
























1025 Representations of non-linear systems 

and 4, using output-affine models to approximate the systems may require more terms 
and it is not obvious how the approximation of terms like y2(k - 1) is achieved. Of 
course, if the response function of the system is a bounded polynomial, the system can 
then be modelled exactly by an output-affine model. The polynomial NARMAX 
model is more suitable as an approximation to the general system (3), and because 
power terms in both the inputs and outputs are allowed more parsimonious models 
can be obtained. 

When the system is operating close to an operating point where the linear 
approximation will be valid, it is desirable that the non-linear model degenerates to 
the linear model that is satisfied by the linearized system. A polynomial model can 
naturally be reduced to the linear model in such a situation. However, it is not clear 
how an output-affine model can achieve this. The linearized system around the origin 
for Example 1 is y(k + 1) = y(k) + u(k), and in this case the output-affine model fails 
completely to degenerate to this model when the system is operating close to the 
origin. For Example 1 it is also seen that the order of the (minimal) polynomial model 
is lower than that of the (minimal) output-affine model (ny= n = 1 compared with u 
r = 2). Evidently, a lower order representation is easier to implement in practice. To 
compute y(k + 1), we need to store y(k) and u(k) for Example 1 using the polynomial 
model, compared with y(k - 1), u(k - 1), u(k) and y(k) using the output-affine model. 

It is obvious that the rational model contains the polynomial model as a special 
case, and it seems possible therefore that more efficient approximations of non-linear 
systems can be found by searching in this wider class. A prediction error estimation 

. algorithm for rational models has· been derived· by Billings arid Chen (1989J, 
For the output-affine model, from (14) or (15), it is seen that 

ao(u(k - 1), ... , u(k - r» ::I 0 (46) 

is always required in any practical application, and if ao( •) is different from zero but of 
small magnitude, high accuracy in the execution of the algebraic operations is 
necessary. The rational model suffers the same drawback but the polynomial model 
does not. The biggest advantage of the polynomial NARMAX model over the output
affine and rational models is perhaps that it is linear in the parameters. Many linear 
identification results can easily be extended to the polynomial non-linear model and 
several combined routines of structure determination and parameter estimation have 
been developed (Billings and Voan 1984, 1986, Leontaritis and Billings 1988, 
Korenberg et al. 1988, Chen and Billings, 1989). 

Finally, advantages of using NARMAX models rather than Volterra series are 
highlighted through simple examples. 

Example 5 

2x(k + 1) = x(k) + U (k)} 
x(O) - x 

y(k) = x(k) - 0 

For this system, the input-output behaviour can be determined by the NARMAX 
model 

y(k) =ay(k -1) + bu1(k - 1) with a = b = 1 and y(O) = Xo (47) 
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The Volterra series is 
co k-l 

y(k) = L hxolkl(u(1), ... , u(k)) = wo(wo) + L W1(il; xo)u(k - i1) 
i= 0 il;;;o 1 

k- 1 II 

+ L L wz(il,i2 ;xo)u(k-i1)u(k-iz)
It =li,=l 

k-l 1... -1 

+ ... + L ... L wm(il, ... , im; xo)u(k - i1) ... u(k - im ) + ... (48) 
il=1 i",=1 

Notice that the response function!xolk is 

k-l 

y(k)=xo+ L u2(k-i) (49) 
1= 1 

Therefore 

Wo(xo) = Xo ) 
W 1(il; xo) =0 

(50) 
WZ(il, i2 ; xo) = b(il - iz) 

Wm(il"'"im;xO) =0. m>2 

.. where 

1' i =0 
b(i) = (51)

{ 0, i =I- 0 

Even for such a simple non-linear system, the N ARMAX model is more convenient to 
use than the Volterra series. If the system structure is unknown, much more 
computational effort is required to estimate kernels in (48) than to estimate constant 
parameters in (47). The necessity to use special input signals and the difficulty of 
interpreting and using the identification results are further disadvantages of using the 
Volterra series. 

For example 2 in § 2.2, the exact NARMAX model is 

y(k) = y(k - 1) exp (-u(k - 1» (52) 

Polynomial models can be used to approximate (52) to an arbitrary accuracy. If the 
first four terms in the infinite series 

<Xl Xl 

exp(-x) = L(-1)1-:- -oo<x<oo (53) 
1=0 z! 

are employed an approximate polynomial NARMAX model is obtained 

y(k) = y(k - 1) - y(k - 1)u(k - 1) +h(k - 1)u2(k - 1) - ty(k - 1)u3(k - 1) (54) 

The response function of the system is 

k-l (CO (-W(k-l )i)
y(k) =!xolk(u(1), ... , u(k» = yeO) III exp( - u(i» =exp( -xo) j~O ----yr- 1~1 u(k - i) 

(55) 
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The Volterra series is the same as in (48) with all the kernels w",(i l , , i ; xo), m~Om
non-zero 

(56) 

where 

. {1' i=O, 1,2, ... 
HI(I) = (57) 

0, i ~ 0 

For m > 2, the expressions for the kernels W",(il' ••• , im; xo) become complicated. The 
simplicity of the NARMAX model compared with the Volterra series is obvious. 

6. Non-linear stochastic input~utput models 
It is more appropriate to define a model in the stochastic environment ifthe model 

is to be used as a basis for the development of identification and digital controller 
design techniques. Define 

ll-= (u(}f, , U(k))T} . 
(58)

1 = (y( 1), , y(k)T 

Adopting the view of Leontaritis and Billings (1985) and Ljung (1987: Chap. 5) and 
regarding I' as a random variable which we observe for different realizations. Then 
the conditional probability density function of.l given Uk 

(59) 

for k = 1, 2, ... specifies completely a causal stochastic system. Using Bayes's rule, it is 
seen that the conditional probability density function of y(k) given Uk and I-I 

(60) 

for k = 1, 2, ... equally specifies the system. If the system is strictly causal, (60) is 
equivalent to 

],,(y(k)/.I-1, Uk-I) (61) 

Based on (60), we can compute the conditional mean of y(k) given Uk and 1- I 

Y(k) = E[y(k)I/-I, Uk] =gk(yk-l, if) (62) 

and express y(k) in a prediction-error or innovation form 

y(k) = y(k) +e(k) (63) 

where 

(64) 

is the prediction error or innovation at time k. In the model (63) the output is 
separated into two components. The part of the output that can be predicted from the 
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past is given by a deterministic function gk(/-I, if) and the unpredictable part is 
defined as the innovation e(k). Let 

ke == (e(1), ... , e(k»T (65) 

The vector ek - 1 can be evaluated from the vectors 1- I and Uk - 1 using (64) 
iteratively. Similarly, the vector 1- 1 can be obtained from ek - I and if - I. Therefore 
the information contained in (1-1, Uk) is equivalent to (~-I, Uk) and 

h(y(k)/I-I, Uk) ==h( y(k) lek - I, Uk) (66) 

Thus, the prediction y(k) can be given alternatively by 

l Iy(k) == E[y(k)lek - , Uk] ==.r:(ek - , Uk) (67) 

.r: can be considered as the response function of a deterministic system where the 
input is (u(k), e(kW and the output is Y(k). Now the results for input-output 
representations given in § 2 can be applied to.r:. If, for example,.r: satisfies two 
sufficient conditions given by Leontaritis and Billings (1985) the system can be 
represented by the NARMAX model 

Y(k) == F*(Y(k - I), ... , y(k - ny ), u(k -1), ... , u(k - n )) (68)u

or equivalently 

y(k) == F(y(k - 1), ... , y(k - ny), u(k - 1), ... , u(k - nu), e(k - 1), ... , e(k - ne)) + e(k) 
" .. "- - . (69)" 

Iff:' is polynomial and finitely realizable, the system can be modelled by the stochastic 
rational model (Billings and Chen 1989) 

b(y(k -1), ... , y(k - r), u(k - I), ... , u(k - r), e(k - 1), ... , e(k - r» k 
y(k) == +e() (70)

a(y(k - I), ... , y(k - r), u(k - I), ... , u(k - r), e(k - I), ... , e(k - r)) 

where a(') and b(') are polynomials of finite degree. If further .r: is a bounded 
polynomial for all k, a suitable stochastic output-affine model is (Chen and Billings 
1988 a) 

y(k) == t ai(u(k -1), u(k - r») y(k _ i) +ar + I(u(k - 1), , u(k - r)) 
i=1 ao(u(k-I), , u(k -r» a-o(u(k-I), , u(k-r» 

f ar+ 1 +;(u(k - 1), ... , u(k - r» (k') k)+t.- e -l+e( (71) 
i =1 ao(u(k - 1), ... , u(k - r)) 

where aA'), i == 0,1, ... , 2r + 1 are polynomials of finite degree. Models (70) and (71) 
are special forms of the general model (69). 

lfthe inputs are removed from (69), a general NARMA (non-linear ARMA) time 
series model is obtained 

y(k) == F(y(k - 1), ... , y(k - ny ), e(k -1), ..., e(k - ne)) +e(k) (72) 

The polynomial AR time series model 

y(k) == p(y(k - 1), ... , y(k - ny)) + e(k) (73) 

where p( .) is a polynomial of finite degree, has been criticized for being explosive 
(Granger and Andersen 1978, Ozaki 1985). It was argued that power terms like 
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i(k - i) will almost certainly cause the model to be explosive unless the associated 
parameters are small and the distribution of e(k) is truncated and limited in extent. 
and therefore. polynomial models may not be very useful in modelling non-linear time 
series whose underlying process is stable and non-divergent. Notice, however. that the 
criticisms do not carryover to control systems. Non-linear control systems are 
capable of being unstable and divergent unless the input is restricted to some regions. 
This feature is well reflected in polynomial models. Moreover, control action will 
influence system behaviour and often changes the nature of the system. For example 

y(k) = 2y(k - 1) + u(k - 1) + e(k) 

)	 is an explosive linear time series if u(k) = 0 for all k. By introducing the feedback 
control 

u(k) = -1'5y(k) 

the system becomes stable and behaves like 

y(k) = 0'5y(k - 1) + e(k) 

a stationary time series. It should be emphasized that there are time series (such as 
bacterial growth) that exhibit explosive behaviour and these can certainly be modelled 
by polynomial time series models. In practice, for stable and non-divergent, non-linear 
time series, polynomial models often fit the observed time series values better and 
produce more accurate predictions than linear models. For the ship-rolling titIl~ ~eries 

.. _. - givenby·OzaK:i(I985r,-fhe pojYiiomiafmoderworks·welCExpl()si~~behaviourmay 
arise when using polynomial models to simulate their underlying processes under the 
assumption that e(k) is white gaussian noise. If the system noise is really gaussian 
distributed, it may have a large value (although the probability of e(k) taking such a 
value is very small). When this occurs. y(k) may jump out ofthe stability region of the 
model, causing the divergence of future time series values. The gaussian assumption is 
an idealized one. The real system noise may well have limited amplitude values and 
therefore the time series values may in reality never be outside the stability region of 
the model. It seems that the question of explosive behaviour is due to a large extent on 
the assumptions regarding the system noise and the usefulness of polynomial time 
series models cannot be ruled out. This aspect will be discussed further in another 
publication. 

One of the most important uses for time series models is to provide forecasts or 
predictions. In order to use the general non-linear time series model (72) for 
forecasting. we must be able to estimate the unobserved system noise sequence r!' from 
observed time series values I and the given model. This leads to the generalized 
definition of invertibility (Granger and Anderson 1978). Assume that the system is 
modelled exactly by (72) and all y(k) are known. Let a residual sequence 

If = (e(1) • .... e(kW	 (74) 

be generated by 

e(k) = y(k) - F(y(k - 1)..... y(k - ny). e(k - 1), .... e(k - n.» (75) 

with some initial conditions eU), i = -no + 1, .... 1,0 given. Then the model (72) is 
said to be invertible if 

E[e(k) - e(k)] 2 -t 0 as k -t 00	 (76) 
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This definition of invertibility for time series is not very suitable for control 
systems because the system is often much more complex than the models that are 
estimated. Model-invertibility or m-invertibility has been introduced to deal with this 
aspect (Chen and Billings 1989). By the system is meant the data generation 
{(y(k), u(k))}, which is a stochastic process. The model is defined by (69) and can be 
parameterized with a parameter vector 8 of dimension ne 

y(k) = F(y(k -1), ... , y(k - ny), u(k - 1), ... , 

u(k- nul, e(k -1,8), ... , e(k - ne , 8); 8) + e(k, 8) (77) 

As 8 ranges over DM , a subset of R"', (77) describes the set of models. Identification, for 
example, consists of selecting a model within DM that best describes the recorded data. 
It does not require that the system is modelled exactly within the model set. The 
residual or prediction error e(k, 8) is, of course, dependent on the chosen parameter 8. 
For realizations of the stochastic process {(y(k), u(k))}, let two sequences {e1il(k,8)}, 
i = 1,2 be generated by 

e[il(k,8) = y(k) - F(y(k - 1), , y(k - ny), 

u(k - I), , u(k - nul, e1il(k - 1,8), ... , e[il(k - ne, 8); 8) (78) 

with any two different initial conditions 

e[ll( - n + 1), ... , e[il(O), i = 1,2 (79)e 

.--Then the-model is said to bern-invertible for 8 if-

(eUI(k, 8) - e[21(k, 8))2 _ 0 as k _ 00 w.p. 1 (80) 

If the model is m-invertible for all 8EDM it is m-inevitable on DM • Essentially the m
invertibility of the model means that the one-step-ahead predictor 

y(kl()) = gk(!'-l, Uk; 8) (81) 

is exponentially stable. Convergence analysis of recursive estimators for linear models 
critically depends upon the stability of the predictors (Ljung and Soderstrom 1983) 
and this is also true for non-linear models (Chen and Billings 1989). 

If the non-linear function F(') in (77) is a polynomial function, in order to 
guarantee m-invertibility, the model should be linear in the prediction errors (Chen 
and Billings 1989). The model can however be non-linear in the inputs and outputs. 
This is illustrated by an example. 

Example 6 The underlying process is a Wiener system 

w(k) = 0'8w(k - 1) + 0'4u(k - I)} 
(82) 

y(k) =w(k) + w3(k) + e(k) 

excited by a uniformly distributed input with mean 0'2 and the amplitude range from 
- 0·8 to 1·2. The system noise e(k) is a gaussian sequence of zero mean with variance 
0·01. A model was identified as (Billings and Voon 1986) 

y(k) = O'7578y(k - 1) + 0'3891u(k - 1) - 0'03723y2(k - 1) 

+0'3794y(k - l)u(k -1) +0'0684u2(k -1) +Q'1216y(k - l)u2(k - 1) 

+Q'0633u3(k - 1) - 0'73ge(k - 1) - Q-368u(k - l)e(k - 1) + e(k) (83) 

( 
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A sufficient condition for (83) to be m-invertible is E[0'739 +Q'368u(k)]2 < I (Chen 
and Billings 1989). A simple computation shows E[0'739 + 0'368u(k)] 2 = 0·7055 
which indicates that the model is indeed m-invertible for the particular input signal 
used. It is important to emphasize that the restriction of being linear in the prediction 
errors is a restriction on the polynomial model not the data generation. The actual 
system output can contain non-linear terms of the system noise. 

It is easily seen that the stochastic output-affine model (71) is naturally linear in 
the prediction errors. For the stochastic rational model, the restriction of being linear 
in the prediction errors can be removed but analysis becomes more complicated. 
Notice that for modelling time series, a non-explosive rational model can always be 

•1 achieved by a suitable choice of the degrees for polynomials a( .) and b( •) . 

7. Conclusions 
A unified approach has been adopted in modelling non-linear discrete-time 

systems. It has been shown that the NARMAX model is a general input-output 
representation for finitely realizable systems and it includes, as special cases, linear, 
bilinear, output-affine and rational models. It has been demonstrated that sampling 
real continuous-time systems naturally produces NARMAX models and several 
properties of input-output models have been discussed and illustrated using simple 
examples. 

ACKNOWLEDGMENT 
This work is supported by the Science and Engineering Research Council (Grant 

Ref. GR/D/30587). 

REFERENCES 
BILLINGS, S. A., 1986, Introduction to nonlinear systems analysis and identification, Signal 

Processing for Control, edited by K. Godfrey and P. Jones (Berlin: Springer.Verlag),.. 
pp. 261-294. 

BILLINGS, S. A., and CHEN, S., 1989, Int. J. Systems Sci., 20,467. 
BILLINGS, S. A., CHEN, S., and BACKHOUSE, R. J., 1989, The identification of linear and nonlinear 

models of a turbocharged automotive diesel engine. Meeh. Systems Signal Process., to be 
published. 

BILLINGS, S. A., and FADZIL, M. B., 1985, The practical identification of systems with 
nonlinearities. Proe. 7th IFAC Symp. on Identification and System Parameter Estimation, 
York, U.K., pp. 155-160. 

BILLINGS, S. A., FADZIL, M. 8., SULLEY, J., and JOHNSON, P. M., 1988 a, Identification of a 
nonlinear difference equation model of an industrial diesel generator. Meeh. Systems 
Signal Process., 2, 59. 

BILLINGS, S. A., KORENBERG, M. J., and CHEN, S., 1988 b, Int. J. Systems Sci., 19, 1559. 
BILLINGS, S. A., and LEONTARITIS, I. J., 1982, Parameter estimation techniques for nonlinear 

systems. Proc. 6th IFAC Symposium on Identification and System Parameter Estimation, 
Washington, DC, pp. 505-510. 

BILLINGS, S. A., and VOON, W. S. E, 1984, Int. J. Systems Sci., 15,601. 
BILLINGS, S. A., and VOON, W. S. E, 1986, Int. J. Control, 44, 803. 
BUSSGANG, J. J., EHRMAN, L., and GRAHAM, J. W., 1974, Proc. Inst. elect. electron. Engrs, 62, 

1088. 
CHEN, S., and B1LLlNGS, S. A., 1988 a, Int. J. Control, 47, 309; 1988 b, Recursive maximum 

likelihood identification of a nonlinear output-affine model. Ibid., 48, 1605; 1989, A 
recursive prediction error parameter estimator for nonlinear models. Ibid., 49, 569. 



1032 Representations oj non-linear systems 

DANG VAN MIEN, H., and NORMAND-CYROT, D., 1984, Automatica, 20, 175.
 
DIEUDONNE, J., 1960, Foundations of Modern Analysis (New York: Academic Press).
 
ESPANA, M., and LANDAU, I. D., 1978, Automatica, 14, 345.
 
FLiESS, M., and NORMAND-CYROT, D., 1982, On the approximation of nonlinear systems by
 

some simple state-space models. Proc. 6th IFAC Symposium on Identification and 
System Parameter Estimation, Washington, DC, pp. 511-514. 

GRANGER, C. W. J., and ANDERSEN, A. P., 1978, An Introduction to Bilinear Time Series Models. 
Gottingen: Vandenhoeck and Ruprecht). 

HAMMER, J., 1984, Int. J. Control, 40, I. 
KORENBERG, M. J., BILLINGS, S. A., LIU, Y. P., and McILROY, P. J., 1988, Int. J. Control,48, 193. 
LEONTARITIS, I. J., and BILLINGS, S. A., 1985, Int. J. Control, 41,303; 1988, Int. J. Systems Sci., 19, 

519. 
LJUNG, L., 1987, System Identification: Theory and User (Englewood Cliffs, NJ: Prentice Hall). 
LJUNG, L., and SODERSTROM, T., 1983, Theory and Practice of Recursive Identification 

(Cambridge, Mass: MIT Press). 
MARMARELlS, P. Z., and MARMARELlS, V. Z., 1978, Analysis ofPhysiological Systems: The White-

Noise Approach (New York: Plenum Press). 
MOHLER, R. R., 1973, Bilinear Control Processes (New York: Academic Press). 
NEYRAN, B., THOMASSET, D., and DUFOUR, J., 1987, Proc. Instn elect. Engrs, 134, Pt D, 89. 
OZAKI, T., 1985, Non-linear time series models and dynamical systems, Handbook ofStatistics, 

Vol. 5, Time Series in the Time Domain, edited by E. J. Hannan, P. R. Krishnaiah and 
M. M. Rao (Amsterdam: North-Holland), pp. 25-83. 

Pons, R. B., 1982, Nonlinear Anal. Theory, Methods Applic. 6, 659. 
RUGH, W. J., 1981, Nonlinear System Theory: The Volterra/Wiener Approach (Baltimore, Md: 

Johns Hopkins University Press). 
SCHETZEN, M., 1980, The Volterra and Wiener Theories ofNonlinear Systems (New York: John 

Wi1ey)~··· 

SIMMONS, G. E, 1963, Introduction to Topology and Modern Analysis (New York: McGraw-Hill). 
SONTAG, E. D., 1979 a, I.E.E.E. Trans. Circuits Systems, 26, 342; 1979 b, Polynomial response 

maps. Lecture Notes in Control and Information Sciences 13 (Berlin: Springer-Verlag). 

, 


