exactly within the model set. The
residual or prediction error g(k, 8) is, of course, dependent on the chosen parameter 6.
For realizations of the stochastic process {( y(k), u(k))}, let two sequences {el)(k, 6)},
i=1, 2 be generated by
ek, 8) = y(k) — F(Wk —1),..., y(k — n,),
utk = 1), ..., u(k—n,), ek —1,9),..., &'k —n,, 0); 6)  (78)

with any two different initial conditions

g ~n,+1),...,eM%0), i=1,2 (79)
--“Then the-model is-said-to be m-invertible for § if-- - - -~ - -
(e™M(k, 0) — ek, 8))>2 >0 ask— oo w.p.1 (80)

If the model is m-invertible for all 8eD,, it is m-inevitable on D,,. Essentially the m-
invertibility of the model means that the one-step-ahead predictor

H(k|6) =gyl y* 71, 1% 60) (81)
is exponentially stable. Convergence analysis of recursive estimators for linear models
critically depends upon the stability of the predictors (Ljung and SGderstrom 1983)
and this is also true for non-linear models (Chen and Billings 1989).

If the non-linear function F(-) in (77) is a polynomial function, in order to
guarantee m-invertibility, the model should be linear in the prediction errors (Chen
and Billings 1989). The model can however be non-linear in the inputs and outputs.
This is illustrated by an example.

Example 6 The underlying process is a Wiener system
w(k) = 0-8w(k — 1) + 0-4u(k — 1)
(k) = w(k) + w(k) + e(k)

(82)

excited by a uniformly distributed input with mean 0-2 and the amplitude range from
— 08 to 1-2. The system noise e(k) is a gaussian sequence of zero mean with variance
0:01. A model was identified as (Billings and Voon 1986)

(k) = 07578y(k — 1) + 0-3891u(k — 1) — 0-03723y*(k — 1)
+ 0-3794y(k — L)u(k — 1) + 0-0684u’(k — 1) + 0-1216y(k — Du?(k — 1)
+ 0-0633u’(k — 1) — 0-739¢(k — 1) — 0-368u(k — 1)e(k — 1) + &(k) (83)
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A sufficient condition for (83) to be m-invertible is E[0-739 + 0-368u(k)]?> < 1 (Chen
and Billings 1989). A simple computation shows E[0-739 4 0-368u(k)]? = 0-7055
which indicates that the model is indeed m-invertible for the particular input signal
used. It is important to emphasize that the restriction of being linear in the prediction
errors is a restriction on the polynomial model not the data generation. The actual
system output can contain non-linear terms of the system noise.

It is easily seen that the stochastic output-affine model (71) is naturally linear in
the prediction errors. For the stochastic rational model, the restriction of being linear
in the prediction errors can be removed but analysis becomes more complicated.
Notice that for modelling time series, a non-explosive rational model can always be
achieved by a suitable choice of the degrees for polynomials a( +) and b( *) '

7. Conclusions

A unified approach has been adopted in modelling nop-linear discrete-time
systems. It has been shown that the NARMAX model is a general input—output
representation for finitely realizable systems and it includes, as special cases, linear,
bilinear, output-affine and rational models. It has been demonstrated that sampling
real continuous-time systems naturally produces NARMAX models and several
properties of input—output models have been discussed and illustrated using simple

examples.
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