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Non-linear system identification using neural networks

s. CHENt, s. A. BILLINGSt and P. M. GRANTt

Multi-layered neuralnetworks offer an exciting alternative for modelling complex
non-linearsystems. This paper investigates the identification of discrete-time non­
linear systems using neural networks with a single hidden layer. New parameter
estimationalgorithms are derived for the neural networkmodel based on a predic­
tion error formulation and the application to both simulated and real data is
included to demonstrate the effectiveness of the neural network approach.

1. Introduction
Both the theory and practice of non-linear system modelling has advanced consid­

erably in recent years. It is known that a wide class of discrete-time non-linear systems
can be represented by the non-linear autoregressive moving average with exogenous
inputs (NARMAX) model (Leontaritis and Billings 1985, Chen and Billings 1989b).
The NARMAX model provides a description of the system in terms of a non-linear
functional expansion of lagged inputs, outputs and prediction errors. The mathemat­
ical function describing a real-world system can be very complex and its exact form
is usually unknown so that in practice modelling of a real-world system must be
based upon a chosen model set of known functions. A desirable property for this
model set is the capability of approximating a system to within an arbitrary accuracy.
Mathematically, this requires that the set be dense in the space of continuous func­
tions. Polynomial functions are one choice that have such a completeness property.
This provides the foundation for modelling non-linear systems using the polynomial
NARMAX model and several identification procedures based upon this model have
been developed (Leontaritis and Billings 1988, Chen and Billings 1989 a, Chen et al.
1989). Because the derivation of the NARMAX model was independent of the form
of the non-linear functional, other choices of expansion can easily be investigated
within this framework and neural networks are an obvious alternative. Neural net­
works can therefore be viewed as just another class of functional representations.

Feedforward multi-layered neural networks have been widely used in many areas
of signal processing (see the I.E.E.E. Transactions, 1988). A common feature in these
applications is that neural networks are employed to realize some complex non-linear
decision functions. Recent theoretical works (Cybenko 1989, Funahashi 1989) have
rigorously proved that, even with only one hidden layer, neural networks can uni­
formly approximate any continuous function. The theoretical basis for modelling
non-linear systems by neural networks is therefore sound.

The present study develops an identification procedure for discrete-time non­
linear systems based on neural networks with a single hidden layer. New batch and

Received 28 August 1989.
t Department of Electrical Engineering, University of Edinburgh, Mayfield Road, Edin­

burgh EH9 3JL, Scotland, U.K.
~ Department of Control Engineering, University of Sheffield, Mappin Street, Sheffield

SI 310, England, U.K.

0020-7179/90 $3.00 © 1990 Taylor & Francis Ltd.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:3

1 
14

 S
ep

te
m

be
r 2

00
7 

1192 S. Chen et al.

(I)

recursive estimation algorithms are derived for the neural network model based on
the prediction error principle. It is shown that the classical back propagation algo­
rithm is a special case of the new prediction error routines, and model validity tests
are introduced as a means of measuring the quality of fit. The results of applying the
neural network model to both simulated and real data are included and a suggestion
for further research is also given.

2. System representation
Under some mild assumptions, a discrete-time multivariable non-linear stochastic

control system with m outputs and r inputs can be represented by the multi variable
NARMAX model (Leontaritis and Billings 1985):

y(t) =f (y(t - 1), ... , y(t - ny), u(t - I), ... , u(t - nul,

e(t - 1), ... , e(t - nell + e(t)

where

[

Yl (t)] [U1(t)]
y(t) = : , u(t) = : ,

Ym(t) u,(t)
[

e1(t)]
e(t) = :

em(t)

(2)

are the system output, input and noise vectors, respectively; ny, nu and n, are the
maximum lags in the output, input and noise respectively; e(t) is a zero-mean inde­
pendent sequence; and f( •) is some vector-valued non-linear function.

The input-output relationship (I) is dependent upon the non-linear functionf(·).
In reality,f( .) is generally very complex and knowledge of the form of this function
is often not available. The solution is to approximate j'(v) using some known simpler
function, and in the present study we consider using neural networks to approximate
non-linear systems governed by the model

y(t) =f(y(t - 1), ... , y(t - ny ) , u(t - I), ... , u(t - nul) + e(t) (3)

Notice that (3) is a slightly simplified version of (I) because only additive uncorrelated
noise is considered. Extension of the results to the more general model description
(I) is discussed.

3. Modelling by neural networks
Neural networks employed for function approximation are feedforward type net­

works with one or more hidden layers between the inputs and outputs. Each later
consists of some computing units known as nodes. Figure I shows the structure of a
multi-layer neural network. Inputs to the network are passed to each node in the
first layer. The outputs of the first layer nodes then become inputs to the second
layer, and so on. The outputs of the network are therefore the outputs of the nodes
lying in the final layer. Usually all the nodes in a layer are fully connected to the
nodes in adjacent layers, but there is no connection between nodes within a layer
and no connecting bridging layers. The input-output relationship of each hidden
node is determined by the connection weights W;, a threshold parameter Il and the
node activation function a( •), as follows:

y =a(I Wi X; + Il) (4)
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network outputs

1193

output layer

hidden layer

hidden layer

network inputs

Figure 1. Multi-layer neural network.

where X; are the node inputs and y is the node output. The activation function a( • )
for each output node is specifically chosen to be linear, and the output node is the
weighted sum of the inputs

(5)

The overall input-output relationship of an n-input m-output network with one
or more hidden layers is described by a function!: IRn -+ IRm

• Under very mild assump­
tions on the activation function a( . ), it has been rigorously proved that any continu­
ous function f: D c IRn -+ IRm can be uniformly approximated by an Jon D, where D
is a compact subset of IRn (Cybenko 1989, Funahashi 1989).

Our aim is to use neural networks with one hidden layer to model non-linear
systems described by (3). Define n = mny + rn.

x(t) = [Xl (t) xn(tW

= [yT(t - 1) ... yT(t - ny)uT(t - 1) uT(t- n.)]T (6)

and introduce the notation

nh number of hidden nodes

Illh
) threshold of ith hidden node

wl'> connection weight from xAt) to ith hidden node

0h;(t) output of ith hidden node

w~i) connection weight from ith hidden node to kth output node

Let 0 = [O[ On,]T be all the weights and thresholds of the network ordered in
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1194 S. Chen et al.

a chosen way. The network is then defined by the model

Ht, 0) =I(x(t); 0) = [II (x (t); 0) ... Im(x(t); 0W

with

(7)

"h
Yk(t, 0) =J,.(x(t); 0) = L WWOhj(t)

i= I

= ;~I w~i)aCt wl'>xj(t) + Jll
h}

I ~k~m (8)

Without the loss of generality, the activation function a( •) will be chosen as

I
a(z) = I + exp ( _ z) (9)

The network model (7) is therefore the one-step-ahead predictor for y(t) and the
prediction error or residual is given as usual by

6(t, 0) = y(t) - Ht, 0) (10)

The first step in modelling non-linear systems using (3) is therefore to select values
for ny, nu and nh' The next is to determine values of all the weights and thresholds or
to estimate 0. The gradient of y(t, 0)

[
dY(t 0)JT

'I'(t, 0) = d~ = g(x(t); 0) (11)

an no x m matrix, plays an important role in determining 0. The combination of (7)
and (II)

[
Y(t, 0)] = [J(X(t); 0)]
'I'(t,0) g(x(t); 0)

(12)

will be referred to as the extended network model. The stability of (12) is of vital
importance in any implementation. The set of all 0 that each produce a stable
extended network model is denoted as Do. Notice that, for the chosen activation
function (9), Do is the whole no-dimensional euclidean space and in this sense the
corresponding extended network model is unconditionally stable. Furthermore, the
elements of 'I' (t, 0) for I ~ i ~ no and I ~j ~ m are given by

'1'..( 0) = dy/t, 0) =
'J t, d(J.,

Ohk(t)

w}~)ohk(t)(1 - 0hdt))

wWohk(t)(1 - °hk(t))X,(t)

o

if lIj=w}~), I ~k~nh

if (Jj = Il~h), I ~ k ~ nh

if lIj=wW, I ~k~nh' I ~l~n

otherwise
(13)

4. Identification algorithm
The network model (7) is non-linear in the parameters. This section applies the

well-known prediction error estimation method to derive both the batch and recursive
algorithms for estimating the parameter vector 0 in (7).
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Non-linear system identification using neural networks 1195

4.1. Off-line prediction error algorithm

A good measure of the closeness between yet) and Ht, 0) is the quadratic form

Q(e(t, 0)) = eT(t, 0)A -1 e(t, 0) (14)

where A is a given m x m symmetric positive definite matrix. Assume that a block of
data {u(t), y(t)}~= 1 is available. The best 0 may then be selected by minimizing the
loss function

I N
J 1 (0) = -N L Q(e(t, 0))

2 .=1
(15)

over 0 E Do. Such a method of obtaining 0 is known as the prediction error estima­
tion method.

The minimization of criterion (15)can be performed efficiently using the following
Gauss-Newton algorithm

(16)

where

is the optimizing direction vector, and

1 N
VJ 1(0) = - N 1~1 'I'(t, 0)A -1 e(t, 0)

1 N

HI (0, <5) =- L 'I'(t, 0)A -1 'l'T(t, 0) + M
N .=1

(17)

(18)

(19)

are the gradient and the approximate hessian of J 1 (0), respectively. <5 is a non­
negative small scalar and I is the identity matrix with appropriate dimension. The
scalar 5(k) is obtained by minimizing

(20)

over 0 < 5 < 1 using a linear search technique such as the golden section search.
In practice, the direction vector '7(0, <5) is computed as follows. The square root
decomposition method is first used to factorize the hessian as

H 1(0,<5)= UTU

where U is an upper triangular square matrix. '7(0, <5) is then solved from

UT (U'7(0, <5)) = - VJ d0)

(21)

(22)

by the forward and backward substitution algorithms (Bierman 1977).
The above Gauss-Newton algorithm is known to converge to at least a local

minimum. Other loss functions can also be employed, and a different example to (15)
is

with

J 2 (0) =! log det (C(0))

1 N

C(0) = - L e(t, 0)eT(t, 0)
N '=1

(23)

(24)
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1196 S. Chen et al.

The gradient and the approximate hessian of J 2 (0 ) are

I N
V'Jz(0 ) = -- L 'P(t,0)C 1(0)E(t,0)

N 1=1

I N
H z(0 , t5 ) = - L 'P(t,0)C I(0)'PT(t,0)+M

N ,~I

(25)

(26)

respectively. If 8* is a minimum of J 1 (0), an optimal choice of A for the loss function
J 1(0) is C(0*). Choosing the criterion (23) is therefore equivalent to choosing the
criterion (IS) with A approaching an optimum. More detailed discussion of loss
functions can be found in work by Goodwin and Payne (1977) and Ljung (1978).

4.2. Recursive prediction error algorithm

Many applications require recursive or adaptive updating of parameters. Ljung
(1981) and Ljung and Soderstrom (1983) systematically studied recursive approxi­
mations of the prediction error method. Although they used the linear model in their
studies, the principle is actually more general and can readily be applied to non­
linear models as shown by Chen and Billings (1989 a). For the extended network
model (12), the standard form of the recursive prediction error (RPE) algorithm based
on the loss function (15) is

[
y(t)J= [J(X(t); ~(t - 1))J (27)
'P(t) g(x(t); 0(t - 1))

E(t) = y(t) - Y(t) (28)

R(t) = R(t - 1)+ y(t) ['P(t)A -I 'PT(t) + M - R(t - 1)] (29)

0(t) =0(t - 1)+ y(t)R -I (t)'P(t)A -loft) (30)

where 0(t) is the estimate of 0 at time t and y(t) is the gain at t. Notice that o(t),Y(t)
and 'P(t) depend upon all the old estimates 0(t -I) to 0(0). Thus (27) is time-varying.

R(t) in (29) can clearly be viewed as a recursive form of (19). 'P(t)A -I E(t) corre­
sponds to the gradient of Q(E(t)) and is therefore a noisy or stochastic gradient.
R -I (t)'P(t)A -I E(t) can thus be regarded as an approximation of the Gauss-Newton
search direction (17). Equations (29)and (30) are mainly used for theoretical analysis.
In practice, they are implemented in the equivalent form (with t5 = 0)

I
P(t) = 2(t) {P(t - 1)- P(t - 1)'P(t)

x [2(t)A + 'PT (t)P(t - 1)'1'(tJr 1 'PT (t)P(t - I)} (31)

0(t) = 0(t -1) + P(t)'P(t)A -I E(t) (32)

where

P(t) = y(t)R - 1 (t) and 2(t) = y(t - 1)(1 - y(t))jy( t)

The simplest choice for A is 1. A time-varying A:

A(t) = A(t - 1)+ y(t) [E(t)ET(t) - A(t - I)]

(33)

(34)

can however replace the constant A. The resulting RPE algorithm can be viewed as
based on the criterion (23).
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Non-linear system identification using neural networks 1197

By applying a general method known as the differential equation method for the
analysis of recursive parameter estimation algorithms developed by Ljung (1977), the
convergence of the algorithm (27)-(30) can be proved. The underlying ideas of Ljung's
method are as follows.

Assume that a projection is employed to keep 0(t) inside the stable region De'

lim t)l(t) = P > 0
,~oo

R(t) ;;. M Vt and some b > 0

(35)

(36)

and some regularity conditions hold. Let 0 E De; then the time-invariant non-linear
difference equation (12) is stable. The stability of the time-varying non-linear differ­
ence equation (27) will be guaranteed if 0(k) varies in a sufficiently small neigh­
bourhood of 0, and for sufficiently large t and some M, the influence of 0(k),
k = t - M - I, ... , 0, then becomes very small, i.e.

[
y (t) ] = [y(t, ~(t - 1), , ~(O))] ~ [y(t, ~(t - I), , ~(t - M))] (37)

'P(t) 'P(t, 0(t - 1), , 0(0)) 'P(t, 0(t - 1), , 0(t - M))

Furthermore, assumption (35) implies )I(t)-->O as t-->00. For sufficiently large t, )I(t)
will be arbitrarily small, and it is seen that {0(t)} will change more and more slowly,
i.e,

0(t -I) ~ ... ~ 0(t - M) ~ 0 (38)

As a consequence, the time-varying difference equation (27) behaves more and more
like the time-invariant difference equation (12), and problems such as convergence
with a probability of one, possible convergence points and asymptotic behaviour of
the recursive algorithm can thus be studied in terms of an associated differential
equation (for more details, see Ljung and Soderstrom 1983). The results show that
the RPE algorithm has the same convergence properties as its corresponding off-line
algorithm. One of these properties is that 0(t) converges with a probability of one
to a local minimum of

- . I ~
J, (0) = J'..~ 2N ,f-, E[Q(8(t, 0))] (39)

where E [ .] is the expectation operator
For the neural network model (12), a projection to guarantee 0(t) E De is not

actually required because De is the whole space !R0
' . The above convergence results

are obtained under assumption (35), which implies )I(t) --> 0 as t --> 00 (or ,1,(t) --> I as
t ..... 00). In order to track time-varying parameters, )I(t) should not tend to zero. It is
reasonable to believe that analysis under condition (35) will have relevance for the
case where )I(t)tends to some small non-zero value. As in any non-linear optimization
problem, the initial conditions have an important influence on convergence and the
speed of convergence. The performance surface (39) for a general network model is
very complex and is known in general to contain many local minima. A study of this
performance surface and the influence of 0(0) on the algorithm (27)-(30) is beyond
the scope of this paper.

Strictly speaking, algorithm (30) or (32) is only a crude approximation of the off­
line Gauss-Newton algorithm because -'P(t)A -'8(t) is hardly a good approxi­
mation of the gradient (18). A modified RPE algorithm is proposed here by intro-
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1198 S. Chen et al.

ducing a smoothed stochastic gradient

~(t) = ~(t - I) + y(t) ['¥(t)/\ -I e(t) - ~(t - 1)] (40)

so that, in parameter updating,

0(t)=0(t-I)+y(t)R-I(t)~(t) or 0(t)=0(t-I)+P(t)~(t) (41)

The new algorithm is thus a truly recursive Gauss-Newton algorithm. Using a
smoothed stochastic gradient usually improves the performance of the recursive
algorithm at the cost of more computation in each recursion. Smoothed stochastic
gradient algorithms can be directly obtained from this new algorithm by making
some simplifications. One example is

0(t) = 0(t - I) + ji(t)~(t) (42)

The so-called back propagation algorithm (Rumelhart et al. 1986)is a simple version
of this smoothed stochastic gradient algorithm with ji(t) in (42) and y(t) in (40) fixed
to some constant values.

In adaptive identification, 0 < .l.(t)< I. If the covariance matrix P(t) is imple­
mented in its basic form as given by (31), a phenomenon known as 'covariance wind­
up' may occur. That is, P(t) may become fairly large. When this occurs and in addition
the gradient is dominated by noise, changes in 0(t) are unlikely in the direction of
improving the model output and this can cause a problem known as 'parameter drift'.
Two factors are likely to introduce covariance wind-up when applying the RPE
algorithm to neural network models. Because of the complexity of the non-linear
structure, it is possible that two different value of 0 can result in the same
input-output relationship from (12). When the parametrization is not unique, covari­
ance wind-up can occur (Janecki 1988). If the signal excitation is poor, covariance
wind-up may happen (Sripada and Fisher 1987). For the recursive least squares
algorithm, similar difficulties can arise and many numerical modifications have been
developed to overcome these problems in the single-output (m= I) case. A technique
often used is the constant trace adjustment in which P(t) is adjusted in such a way
that its trace remains constant. A more sophisticated technique called exponential
resetting and forgetting (Salgado et al. 1988) can also be employed.

5. Model validation
If modelling is adequate, e(t~ El) will be unpredictable from (uncorrelated with) all

linear and non-linear combinations of past inputs and outputs. Model validity tests
for other non-linear models (Billings and Voon 1986, Billings and Chen 1989, Billings
et al. 1989, Leontaritis and Billings 1987)were developed based on this principle and
can therefore be applied to the current neural network model. For simplicity, only
single-input (r = I) single-output model validity tests are briefly summarized.

If the identified model is adequate, the prediction errors should satisfy the follow­
ing conditions (Billings and Voon 1986, Billings and Chen 1989)

<I>,,(k) = an impulse function

<I>u,(k) = 0 for all k

<I>,(,u)(k) = 0 k ~ 0

<I>u"t(k) = 0 for all k

<I>u",,(k) = 0 for all k

(43)
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Non-linear system identification using neural networks 1199

where cIlx.(k) indicates the cross-correlation function between x(t) and z(t), eu(t) =
6(t+ I)u(t + I), u2'(t)= u2(t) - u2(t) and u2(t) represents the time average or mean
value of u2 (t). Therefore if these correlation functions are within the (95%) confidence
intervals ± 1'96/JN, the model is regarded as adequate.

Alternatively a statistical test known as the chi-squared test (Bohlin 1978, Leonta­
ritis and Billings 1987) can be employed to validate the identified model. Let n(t) be
an s-dimensional vector-valued function of the past inputs, outputs and prediction
errors, and

I N

r Tr =- L n(t)nT(r)
N t~1

Then the chi-squared statistic is computed using the formula

(= N JlT(rTr)-1 Jl

where
I N

Jl = - L n(t)6(t,0)/a,
N t~1

(44)

(45)

(46)

ois the estimate of 0 and a; is the variance of the residuals. Under the null hypothesis
that the data are generated by the model, the statistic ( is asymptotically chi-squared
distributed with s degrees of freedom. A convenient choice for n(t) is

n(t) = [w(t)w(t - I) ... w(t - s + IW (47)

where w(t) is some chosen (non-linear) function of the past inputs, outputs and
prediction errors. Thus if the values of ( for several different choices of w(t) are within
the acceptance region (95%), that is

( < X;(Cl) (48)

the model can be regarded as adequate, where X; (Cl) is the critical value of the chi­
squared distribution with s degrees offreedom for the given significance level Cl (0'05).

To sum up the discussion so far, the identification of a structure-unknown system
described by (3) using a single hidden layer neural network involves the following
procedure:

(a) choose values of ny, n. and n.;

(b) estimate 0;

(c) validate the estimated model. If the model is adequate, the procedure is termin­
ated; otherwise go to step (a).

6. Simulation study
The parameter estimation algorithm used in this simulation study was the off­

line prediction error algorithm and only single-input single-output examples are
given.

Example I
This is a simulated system. 500 points of data were generated by

y(t) = (0'8 - 0·5 exp (- y2(t - I»)y(t - I) - «}3 + 0·9 exp (- y2(t - I»)y(t - 2)

+ u(t - I) + 0'2u(t - 2) + 0·1u(t - I)u(t - 2) + e(t)
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1200 S. Chen et al.

where the system noise e(t) was a gaussian white sequence with mean zero and
variance 0·04 and the system input u(t) was an independent sequence of uniform
distribution with mean zero and variance 1·0.

The input order of the network model was chosen as n = ny+ n. = 2 + 2. When
the number of hidden nodes was increased to nh = 5 (no = 30) the model validity tests
were satisfied. Figure 2 shows the system and model response where the model
deterministic output Yd(t, 8) is defined by

Yit, 8) = j(jid(t - 1,8), ..., Yd(t - ny,8), u(t - I), .. " u(t - n.); 8) (49)

and the deterministic error Eit, 8) is given as

Bd(t, 8) = y(t) - Yit, 8) (50)
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0.64

o

-0.64 ~---_--__--_~ ~ ~

500
(d)

-3.0

(e) 500

5.88

o

~,".f~,_~_
500

Figure2. System and model
(f)

response (Example 1): (a) U(I); (b) y(I); (e) .HI, El); (d) e(I, El);
(e) e4(1, El); (f) .MI, El).

Figures 3 and 4 display the correlation tests and some chi-squared tests for the
estimated model.

It can easily be verified that the unforced response (that is e(t) = 0 and u(t) = 0)
of this simulated system is a stable limit cycle as illustrated in Fig. 5. The unforced
response from the estimated model with the same initial condition is plotted in Fig. 6,
where it is seen that, although the shape is different from that in Fig. 5, the estimated
model correctly predicts the existence of a limit cycle. The data shown in Fig. 5 were
used to identify a network model with n = ny = 2 and nh= 10 (n6 = 40). The resulting
model produces the limit cycle shown in Fig. 7, which is much closer to that produced
by the unforced system.
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o

-I
o 20 o 20

(a) (b)

10o

-I '--~-- --<

-1010o

o

-I

-10

(e) (d)

o

-1
-10 o 10

(e)

Figure 3. Correlation tests (Example I): (a) cIl,,(k); (b) cIl,(.. )(k); (e)cIl",,(k); (d) cIl.'.,(k);
(e)cIl.'.,,(k). Dashed line: 95% confidence interval.
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33 -r-------------,.

o~- --_--l

33 .---------------,.

o
o

delay

(a)

20 o
delay

(b)
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:0
delay

o
o

33 .-------------;

delay

o

33 .-------------;

0 0

0 20 0 :0
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(e) (d)

3333
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Figure 4. Chi-squared tests (Example I): (a) ro(t)=£(t- I, e); (b) ro(t)= y(t - I); (e) ro(t)=
exp(u(t - I)); (d) ro(t) = tan h(.(t -I, ell; (e) ro(t)= y2(t - 1).2(t - 2, e); (f) ro(t)=
exp(-u2(t-2))exp(-y'(t-2)). Dashed line: 95% confidence limit.
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S. Chen et al.

1 76 151 301

Figure 5. System unforced response (Example I): initial condition: y(-I) = 0'01, y(O)= 0-1.

1.20

0.60

o

-0.60

1 76 151 301

Figure 6. Control model unforced response (Example I): initial condition: y(-I) = 0'01,
y(O)= 0-1.
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1 76 151 301

Figure 7. Time series model unforced response (Example I): initial condition: y(-I) = 0'01,
y(O) = 0·1.

Example 2

This is the time series of annual sunspot numbers. Observations for the years
1700 to 1979 can be found in a paper by Tong (1983, Appendix A. I). The first 256
observations are plotted in Fig. 8 (a).

It has long been noticed that the record of sunspot numbers reveals an intriguing
cyclical phenomenon of an approximate l l-year period. Chen and Billings (1989 c)
fitted a subset polynomial model with ny= 9 and polynomial-degree three to the first
221 observations. The unforced response of this subset polynomial model is a sus­
tained oscillation with an approximate II-year period as shown in Fig. 8 (c). In the
current study a neural network model with n = ny = 9 and nh= 5 (n. = 55) was fitted
to the first 221 observations. The unforced response of this neural network model is
illustrated in Fig. 8 (b) where it is seen that this time series model also produces a
sustained oscillation with an approximate II-year period.

Example 3

The data were generated from a heat exchanger and contains 996 points. A
detailed description of this process and the experimental design can be found in work
by Billings and Fadzil (1985). The first 500 points of the data, depicted in Fig. 9, were
used as. the identification set and the rest of the data as the test set.

A neural network model with ny = nu = 5 and nh= 3 (n. = 36) was fitted to the
identification data set. Figures 10 and II show the correlation tests using the identi-
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s. Chen et al.

(a)
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(c)

Figure 8: Observations and model unforced response (Example 2): (a) observations; (b) neural
network model; (c) subset polynomial model; first nine observations used as initial
condition in unforced response.
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6

o

-6

(a)
500

II

4

500

(b)

Figure 9. Identification data set (Example 3): (a) u(t); (b) y(t).

fication and test sets, respectively. The test set and model response for this set are
given in Fig. 12. Further increasing the size of the network only slightly improved
the quality of fit.

Previous identification results (Billings and Chen 1989) indicate that this non­
linear process can be described better by using a model with the form of (1). The
results obtained here are satisfactory considering that no noise model was fitted as
part of the model estimation.
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Figure 10. Correlation tests using identification set (Example 3): (a) lI>,,(k); (b) lI>,(,u)(k);
(c) lI>u,(k); (d) lI>u'·,(k); (e) lI>u,·,,(k). Dashed line: 95% confidence interval.
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Figure II. Correlation tests using test set (Example 3): (a) <I>,,(k); (b) <I>,t"l(k); (e) <I>.,(k);
(d) <I>.",(k); (e)<I>.",,(k). Dashed line: 95% confidence interval.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:3

1 
14

 S
ep

te
m

be
r 2

00
7 

1210 S. Chen et al.

996

5

a

-5 1-----_---_-- ------<

501

12 (a)

II

5
501 996

12(b)

II

5
501 996

12(e)



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:3

1 
14

 S
ep

te
m

be
r 2

00
7 

Non-linear system identification using neural networks 1211

1.4
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-1.4 1-----_----.......--'---_-----.
501 996
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1.3

-1.3 ~----_----.......--'---_---__
501

(e)

996

5~---__---__---_- _

501

11

(f)

Figure 12. Test set and model response (Example 3):.(a) U(I); (b) y(I); (c) Y(t, El); (d) £(1, El);
(e)£d(l, El); (f) MI, 0).
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7. Discussion for further research
As mentioned in § 2, .(3) is only, a special case of the general system (I). The

approach developed in the present study can easily be extended to the general system
(I) by augmenting x(t) to

x(t) = [yT(t - 1) ... yT(t - ny)uT(t - 1) ... uT(t - nu)8T(t - 1,8)

8T(t - n., 8 )]T (51)

The extended network model becomes

[
y (t , 8)] [ !(x(t); 8) ]
'I'(t, 8) = g('I'(t - 1,8), ..., 'I'(t - ne, 8), x(t); 8)

(52)

The application ofthe parameter estimation algorithms of §4 to this model is straight­
forward. The analysis of a non-linear model involving 8(t - i, 8) within its arguments
is however considerably more difficult. In particular, Do generally is no longer the
whole no-dimensional space and is dependent on system input-output statistics. In
some extreme cases, Do may not even exist. In other words the issue of invertibility
(Chen and Billings 1989 c), i.e. whether it is possible to compute 8(t,8) using the
model and given system inputs and outputs, becomes critical. Unlike the polynomial
model, which may be explosive, the network model with the activation function (9)
can be non-explosive. The neural network approach may therefore be more suitable
for modelling non-linear time series whose underlying processes are stable and non­
explosive. There is scope for further investigation of this aspect.

A comprehensive study is required to compare the neural network model with
other non-linear models. For the polynomial model, efficient procedures for selecting
subset models have been developed (Chen et al. 1989, Leontaritis and Billings 1987).
A parsimonious model has advantages in controller design, prediction and other
practical applications. Selection of subset neural network models is worth invetigat­
ing. One possible approach is to develop a criterion like Akaike's information criterion
(Leontaritis and Billings 1987) for removing insignificant connection weights.

It is a common beliefthat neural networks with several hidden layers can approx­
imate a function more efficiently (with less nodes) for a given accuracy requirement
than networks with a single hidden layer. More theoretical research is required to
derive some quantitative results. There are other advantages of using highly layered
networks, such as increasing integrity. The identification procedure for the network
model with several hidden layers, however, will not be as simple as that given at the
end of § 5 because more than one hidden layer will need to be specified.

For non-linear systems which exhibit a significant constant level independent of
system input and noise, a threshold can be introduced to each output node. The
activation function is not restricted to (9). The study of different activation functions
to compare their performance is of practical interest. If a polynomial model is used
to model the system (3), the loss function (39) has a single global minimum for a fixed
dimension no. It is well known that (39) contains many local minima if the neural
network model is employed. Further investigation is required to analyse the effect of
this on the outcome of the identification.

8 Conclusions
An identification procedure has been developed for disrete-time non-linear sys­

tems based on a neural network approach. Both batch and recursive prediction error
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estimation algorithms have been derived for a neural network model with a single
hidden layer and model validation methods have been discussed. Application to some
simulated and real systems has been demonstrated. The results obtained suggest that
modelling non-linear systems by neural networks is an effective approach and further
research in this field is worth pursuing.
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