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1 Introduction

Singular systems, also referred to as implicit systems,
descriptor systems or generalised state-space systems, have
extensive applications in many practical systems, such
as circuit boundary control systems, chemical processes,
electrical networks, economy systems and other areas
(Cobb, 1983; Lewis, 1986; Dai, 1989). In recent years,
much attention has been focused on singular systems (Xu
et al., 2001, 2002; Ishihara and Terra, 2002; Liu and
Yang, 2010), and a number of fundamental notions and
results in control and system theory, originally developed
for standard state-space systems, have been extended
successfully to singular systems. On the other hand,
there has been an increasing interest recently in stability
analysis and controller design for switched systems, see
the survey papers (Branicky, 1998; Liberzon and Morse,
1999; Skafiads et al., 1999; Decarlo et al., 2000; Daafouz
et al., 2002; Sun and Ge, 2005a; Lin and Antsaklis, 2009),
the books (Liberzon, 2003; Sun and Ge, 2005b), and
the references cited therein. One motivation for studying
switched systems is that many practical systems are
inherently multi-modal in the sense that several dynamical
subsystems are required to describe their behaviours which
may depend on various environmental factors (Koumboulis
et al., 2011). Another important motivation is that switching
among a set of controllers for a specified system can be
regarded as a switched system. Switching has been used in
adaptive control to ensure stability in the situations where
stability otherwise cannot be proved, or to improve transient
response of adaptive control systems. Many methods of
intelligent control design may also be regarded as based
on the idea of switching among different controllers (Xiong
and Li, 2010).

It can be observed from the above discussion that
switched descriptor systems belong to an important class
of systems that are interesting in both theoretic and
practical sense. However, since stability, regularity, impulse
elimination and state consistence must be considered at
the same time, switched singular systems are difficult to
analyse, and a few available results include Meng and
Zhang (2006a, 2006b, 2006c), Xie and Wang (2004),
Fu and Fei (2008), Narendra and Balakrishnan (1994),
Zhai et al. (2009a, 2009b) and Zhai and Xu (2010).
More specifically, the reachability for continue-time and
discrete-time switched singular systems were considered in
Meng and Zhang (2006a, 2006b), respectively, while the
work (Meng and Zhang, 2006c) studied output feedback
stabilisation for discrete-time switched singular systems
based on linear matrix inequality (LMI) techniques. The
study (Xie and Wang, 2004) analysed the stability and
stabilisation of switched singular systems in discrete-time
domain. Based on common Lyapunov function approaches
and convex combination techniques, Fu and Fei (2008)
investigated the output feedback control problem for a class
of uncertain switched singular systems. Zhai and Xu (2010)
proposed a new commutation condition for stability analysis
of switched linear singular systems, which is a natural

extension to the commutation conditions discussed in Zhai
et al. (2009a, 2009b).

Guaranteed cost control approach (Chang and Peng,
1972) is a practical way of designing a control system
to achieve a desired-level of robust performance. In the
work (Yu and Chu, 1999), this approach was applied to
study linear time-delay systems based on an LMI approach,
while the approach was investigated for linear repetitive
systems in Paszke et al. (2006). Guaranteed cost control
for linear descriptor systems was also studied by Fu et al.
(2006), while Wang and Zhao (2007) considered guaranteed
cost control for a class of linear switched delay systems.
The approach was also found its application in networked
control systems (Wang et al., 2010) and other control
systems (Meng et al., 2010). Against this background
and motivated by the existing results of guaranteed cost
control as well as linear switched singular systems, this
contribution investigates the guaranteed cost control for a
class of linear time-delay switched singular systems with
time-varying norm-bounded parameter uncertainty based
on an LMI approach. A sufficient condition for the
existence of memoryless state feedback guaranteed cost
controllers is derived. It is shown that the design problem
of guaranteed cost controller for the uncertain time-delay
switched singular system is equivalent to solving a set of
LMIs, whose solutions provide parametrised representations
of guaranteed cost controllers. This design process is
computationally simple.

The rest of this contribution is organised as follows.
In Section 2, we provide notation definitions and the
problem formulation, while our main results are presented
and proved in Section 3. A numerical example is given
in Section 4 to demonstrate our approach, and some
concluding remarks are offered in Section 5.

2 Problem formulation

Consider a class of linear uncertain time-delay switched
singular systems governed by the following state-space
equation:

Eẋ(t) =
(
Aσ(t) +∆Aσ(t)

)
x(t)

+
(
Adσ(t) +∆Adσ(t)

)
x(t− d)

+
(
Bσ(t) +∆Bσ(t)

)
u(t)

+
(
Bhσ(t) +∆Bhσ(t)

)
u(t− h),

x(t) =ϕ(t), t ∈ [−t0, 0], t0 , max{d, h}.

(1)

Here, x(t) ∈ Rnx and u(t) ∈ Rnu are the state and control
input vectors, respectively, while d > 0 and h > 0 are their
respective delay constants. ϕ(t) in (1) is a given continuous
vector-valued initial function. The right continuous function

σ(t) : [0, ∞) → N , {1, 2, · · · ,m} (2)

is the switching rule to be designed, where m is the
number of subsystems. Thus, σ(t) = i indicates that the
ith subsystem is active. Ai, Bi, Adi and Bhi, i ∈ N,
are the known constant real matrices of appropriate
dimensions, while ∆Ai, ∆Bi, ∆Adi and ∆Bhi, i ∈ N, are
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the matrix-valued functions representing the time-varying
parameter uncertainties in the system model. The matrix
E ∈ Rnx×nx may be singular with rank

(
E
)
≤ nx.

The parameter uncertainties are assumed to be norm
bounded, which take the form[

∆Ai ∆Adi ∆Bi ∆Bhi

]
= DiΣi(t)

[
F1i Fdi F2i Fhi

]
,

(3)

∀i ∈ N, where Di, F1i, Fdi, F2i and Fhi are the known
constant real matrices of appropriate dimensions, which
represent the structure of uncertainties, while Σi(t) is an
unknown matrix function of appropriate dimension with
Lebesgue measurable elements and satisfies

ΣT
i (t)Σi(t) ≤ I (4)

in which I denotes the identity matrix of appropriate
dimension. The notation in (4) means that the matrix
I −ΣT

i (t)Σi(t) is semi-positive definite.
The autonomous linear switched singular system

associated with the system (1) can be written as

Eẋ(t) = Aix(t), i ∈ N. (5)

Definition 1: The switched singular system (5) is said to be
regular if det

(
sE −Ai

)
is not identically zero, i ∈ N.

Definition 2: The switched singular system (5) is said to be
impulse free if it is regular and
deg

(
det

(
sE −Ai

))
= rank(E), i ∈ N.

All the switched singular systems discussed in this
contribution are assumed to be impulse free.

Let the quadratic cost function associated with the
system (1) be defined by

J =

∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt, (6)

where Q and R are the given symmetric positive-definite
weighting matrices.

Definition 3: For the uncertain system (1), if there exist a
control law u(t) and a positive J∗ such that, for all the
admissible uncertainties, the closed-loop system is stable
and the value of the cost function (6) associated with the
closed-loop system satisfies J ≤ J∗, then u(t) is said to be
a guaranteed cost control law for the uncertain system (1)
with the guaranteed cost J∗.

Our objective is to develop a procedure to design a
memoryless state feedback guaranteed cost control law
u(t) = Kσ(t)x(t) for the linear uncertain time-delay
switched singular system (1). Before presenting our results,
we have the following two lemmas.

Lemma 1 (see Petersen, 1987): Give a symmetric matrix
Y as well as the two matrices D and F with appropriate
dimensions. Then

Y +DΣF + F TΣTDT < 0

for all Σ satisfying ΣTΣ ≤ I , if and only if there exists
λ > 0 such that

Y + λF TF + λ−1DDT < 0,

where 0 denotes the zero matrix of appropriate dimension,
and the notation Y > 0 (< 0) indicates that Y is positive
(negative) definite.

Lemma 2 (Schur complement): For a given symmetric
matrix with the partition

S =

[
S11 S12

S21 S22

]
,

where S11 is a square matrix and ST
12 = S21, the following

three conditions are equivalent:

1. S < 0;

2. S11 < 0 and S22 − ST
12S

−1
11 S12 < 0;

3. S22 < 0 and S11 − S12S
−1
22 ST

12 < 0.

3 Main results

We first present a sufficient condition for the existence of
memoryless state feedback guaranteed cost control laws for
the system (1) with the parameter uncertainties (3).

Theorem 1: For the system (1) with the cost function
(6), if there exist an invertible matrix P , two symmetric
positive-definite matrices S and W , and matrices Ki,
i ∈ N, of appropriate dimensions, such that the following
matrix inequalities are satisfied

ETP = P TE ≥ 0, (7)Θi +Q+KT
i RKi V1 V2

V T
1 −S 0

V T
2 0 −W

 < 0, (8)

where

V1 = P T(Adi +∆Adi

)
, (9)

V2 = P T(Bdi +∆Bdi

)
, (10)

and

Θi = ΞT
iP + P TΞi + S +KT

i WKi (11)

with

Ξi = Ai +∆Ai +BiKi +∆BiKi, (12)

then the state feedback control law

u(t) = Kix(t), i ∈ N, (13)

is a guaranteed cost control law, and

J∗ = ϕT(0)ETPϕ(0) +

∫ 0

−d

ϕT(τ)Sϕ(τ)dτ

+ max
i∈N

∫ 0

−h

ϕT(τ)KT
i WKiϕ(τ)dτ (14)
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is a guaranteed cost for the uncertain system (1).

Proof: By substituting u(t) = Kix(t), i ∈ N, in (1), the
resulting closed-loop system is

Eẋ(t) =
(
Ai +∆Ai +BiKi +∆BiKi

)
x(t)

+
(
Adi +∆Adi

)
x(t− d)

+
(
Bhi +∆Bhi

)
Kix(t− h).

(15)

Suppose that there exist an invertible matrix P , and the
two symmetric matrices S > 0 and W > 0, as well as Ki,
i ∈ N, such that the matrix inequalities (7) and (8) hold for
all the admissible uncertainties. Now define the Lyapunov
function

V (x(t)) = xT(t)ETPx(t) +
∫ t

t−d
xT(τ)Sx(τ)dτ

+
∫ t

t−h
xT(τ)KT

σ(τ)WKσ(τ)x(τ)dτ.
(16)

Then the time derivative of V (·) along any trajectory of the
closed-loop system (15) is given by

L(x(t); t)
= xT(t)Θix(t) + xT(t− d)V T

1 x(t)
+ xT(t)V1x(t− d) + xT(t− h)KT

i V
T
2 x(t)

+ xT(t)V2Kix(t− h)− xT(t− d)Sx(t− d)
− xT(t− h)KT

i WKix(t− h)

=

 x(t)
x(t− d)

Kix(t− h)

TΘi V1 V2

V T
1 −S 0

V T
2 0 −W

 x(t)
x(t− d)

Kix(t− h)


(17)

where V1, V2 and Θi are defined in (9), (10) and (11),
respectively. The matrix inequality (8) implies that

L(x(t); t) < xT(t)
(
−Q−KT

i RKi

)
x(t) < 0. (18)

Therefore, the closed-loop system (15) is asymptotically
stable. Furthermore, by integrating the both sides of the
inequality (18) from 0 to Tt and using the initial condition,
we obtain

−
∫ Tt

0

xT(t)
(
Q+KT

i RKi

)
x(t)dt

> xT(Tt)E
TPx(Tt)− xT(0)ETPx(0)

+

∫ Tt

Tt−d

xT(τ)Sx(τ)dτ −
∫ 0

−d

xT(τ)Sx(τ)dτ (19)

+

∫ Tt

Tt−h

xT(τ)KT
σ(τ)WKσ(τ)x(τ)dτ

−
∫ 0

−h

xT(τ)KT
σ(τ)WKσ(τ)x(τ)dτ.

As the closed-loop system (15) is asymptotically stable,

lim
Tt→∞

xT(Tt)E
TPx(Tt) = 0,

lim
Tt→∞

∫ Tt

Tt−d

xT(τ)Sx(τ)dτ = 0,

lim
Tt→∞

∫ Tt

Tt−h

xT(τ)KT
σ(τ)WKσ(τ)x(τ)dτ = 0.

Hence, we obtain∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt ≤ ϕT(0)ETPϕ(0)

+

∫ 0

−d

ϕT(τ)Sϕ(τ)dτ

+

∫ 0

−h

ϕT(τ)KT
σ(τ)WKσ(τ)ϕ(τ)dτ (20)

≤ ϕT(0)ETPϕ(0) +

∫ 0

−d

ϕT(τ)Sϕ(τ)dτ

+max
i∈N

∫ 0

−h

ϕT(τ)KT
i WKiϕ(τ)dτ.

It follows from Definition 3 that the result of the theorem
is true. This completes the proof. �

Next we prove that the above sufficient condition for the
existence of guaranteed cost controllers is equivalent to a
solvable system of LMIs.

Theorem 2: For the system (1) with the parameter
uncertainties (3), if there exist scalars λi > 0, i ∈ N,
an invertible matrix X , two symmetric positive-definite
matrices G and H , and matrices Mi, i ∈ N, such that the
following LMIs are satisfied

ETX−1 = X−TE ≥ 0, (21)

Ψi AdiGBhiHXTMT
i XT MT

i CT
i

GAT
di −G 0 0 0 0 0 GF T

di

HBT
hi 0 −H 0 0 0 0 HF T

hi

X 0 0 −G 0 0 0 0
Mi 0 0 0 −H 0 0 0
X 0 0 0 0 −Q−1 0 0
Mi 0 0 0 0 0 −R−1 0
Ci FdiGFhiH 0 0 0 0 −λ−1

i I


<0, (22)

where all the matrices concerned have appropriate
dimensions and

Ci = F1iX + F2iMi, (23)

Ψi =
(
AiX +BiMi

)T
+AiX

+ BiMi + λ−1
i DiD

T
i ,

(24)

then the state feedback control law

u(t) = MiX
−1x(t), i ∈ N, (25)

is a guaranteed cost control law, and

J∗ =ϕT(0)ETX−1ϕ(0)

+

∫ 0

−d

ϕT(τ)G−1ϕ(τ)dτ (26)

+max
i∈N

∫ 0

−h

ϕT(τ)KT
i H

−1Kiϕ(τ)dτ

is a guaranteed cost for the uncertain system (1), where
Ki = MiX

−1, i ∈ N.
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Proof: Define

Y =



Ωi P TAdiP
TBhi I KT

i I KT
i

AT
diP −S 0 0 0 0 0

BT
hiP 0 −W 0 0 0 0
I 0 0 −S−1 0 0 0
Ki 0 0 0 −W−1 0 0
I 0 0 0 0 −Q−1 0
Ki 0 0 0 0 0 −R−1


, (27)

where

Ωi =
(
Ai +BiKi

)T
P + P T(Ai +BiKi

)
. (28)

By the Schur complement, the matrix inequality (8) is
equivalent to

Y+
[
Ci Fdi Fhi 0 0 0 0

]T
ΣT

i (t)
[
DT

i P 0 0 0 0 0 0
]

+
[
DT

i P 0 0 0 0 0 0
]T (29)

Σi(t)
[
Ci Fdi Fhi 0 0 0 0

]
< 0,

with

Ci = F1i + F2iKi. (30)

By applying Lemma 1, the above matrix inequality holds
for all the Σi(t) satisfying ΣT

i (t)Σi(t) ≤ I , i ∈ N, if and
only if there exist constants λi > 0, i ∈ N, such that

Y + λi

[
Ci Fdi Fhi 0 0 0 0

]T [
Ci Fdi Fhi 0 0 0 0

]
+ λ−1

i

[
DT

i P 0 0 0 0 0 0
]T (31)[

DT
i P 0 0 0 0 0 0

]
< 0.

It follows from the Schur complement that the inequality
(31) is equivalent to

Ωi P TAdiP
TBhi I KT

i I KT
i C

T
i

AT
diP −S 0 0 0 0 0 F T

di

BT
hiP 0 −W 0 0 0 0 F T

hi

I 0 0 −S−1 0 0 0 0
Ki 0 0 0 −W−1 0 0 0
I 0 0 0 0 −Q−1 0 0
Ki 0 0 0 0 0 −R−1 0
Ci Fdi Fhi 0 0 0 0 −λ−1

i I


(32)

< 0,

where Ci is defined in (30), and

Ωi = Ωi + λ−1
i P TDiD

T
i P . (33)

Pre- and post-multiplying the both sides of the matrix
inequality (32) by diag{P−T,S−1,W−1, I, I, I, I, I} and
diag{P−1,S−1,W−1, I, I, I, I, I}, respectively, as well
as denoting X = P−1, Mi = KiX , G = S−1 and
H = W−1 yield the LIMs (21) and (22).

Following the proof of Theorem 1, it can then be
concluded that this theorem is true. This completes the
proof. �

Remark 1: Theorem 2 shows that when the LMIs defined
in (21) and (22) have a solution, the guaranteed cost

control law, as specified in (25), can be obtained with
the corresponding guaranteed cost of (26). Therefore, the
design of a guaranteed cost controller for the linear
uncertain time-delay switched singular system specified by
(1) and (3) is equivalent to solving a set of the LMIs.
Convex optimisation involved in solving LMIs (Boyd
et al., 1994) makes this design process practical and
computationally attractive.

4 A numerical example

An example was given to illustrate the proposed design
method. The linear uncertain time-delay switched singular
system considered was given by
Eẋ(t) =

(
Ai +∆Ai

)
x(t) +

(
Adi +∆Adi

)
x(t− d)

+
(
Bi +∆Bi

)
u(t) +

(
Bhi +∆Bhi

)
u(t− h),

x(t) = ϕ(t), t ∈ [−t0, 0], t0 , max{d, h},

for i = 1, 2, with nx = nu = 2 and the parameters

E =

[
0 0
0 1

]
, A1 =

[
2 0
0−3

]
, B1 =

[
2 0
0 2

]
,

Ad1 =

[
0 0.2
0.2 0

]
,Bh1 =

[
0.3 0.2
0.2 0.4

]
,A2 =

[
−3 0
0 2

]
,

B2 =

[
0 2
2 0

]
, Ad2 =

[
0.2 0
0 0.2

]
, Bh2 =

[
0.4 0.3
0.3 0.5

]
,

Σ1(t) =

[
cos t 0
0 sin t

]
, D1 =

[
0.4 0.3
0.3 0.6

]
,

F11 =

[
0.6 0.2
0.3 0.6

]
, Fd1 =

[
0.2 0
0 0.2

]
,

F21 =

[
0 0.4
0.4 0

]
, Fh1 =

[
0.5 0.4
0.2 0.3

]
,

Σ2(t) =

[
sin t 0
0 cos t

]
, D2 =

[
0.2 0.7
0.6 0.3

]
,

F12 =

[
0.4 0.2
0.6 0.4

]
, Fd2 =

[
0.3 0
0 0.3

]
,

F22 =

[
0 0.2
0.2 0

]
, Fh2 =

[
0.3 0.2
0.5 0.4

]
,

d = 2 and h = 1, as well as the initial condition

ϕ(t) =
[
et − et

]T
, t ∈ [−2, 0].

The weighting matrices in the cost function (6) were chosen
to be

Q = R =

[
1 0
0 1

]
.
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The LMIs (21) and (22) were formed for this system.
Solving these LMIs with the Matlab LMI Control Toolbox
yielded a solution with λ1 = λ2 = 1,

X =

[
4.2826 0
−3.6754 6.7437

]
, G =

[
0.6853 0.0096
0.0096 0.4679

]
,

H =

[
0.4651 0.0098
0.0098 0.4784

]
,M1 =

[
−20.2918 −4.3713
45.0516 −53.2193

]
,

M2 =

[
39.8495 −44.1254
−13.9619 −4.7584

]
.

By applying Theorem 2, we obtained the memoryless state
feedback guaranteed cost control law

K1 =

[
−5.2945−0.6482
3.7469−7.8917

]
,K2 =

[
3.6895−6.5432

−3.8657−0.7056

]
.

The corresponding guaranteed cost of the uncertain
closed-loop system was J∗ = 16.8794.

5 Conclusions

This contribution has studied the guaranteed cost control
problem for a class of linear uncertain time-delay switched
singular systems with a given quadratic performance
index. By adopting a Lyapunov function approach, we
have deduced a sufficient condition for the existence of
guaranteed cost memoryless state feedback controllers in
the form of LMIs. We have therefore turned the design
problem of guaranteed cost controller for a linear uncertain
time-delay switched singular system into the convex
optimisation of solving a set of LMIs, the solution of which
provides a parametric representation of the guaranteed
cost control law. This design procedure is computationally
simple and practically attractive.
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