
This article was downloaded by:[University of Southampton]
On: 14 September 2007
Access Details: [subscription number 769892610]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

Parallel recursive prediction error algorithm for training
layered neural networks
S. Chen a; C. F. N. Cowan a; S. A. Billings b; P. M. Grant a
a Department of Electrical Engineering, University of Edinburgh, Edinburgh,
Scotland, U.K.
b Department of Control Engineering, University of Sheffield, Sheffield, England, U.K

Online Publication Date: 01 January 1990
To cite this Article: Chen, S., Cowan, C. F. N., Billings, S. A. and Grant, P. M.
(1990) 'Parallel recursive prediction error algorithm for training layered neural
networks', International Journal of Control, 51:6, 1215 - 1228
To link to this article: DOI: 10.1080/00207179008934127
URL: http://dx.doi.org/10.1080/00207179008934127

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207179008934127
http://www.informaworld.com/terms-and-conditions-of-access.pdf

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

INT. J. CONTROL, 1990, VOL. 51, No.6, 1215-1228

Parallel recursive prediction error algorithm for training layered
neural networks

s. CHENt, C. F. N. COWANt, s. A. BILLINGSt and P. M. GRANTt

A new recursive prediction error algorithm is derived for the training of feedforward
layered neural networks. The algorithm enables the weights in each neuron of the
network to be updated in an efficient parallel manner and has better convergence
properties than the classical back propagation algorithm. The relationship between
this new parallel algorithm and other existing learning algorithms is discussed.
Examples taken from the fields of communication channel equalization and non­
linear systems modellingare used to demonstrate the superior performance of the
new algorithm compared with the back propagation routine.

1. Introduction
Multi-layer neural networks are usually trained to perform a particular task by the

back propagation algorithm (Rumelhart et al. 1986) which is a simple version of the
smoothed stochastic gradient algorithm. This type of algorithm uses the negative
gradient of some chosen criterion as the search direction and, because the computa­
tion can be distributed to each weight in the network, the algorithm is coherent with
the massively parallel nature of the network. It is well-known however that this type of
algorithm suffers from the drawback of slow convergence.

More recent work has produced improved learning strategies based on an
extended Kalman algorithm (Singhal and Wu 1989) and a recursive prediction error
routine (Chen et al. 1989 b). Although these two algorithms were each derived
independently based on a different approach they are actually equivalent. They both
use the same search direction called the Gauss-Newton direction, for which the
negative gradient is multiplied by the inverse of an approximate hessian matrix of the
given criterion. This is a more efficient search direction than the steepest-descent
approach of back propagation and it significantly improves the convergence perform­
ance. It does however also increase the computational complexity and the weight
updating requires a centralized computing facility with the effect that the parallel
structure of the network is not exploited.

It is known from non-linear optimization theory that the inverse hessian is not the
only matrix that can be used to modify the negative gradient. This result is exploited
in the present study, where a near-diagonal matrix is carefully chosen to modify the
negative gradient direction. The advantage of this approach is that the updating of
this matrix can be decomposed such that the computation can be distributed to each
neuron in the network. This results in a new parallel recursive prediction error
algorithm which utilizes the parallel computing potential of the network and which

Received 17 October 1989.
t Department of Electrical Engineering, University of Edinburgh, Mayfield Road,

Edinburgh EH9 3JL, Scotland, U.K.
t Department of Control Engineering, University of Sheffield, Mappin Street, Sheffield

Sl 3JD, England, U.K.

0020-7179/90 $3.00 © 1990 Taylor & Francis Ltd.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

1216 s. Chen et al. .

also cuts the computational requirement to a small proportion of that needed by the
conventional recursive prediction error algorithm or the extended Kalman algorithm.
Whilst the idea used in the derivation of this learning algorithm is similar to that
employed by Kollias and Anastassiou (1989) the parallel algorithm introduced in the
present study is quite different because it is a truly recursive algorithm. The training of
neural networks as adaptive channel equalizers and the recursive identification of
non-linear systems based on a neural network model are used as examples to compare
the convergence performance of the new learning algorithm with the back propa­
gation routine.

2. Layered neural networks
The neural networks considered in this paper are feedforward type networks with

one or more hidden layers between the inputs and outputs. Each layer consists of
some computing units known as neurons. Figure I shows the structure of a multi­
layered neural network. Inputs to the network are passed to each neuron in the first
layer. The outputs of the first layer neurons then become inputs to the second layer,
and so on. The outputs of the network are therefore the outputs of the neurons lying in
the final layer. Usually, all the neurons in a layer are fully connected to the neurons in
adjacent layers but there is no connection between neurons within a layer and no
connection bridging layers. The input-output relationship of each neuron is deter­
mined by connection weights Wi' a threshold parameter Il and the neural activation
function a(.) such that

(I)

(2)

where Xi are the neural inputs and y is the neural output. Two typical examples of the
neural activation function are

. (y) I - exp (- y)
a(y)=tanh 2" = I+exp(-y)

Network outputs

Output layer

Hidden layer

Hidden layer

Network inputs

Figure I. Multi-layered neural network.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

and

Training algorithm for layered neural networks 1217

(3)
I

a(y)=---­
I +exp (- y)

Assume that all the weights and thresholds of the network are ordered in an
ne-dimensional vector

(4)

The overall input-output relationship of an m-input r-output network can be
described by the following non-linear relationship:

.Ji(t, 8) = f(v(t); 8) (5)

where .Ji(t, 8) is the r-dimensional network output vector, v(t) is the m-dimensional
network input vector andf(.) is a vector valued non-linear function. Training a multi­
layer neural network to perform a given task involves supplying the network with an
input sequence {v(t)} and determining 8 so that the network output sequence
{.Ji(t,8)} approximates a desired sequence {d(t)}. In the terminology or system
identification, the discrepancy between d(t) and Y(t,8)

6(t, 8) = d(t) - .Ji(t, 8) (6)

is called the prediction error. The gradient of Y(t, 8) with respect to 8 is the ne x r
matrix

[
dY(t 8)JT

'I'(t, 8) = d~ = g(v(t); 8) (7)

which plays an important role in determining 8. The combination of (5) and (7):

[
.Ji(t , 8)] [flV(t);8)]

'I'(t, 8) = g(v(t); 8)
(8)

will be referred to as the extended network model. When 8 is partitioned in the form
of (4), 'I'(t, 8) can accordingly be written as

[

I/Ii(t, 8)]
'I'(t, 8) = :

ifJ.(t, 8)

(9)

where ifJ,(t, 8), a 1 x r row vector, is the gradient of .Ji(t, 8) with respect to 8, and
i = 1, ... , n".

For notational convenience, a different partition of 8 and 'P(t,8) is also
introduced. Assume that neurons in the network are numbered from I to p and the
weights and threshold of the ith neuron are arranged in an ne,-dimensional vector 8;,
i = 1, ... , p. 8 and 'I'(t, 8) can then be represented as

(10)

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

1218 S. Chen et al.

where 'I'i(t, 0), an n9, x r matrix, is the gradient of jilt, 0) with respect to 0; and
i = I, ... , p.

3. Batch prediction error algorithms
A good measure of the closeness between d(t) and ji(t, 0) is the quadratic form of

6(t, 0). Assume that a block of data {v(t), d(t) }~= 1 is available. The best 0 may then be
selected by minimizing the loss function

I N

J(0) =-2 L 6T(t, 0)6(t, 0)
N 1=1

(11)

Such a method of obtaining a desired 0 is known as the prediction error estimation
method in systems identification (Goodwin and Payne 1977, Ljung and Soderstrom
1983). Minimization of (II) is usually achieved iteratively according to

(12)

where the superscript (k) denotes the iteration step in the minimization procedure,
2(0(k-l)) is a search direction based on information about J(0) acquired at a
previous iteration, and ex is a positive constant which is appropriately chosen to
guarantee convergence of the iterative procedure.

3.1. Steepest-descent algorithm

The simplest search direction 2(0) is the negative gradient of the criterion (II)
with respect to 0, that is

I N
2(0) = - VJ(0) = - L 'I'(t, 0)6(t, 0)

N 1=1
(13)

This algorithm, often called the steepest-descent algorithm, is known to converge at
least to a local minimum of the loss function (11) but will normally exhibit a fairly
slow convergence rate. For a multi-layer neural network, however, choosing such a
gradient direction has an advantage. The algorithm can be integrated into the parallel
structure of the network by decomposing the vector equation (12) into n9 scalar
equations

with

I N
~i(0) = N ,f:, !/tilt, 0)6(t, 0) i = I, ... , n9

(14)

(15)

3.2. Gauss-Newton algorithm

To improve the efficiency of the minimization procedure, a common strategy is to
modify the negative gradient direction with some positive definite n9 x n9 matrix
M(0) and this gives rise to a general search direction

2(0) = M(0)(- VJ(0)) (16)

Different choices of M(0) will result in algorithms with different convergence rates. A
very efficient algorithm called the Gauss-Newton algorithm is obtained by choosing

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

Training algorithm for layered neural networks

M(0) as the inverse of the approximate hessian of (11), that is

M(0) =W '(0)
where

1 N
H(0) = - L 'I'(t, 0)'I'T(t, 0)

N ,=1

In case H(0) is near singular, (18) can be modified to

1 N
H(0) = - L 'I'(t, 0)'I'T(t, 0) + pl p > 0

N ,=1

1219

(17)

(18)

(19)

for some small value of p, where I is the identity matrix with appropriate dimension.
The Gauss-Newton procedure, although very powerful, requires much more compu­
tation and can only be implemented with a centralized structure when applied to
neural networks.

3.3. Parallel prediction error algorithm
If however M- 1(0) is chosen to be the following near-diagonal matrix H(0):

1 N
H(0)=- L

N '=1

'I',(t, 0)'I';(t, 0)

o

o

o
'I' 2(t, 0) 'III< t, 0)

o

o

o
'I' p(t, 0) 'P;(t, 0)

(20)
the search direction S(0) can be decomposed into p smaller vectors:

[
I N J-' 1 NS;(0) = - L 'I'/(t, 0)'I';(t, 0) - L 'I'/(t, 0)e(t, 0) i = 1, ... , P

N t = l N t = !
(21)

The minimization algorithm (12) can thus be decomposed into p sub-algorithms:

0~k) = 0lk- 1) + IXS/(0(k-l») i = 1, ... , p (22)

and each ofthese sub-algorithms corresponds to a neuron in the network. pI may also
be added to H(0) to guarantee positive definiteness without affecting the decompo­
sition. The choice (20) forms a basis for the derivation of a new parallel recursive
prediction error algorithm. H(0) can be regarded as a simplified form of H(0) where
all the blocks 'I';(t, 0)'I'J(t, 0), i # j, in H(0) are substituted by zero blocks. The
steepest-descent algorithm represents the extreme case where H(0) is simply replaced
by the identity matrix.

4. Recursive prediction error algorithms
Recursive approximations of the prediction error method have been studied

systematically (Ljung and Soderstrom 1983, Chen et al. 1990), and these results can
be utilized here. Denote 0(t) as the estimate of 0 at t, introduce a time-varying
version of the extended network model (8)

[
H t)] [f(V(t); 0(t - 1))]

'P(t) = g(v(t); 0(t - 1))
(23)

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

1220

and define

S. Chen et al.

6(t) = d(t) - Y(t) (24)

4.1. Conventional recursive prediction error algorithm

The conventional recursive prediction error algorithm can be summarized as
follows (Chen et al. 1990):

~(t) = Ym~(t -I) + yg'P(t)B(t) (25)

P(t) = ~ {P(t - I) - P(t - I) 'P(t) [AI + 'PT(t) P(t - I) 'P(t)r 1 'PT(t) P(t - I)} (26)

0(t) = 0(t - I) + P(t)~(t) (27)

where Yg and Ym are the adaptive gain and momentum parameter respectively, and A. is
the usual forgetting factor. ~(t), an na-dimensional vector, can be viewed as a
recursive form of the negative gradient - VJ(0) and is often called the smoothed
stochastic gradient. If the momentum parameter Ym is zero, it reduces to a stochastic
gradient. P(t), an na x na matrix, is a recursive approximation of the inverse hessian
H- 1(0). The algorithm (25) to (27) can thus be regarded as a recursive Gauss­
Newton algorithm.

P(t) determines the asymptotical accuracy of the estimate and, therefore, is
referred to as the covariance matrix (of the estimate). In adaptive applications,
0< A. < I. If the covariance matrix P(t) is implemented in its basic form as shown in
(26), a phenomenon known as 'covariance wind-up' may occur under certain circum­
stances. That is, P(t) may become explosive. Many numerical measures have been de­
veloped to overcome this problem (Salgado et al. 1988). A technique called constant
trace adjustment is given here:

P(t) = P(t - I) - P(t - I) 'P(t) [AI + 'PT(t) P(t - I) 'P(tJr 1'PT(t) P(t - I)}

Ko -
P(t) = [()] P(t), «; >0trace P t

(28)

This will set an upper bound for the eigenvalues of P(t) matrix.
It has been demonstrated (Chen et al. 1989 b), in the context of adaptive channel

equalization using neural networks, that this recursive prediction error algorithm
achieves far better convergence performance and is less sensitive to the initial values of
network weights compared with the back propagation algorithm. The main draw­
backs of the algorithm are that it can only be implemented in a centralized structure
and the computational complexity of the algorithm may be a limitation in certain
applications.

4.2. Back propagation algorithm

The widely used back propagation algorithm is represented by

"" = Y:~(t - I) + Yg'P(t)B(t)}

0(t) = 0(t - I) + ~(t)

(29)

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

Training algorithm for layered neural networks

or, in the decomposed form,

<>,(t) = Jlm<>i(t -1) + JlgifJi(t)6(t)} i = I, ... , n9

0i(t) = 0i(t - 1) + <>;(t)

1221

(30)

(31)

(32)

The algorithm is clearly a recursive approximation of the steepest-descent algorithm.
It can also be obtained from the recursive Gauss-Newton algorithm by replacing P(c)
in (27) by the identity matrix. The main strength of the algorithm lies in its
computational simplicity and parallel structure. Slow convergence behaviour, on the
other hand, is its well-known disadvantage.

4.3. Parallel recursive prediction error algorithm

Using the same procedure for deriving the conventional recursive prediction error
algorithm, it is straightforward to obtain the following recursive approximation of the
batch algorithm (21) and (22)

~i(t) = Jlm~i(t - 1)+ JI.'Pi(t)6(t)} ._
~ ~ 1-1, ... ,p
0 i(t) = 0 i(t - 1) + P,(t)~i(t)

where ~i(t) and P;(t) are the n9,-dimensional smoothed stochastic gradient and the
n9 , x n9 , covariance matrix for the ith neuron, respectively. The formula for updating
each Pi(t) is identical with that used for P(t). The technique of constant trace
adjustment, for example, will give

P,(t) = Pi(t - 1) - P,(t - 1)'I'i(t) }

x [AI+ 'I'T(t)Pi(t - 1)'I',(t)r l'l'T(t)Pi(t- I)
i=I, ... ,p

K o -
Pi(t) = [()] Pi(t), «; > 0trace Pi t

This algorithm may be viewed as simply applying the conventional recursive
prediction error algorithm to each neuron in the network. It is obvious that the
number of the elements in P(t) and the number of all the elements in Pi (t), i = I, ... , p,
satisfy

(n9)2 = Ct n9,y» it (n9,)' (33)

The computational requirement of this new recursive algorithm is therefore only a
small proportion of that needed for the conventional recursive prediction error
algorithm. The main attraction of the new algorithm is that it can naturally be
integrated into the parallel structure of the network and, like the back propagation
algorithm, it performs two sweeps through the network at each recursion in an
efficient parallel manner. The input signals are propagated forward on the first sweep
and, as the signals pass through a layer in the network all the neurons in that layer
compute their own outputs simultaneously. The error signal sft) obtained at the top of
the network is then propagated down the network on the second sweep. As this signal,
accompanied by the gradient information, propagates back through a layer, all the
neurons in that layer again update their own weights simultaneously.

This parallel learning algorithm is of course computationally more complex than
the back propagation algorithm. It is likely, however, that the former will be more

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

1222 S. Chen et al.

efficient in terms of convergence rate than the latter. This aspect is illustrated using
examples taken from two different adaptive applications.

5. Communication channel equalization
Consider the digital communications system depicted in Fig. 2. A binary sequence

x(t) is transmitted through a linear dispersive channel modelled as a finite impulse
response filter whose transfer function is given by

n

Cn(z) = L c,z-'
i=O

(34)

The channel output 6(t) is corrupted by an additive gaussian white noise e(t). The
task of the equalizer at the sampling instant t is to reconstruct the input symbol
x(t - d) using the information contained in the channel output observations o(t}, ... ,
o(t - m + I), where m is known as the order of the equalizer and d;;;, 0 is a delay par­
ameter. x(t) is assumed to be an independent sequence taking values of either I or
- I with equal probability.

e{t)

a(t) 0(1- I)

Equalizer

o(t-m+ 1)

~(t - d)

figure 2. Schematic diagram of data transmission system.

The need for equalizers arises owing to the fact that the channel introduces
intersymbol interference and noise. An equalizer tries to remove these undesired
channel effects on the transmitted signal. In this sense, channel equalization may be
regarded as a form of inverse modelling. Traditionally, communication channel
equalization is based on linear finite filter techniques. The problem is, however, an
inherently non-linear one (Gibson et al. 1989) and non-linear structures are required
in order to achieve fully or near optimal performance.

It can be shown that the minimum bit-error-rate equalizer is defined as follows
(Gibson et al. 1989):

i(t - d) = sgn (fd'(v(t)))

where

(35)

v(t) = [o(t)

is the channel observation vector, and

o(t-m+l)Y (36)

sgn (y) = { I
-I

y;;;,O

y<O
(37)

represents a slicer.!d'(.) is known as the decision function, and it partitions the input
space IRm into two sets, one corresponding to the decision i(t - d) = I and the other

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

Training algorithm for layered neural networks 1223

x(t - d) = - 1. The boundary that separates these two sets in the input space is called
the decision boundary and is often highly non-linear. The channel transfer function
C.(z) and the channel noise distribution function, together with equalizer order m and
delay d, completely specify the optimal decision function fde(.).

Becausefde(•) for a communications channel is generally not available and can be
time varying, a means of adaptively approximating this function or generating the
corresponding decision boundary is essential to realize the optimal equalizer solution.
The multi-layer neural network offers an ideal solution and it is known that a three­
layer (two hidden layers and one output layer) neural network with sufficient neurons
can generate an arbitrarily complex decision boundary (Lippmann 1987). The
architecture of a three-layer neural network equalizer will be described as m - n l ­

nz - 1, where m is the dimension of the input space, n l and nz are the numbers of
neurons in the respective hidden layers, and the last number indicates that the output
dimension is one and the output layer consists of a single neuron. The aim of a neural
network equalizer is to use the input-output function y(t, 0) =f(v(t); 0) to realize the
optimal decision function fde(v(r». The activation function for each neuron in the
equalizer is given in (2). During training, the error signal is defined as

eft) = x(t - d) - f(v(t); 0(t - 1» (38)

back propagation algorithm:

parallel recursive prediction error algorithm:

In the following simulation study, initial network weights were set randomly to values
between -0,5 to 0·5. The mean square error at the sampling instant t l was defined as
2J(0(tJl), i.e. the variance of eft, 0(tJl) achieved for an N data point sequence when
the equalizer's parameter vector is fixed at 0(tJl. The bit error rate at t l was defined as
the ratio of the number of error decisions obtained with the equalizer's parameter
vector fixed at 0(t Jl to the transmitted data length.

Example 1
Channel transfer function C1(z) = 1 +0'5z- 1 and additive gaussian white noise

variance 0'2; equalizer structure 2-9-5-1 (na = 83) with zero lag (d = 0). Parameters in
the two training algorithms were set to:

1'. = 0'01, I'm = 0·8

1'. = 0'01, I'm = 0'8,
A. = 0'99, Ko = 40'0,

Pi(O) = 100·0/ 'IIi

The evolution of the mean square error and bit error rate using the two learning
algorithms are shown in Fig. 3.

Example 2
The channel transfer function Cz(z) = 0·3482 + 0'8704z- 1+ 0'3482z- z and addi­

tive gaussian white noise variance 0'01; equalizer structure 3-9-3-1 (na = 70) with lag
one (d = 1).

Parameters in the two training algorithms were identical with those for Example 1
and the evolutions of the mean square error and bit error rate using the two learning
algorithms are given in Fig. 4.

The superior convergence performance of the new parallel recursive prediction
error algorithm is apparent in the results for both examples.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

1224 s. Chen et al.

lOO

o.s

(a)

SOO

Figure 3. Evolution of mean square error and bit error rate (Example 1): (a) back propagation
algorithm, (b) parallel recursive prediction error algorithm.

o.s

600

Figure 4. Evolution of mean square error and bit error rate (Example 2):(a) back propagation
algorithm, (b) parallel recursive prediction error algorithm.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

Training algorithm for layered neural networks 1225

6. Non-linear systems modelling
It is known that a wide class of discrete-time non-linear systems can be represented

by the non-linear autoregressive moving average with exogenous inputs (NARMAX)
model (Leontaritis and Billings 1985, Chen and Billings 1989). The NARMAX model
provides a description of the system in terms of some non-linear functional expansion
of lagged inputs, outputs and prediction errors, and it is valid for multi-input multi­
output systems. Here, a simplified version ofthe single-input single-output NARMAX
system is considered:

y(t) = fs(y(t - 1), ... , y(t - ny), u(t - 1), ... , u(t - null + e(t) (39)

where nyand nu are the maximum lags in the system output and input respectively, e(t)
is a zero-mean independent system noise sequence, and fs(.) is some non-linear
function.

A schematic diagram representing the non-linear system (39) is illustrated in
Fig. 5. Using a neural network to model the non-linear system (39) has been
investigated by Chen et al. (1990). The underlying idea is to use the neural network
model y(t, 8) =f(v(t); 8) as the one-step-ahead predictor for y(t), where

v(t) = [y(t - 1) ... y(t- ny)u(t - 1) ... u(t - nul]T (40)

The prediction error is accordingly given as

e(t, 8) = y(t) - Ht, 8) (41)

We only consider a neural network model that consists of one hidden layer with nh

neurons and a single output neuron (because the output dimension is one). The
activation function for each neuron in the hidden layer is specified by (3). The
activation function for the output neuron is chosen to be linear and no threshold
parameter is introduced in the output neuron. In the following simulation study,
initial network weights were set randomly to values between - O' 3 to 0·3.

y~t)

y(r - I) 1I(t - 1)

Model

u(l- nit)

Figure 5. Non-linear systems modelling.

Example 3
This is a simulated time series process. The series was generated by

y(t) = (0'8 - 0·5 exp (- y2(t - l)))y(t - 1)

- (0,3 + 0·9 exp (- y2(t - l)))y(t - 2) + e(t)

where e(t) was a gaussian white sequence with mean zero and variance O·\. The
structure of the model is given by m = ny= 2 and nh = 5 (ne = 20).

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

1226 S. Chen et al.

0,76

065

0,54

5

••~ 0.43
~

~
:E

0.32

0.21

0.10

210 '00 750 1000

Figure 6. Evolution of mean square error (Example 3): (a) back propagation algorithm,
(b) parallel recursive prediction error algorithm.

System input

0.90

0.45

-OA5

-0.90

250 '00

System output

750 1000

0.76

-0.04

-0.83

-1.63

-2.42

210 '00 750 1000

Figure 7. Inputs and outputs of Example 4.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

Training algorithm for layered neural networks 1227

The parameters in the two recursive identification algorithms were chosen to be

Y. = 0'01, Ym = 0·8

Y. = 1'0, Ym = 0'0,
A. = 0'99, K o = 5'0,

P;(O) = 1000·0/ Vi

back propagation algorithm:

parallel recursive prediction error algorithm:

The evolution of the mean square error obtained using the two algorithms is
plotted in Fig. 6.

Example 4
The data generated from a non-linear liquid level system is shown in Fig. 7. The

neural network model was chosen to be m = ny + n. = 3 + 3 and nh = 5 (ne = 40).
The parameters in the two recursive algorithms were set to the same values as

those for Example I, with the exception of K o = 60·0. The evolution of the mean
square error obtained in the recursive procedure is shown in Fig. 8.

0.80

~
0.60

I.
:li DAD

0,20

100 200 300 ~ 500 600 700 MO ~ 1000

Figure 8. Evolution of mean square error (Example 4): (a) back propagation algorithm,
(b) parallel recursive prediction error algorithm.

7. Conclusions
Neural network learning strategies based on the prediction error estimation

principle have been investigated and a new parallel recursive prediction error
algorithm has been derived. The new training algorithm can be implemented in an
efficient parallel structure and is more powerful than the classical back propagation
algorithm. Better convergence performance of this new learning algorithm over the
back propagation algorithm has been demonstrated using examples of adaptive
channel equalization and recursive non-linear systems identification.

ACKNOWLEDGMENT

This work was supported by the U.K. Science and Engineering Research Council.

D
ow

nl
oa

de
d

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t:

14
:3

5
14

 S
ep

te
m

be
r 2

00
7

1228 Training algorithm for layered neural networks

REFERENCES

CHEN, S., and S. A. BILLINGS, 1989, Representation of non-linear systems: the NARMAX model.
International Journal of Control, 49,1013-1032.

CHEN, S., BILLINGS, S. A., and GRANT, P. M., 1990, Non-linear system identification using
neural networks. International Journal of Control, 51,1191-1214.

CHEN, S., GIBSON, G. J., COWAN, C F. N., and GRANT, P. M., 1989, Recursive prediction error
algorithm for training multilayer perceptrons. Proceedings ofthe I.£.E.£. Colloquium on
Adaptive Algorithms for Signal Estimation and Control, Edinburgh, Scotland.

GIBSON, G. J., SIU, S., and COWAN, C F. N., 1989, Application of multilayer perceptrons as
adaptive channel equalisers. Proceedings of the I.£.E.E. International Conference on
Acoustics. Speech, and Signal Processing, Glasgow, Scotland, pp. 1183-1186.

GOODWIN, G. C, and PAVNE, R. L., 1977, Dynamic System Identification: Experiment Design and
Data Analysis (New York: Academic Press).

KOLLlAS, S., and ANASTASSIOU, D., 1989, An adaptive least squares algorithm for the efficient
training of artificial neural networks. I.E.E.E. Transactions on Circuits and Systems, 36,
pp. 1092-1101.

LEONTARITlS, I. J., and BILLINGS, S. A., 1985, Input-output parametric models for non-linear
systems. Part I: deterministic non-linear systems; Part II: stochastic non-linear systems.
Imernational Journal of Control, 41, 303-344.

LIPPMANN, R. P., 1987, An introduction to computing with neural nets. I.£.E.£. ASSP Maga­
zine, 4.

LJUNG, L., and SODERSTROM, T., 1983, Theory and Practice of Recursive Identification
(Cambridge, Mass: MIT Press).

RUMELHART, D. E., HINTON, G. E., and WILLIAMS, R. J., 1986, Learning internal representations
by error propagation. Parallel Distributed Processing: Explorations in the Micro­
structure of Cognition, edited by D. E. Rumelhart and J. L. McClelland (Cambridge,
Mass: MIT Press), pp. 318-362.

SALGADO, M. E., GOODWIN, G. C, and MIDDLETON, R. H., 1988, Modified least squares
algorithm incorporating exponential resetting and forgetting. International Journal of
Control, 47, 477-491.

SINGHAL, S., and Wu, L., 1989, Training feed-forward networks with the extended Kalman
algorithm. Proceedings of the I.E.E.E. International Conference on Acoustics. Speech.
and Signal Processing, Glasgow, Scotland, pp. 1187-1190.

