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This paper proposes an algorithm of integrated system optimization and
parameter estimation (ISOPE) for stochastic steady-state systems and gives a
thorough analysis for the linear-quadratic Gaussian (LQG) problem with
unknown parameters under a classical information structure. A simple simulation
example is used to illustrate the algorithm.

1. Introduction

DURING the last two decades there has been an increasing interest in maintaining
an industrial process at its optimal operating condition. A common method is to
calculate optimal values of feedback-controller set points by utilizing a steady-
state mathematical model of the process. Often, values of parameters in the
model are unknown and have to be estimated. The estimation is achieved by
making use of output and input data which are referred to as real-time
information. In many situations this real-time information is likely to be
corrupted by process or measurement noise.

In situations where the noise level is low, a deterministic ISOPE approach
(Roberts, 1979; Brdys", Chen, & Roberts, 1986) can be used to provide the
correct steady-state optimum operating condition of the real process. Sometimes,
simple filter techniques can also be employed to attenuate the influence of the
noise (Roberts & Ellis, 1981). This ISOPE technique has successfully been
applied to some pilot-scale processes (Ellis & Roberts, 1985; Stevenson, Brdys", &
Roberts, 1985).

However, noise levels in many industrial plants are too high for deterministic
approaches to have practical usefulness. In such situations, it is preferable to
employ stochastic approaches. The parameter estimation and system optimization
of a stochastic system, in general, are dependent on each other. Such a dependent
relationship is much more complicated than that of the deterministic case. For
simplicity, a two-step recursive method may be used: that is, in one step,
estimating the model parameters by some standard estimation method such as the
least-squares (LS) estimation method based on known data, and in the other step,
minimizing (or maximizing) the performance index with the given model. The
solution obtained using this method provides the so-called certainty-equivalence
control and is generally suboptimal (Bar-Shalom & Tse, 1976).
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In general, deterministic optimization results in an open-loop control strategy.
A closed loop control strategy which uses the real-time information optimally can
be obtained only by stochastic optimization (Bar-Shalom & Tse, 1976). In this
paper, an analysis of stochastic steady-state optimization and parameter estima-
tion is given. A new algorithm of stochastic integrated system optimization and
parameter estimation (SISOPE) for the LQG problem is presented. This
algorithm can be viewed as a modification of the existing two-step method.

2. Description of stochastic steady-state optimization and parameter estimation

It is assumed that a steady-state system can be described by a set of equations:

where k is the sampling instant, y{k) e Rm and u[k) e W are the output and input
(set point) vectors, respectively; a{k) e W is the parameter vector which may
change slowly, £(&) is an m-dimensional stochastic process (noise) and
*( • ) : R* x R"->Rm is a measurable mapping.

There may exist a set of inequality constraints imposed on inputs and outputs:

Eg(u(k),y(k))^0, (2.2)

where E denotes the mathematical expectation operator and g : R" x Rm—* W is
a measurable mapping.

The stochastic steady-state optimization problem can be described by:

'Find argminy; s.t. (2.1) and (2.2) hold', (2.3)

where i = E[v(y(k), u(k)) \ f£k-\, u(k)] is the performance index at k, E(» | •) is
the conditional expectation, and v : R"1 x R"—*R is the objective function. !£k-x

is the real-time information at time k — 1, which is defined by

-t*-i — \y , « / .

where .y*"1 and uk~l are the output and input data up to k - 1: that is,

/ - i 4 {y{k _ 1 ) ; y{k _ 2),. . .}, „*-> A {„(* - l), «(* - 2), . . .}.

Here, as well as in the sequel, y(k — i) should be interpreted as a realization of
the stochastic process y(k) at k - i, i = 1, 2, . . . .

Solving the optimization problem (2.3) is, in general, very difficult because the
real parameters a(k) are unknown and the process is contaminated by noise. A
common strategy is to employ a two-step approach. According to point-
estimation theory (Jazwinski, 1970), the optimal parameter estimation &(k) is the
conditional expectation:

If £(/c) is an independent process, the optimal one-step-ahead prediction of y(k)
is:

y(k\k-l) = E[h(a(k), u(k)) | 2k_u «
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AN INTEGRATED ALGORITHM FOR OPTIMIZATION AND ESTIMATION 325

which depends on u(k), &(k), and the higher-order conditional moments of a(k)
based on S£k-\. The prediction can be written approximately as:

(2-4)

The model-based optimization problem then can be simplified as:

'Find arg min ]k s.t. (2.4) holds and g(u(k), y(k \ k - 1)) « 0',

Note that the formulation of A(#) is assumed to be known. However, a(k) is
allowed to be time-dependent to accommodate some of the structural uncer-
tainties. Moreover, some structural errors can also be included into the noise
%(k). It is recognized that if A(») is unknown and only an estimate A(») is
available, the problem becomes more complicated. In the next section the LQG
problem is discussed and some quantitative results are produced.

3. Steady-state optimization of the LQG problem with unknown parameters

Consider the linear steady-state system

(3.1)

where A(k) = [aij(k)]mXneUmXn, b(k)eUm, and §(£) is an m-dimensional
Gaussian white noise: that is,

E[§(*)] = 0 and cov [§(*),§(*)] = {J ^ j for all *,

where R is the covariance matrix of %(k). In order to rewrite (3.1) in a more
convenient form, the system matrix A(k) is first written in terms of column
vectors:

a,{k)eUm (j = l,...,n).

The parameter vector is given by

a(k) 4 [a](k), . . . , alik), bT(k)]T e R<"+1"",

where T denotes the transpose. Next, an m{n + l ) x m matrix <P(k) is introduced:

<P(k)±[ul(k)lm,...,un(k)lm,lm]\

where Im is the m Xm identity matrix and ut{k) (j = 1, . . . , n) are the
components of u(k). Then (3.1) can be written in the form:

The objective function is quadratic:

v(y(k), u(k)) = [y(k)-yd]
TC[y{k)-yd] + u\k)Du{k),

where yd e Um is a constant vector, and C and D are symmetric positive definite
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326 C. HAN, J. E. ELLIS, S. CHEN AND P. D. ROBERTS

mxm and nXn matrices, respectively. Let us first consider using the two-step
strategy to solve this LQG problem.

Assuming that the LS estimation is employed, the estimate of «(&) at k is

&(k) = E[a(k) | <ek_x] = (<PT
k_lWk_l<Pk_l)-

1<PUWk_1yk_u

where

/*- . =

0

0

I

(3-2)

pwk-2 0 ]
0 ij'

are the matrix of input data, the vector of output data, and the weighting matrix,
respectively; /} is the forgetting factor. If the definition

p(k - 1 ) 4
* - l - i

is made, then the recursive least-squares (RLS) estimation formula can be
obtained (e.g. Van den Boom, 1982) as follows.

Initial conditions are 6(1) = 0, P(0) = 02Im(n+i), 02> 106, and 0 = 0-95 ~0-997.

(i) &(k + l) = &(k) + K(k)[y(k) -$(k\k- 1)] where

K{k) = P(k - l)<P(k)[pim + <P\k)P{k - \)*{k)]-\

is the Kalman gain matrix and y(k \ k — 1) is the output prediction which is given
by

y(k\k-\) = E[y(k) | 2k_u u(k)] = <PT(k)&(k)
(3.3)

Here A(k) and 6(k) are the estimates of A(k) and b(k) at k, respectively,
(ii) P(k) is obtained according to formula

P(k) = fi-'lUn + V ~ K(k)<PJ(k)]P(k - 1)
= P~\P{k - 1) - P(k - \)<P{k)[plm + <PJ(k)P(k - l)<P(k))-x<PT(k)P(k - 1)}.

(3.4)

Using the prediction model (3.3) the optimization problem is simplified as a
deterministic one:

'Find argmin/fc s.t. (3.3) holds', (3.5)

where jk = [y(k\k- 1) -ydYC[y(k \ k - 1) - yd] + uT(k)Du(k). The solution of
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AN INTEGRATED ALGORITHM FOR OPTIMIZATION AND ESTIMATION 327

(3.5) or the certainty-equivalent input u*(k) can readily be written as,

«•(*) = [D + AJ{k)CA{k)}-lA\k)C\yd - 6(k)]. (3.6)

Having obtained the certainty-equivalent input, consider the original optimiza-
tion problem:

'Find arg miajk s.t. (3.1) holds', (3.7)
«(*)

where

A = E{[y(k) -yd]
rC[y(k) -yd] + u\k)Du{k) \ <£k_x, «(*)}

= Mb I -1)"yd]TC[y(k \k-l)-yd] + u\k)Du{k) + tr[CR,(k)]. (3.8)

Here tr denotes the trace of a matrix and Ry(k) is the covariance matrix of the
prediction error which is defined as

Ry(k) ± E[y(k)yT(k) | 2k_u u(k)}.

The prediction error y(k) is given by

y(k) ±y(k) -y(k \k-l) = &T(k)[a(k) - &(k)] + |(fc).

Because %{k) is an independent process, Ry(k) can be expressed as

where Ra (k) is the covariance matrix of the parameter estimation error, given by

/?„(*) = E[a(*)aT(fc) | .&_,]. (3.9)

The parameter estimation error a (k) of the LS estimation is

a(k) 4 a(k) - &(k) = -(«DLiW,_1<l>t_1)-1<?>I-1^-i§t-1, (3.10)

where

&-i = [f(l),...,?{k-l)]r.

Because Wk_x is diagonal, substituting (3.10) into (3.9) gives

\). (3.11)

Here, Rk^ is given by /?t_j = ©f^1 R. Obviously, if R is positive definite, so is
Ra(k); and Rr(k) depends on <P(k),o which in turn is dependent on u(k).
Therefore, the separation theorem (Astrdm, 1970) does not hold and the
certainty-equivalent input (3.6) is not optimal.

Now consider an alternative method for solving (3.7). If R is known, and hence
Ra(k) is known, then

tr [CRy(k)] = tr {C[<PT(k)Ra(k)<P(k) + R]}

= tr [Ra(k)<P(k)C$J(k)] + tr (CR).
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4>(k)C<PT(k) =

u\(k)C •••u1(k)un(k)C Ul(k)C

un(k)Ul{k)C- • • ul(k)C un(k)C
L Ul(k)C -•• un(k)C C .

and R^k) = [/?o,/y(*)]/.y-i,...,B+i, where Railj(k) e R"1*"1, it follows that

tr [CR,(k)] = "H U(k) 2 tr [RaJI(k)C]uj(k)) + tr (CR), (3.12)

where un+1(k) -= 1 and Ra,ti(k) = Rl{

Using (3.12) in (3.8) and differentiating it with respect to u(k):

- % - = 2u\k)[D + A\k)CA{k) + Q(k)] + 2[S(k) -yd]
TCA(k) + 2XT(k) = 0T.

(3.13)

(3.14)

(3.15)

Q(Jk) and ){k) are defined as follows:

= [tr [R^n+x){k)C], . . . , tr [RaMn+l)(k)C]]\

• tr [RaAl(k)C] tr [Ra.l2(k)C] • • tr [Ra,ln(k)Cy

Q(k) =
tr [Ra.21(k)C\ tr • tr

Ltr [Ra,*i(k)C] tr [i?a,n2(A:)C] • • • tr [«a,

The optimal input u*(k) can be obtained directly from (3.13):

«•(*) = [D + ^T(A:)Ci(*) + Qm~l{A\k)C\yd - 6(k)] -

Ra(k) can be calculated in a recursive manner. According to (3.11) and (3.2),

*«(*) =

P{k - l)[p2(Wk-2<Pk_2)
TRk-2(Wk_2<Pk_2) + <P(k - l)R<Pr(k - l)]P(k - 1).

Then using (3.4) gives,

* . ( * ) =

[Im ( n + 1 ) - K(k - \)4>\k - l)]P(k - 2)(Wt_24>k_2)
T/?*-2(Wi-2<P*-2)/>(fc - 2) •

[Im ( n + 1 ) - K(k - l)<PJ(k - 1)]T+ P(k - 1)<P(* - l)R<PT(k - l)P(k - 1). (3.16)

Finally defining

M{k) ± Im(n+1) - K(k - l)<P\k - 1), L(k) ± P(k - l)<P(k - 1),

we may write (3.16) as

Ra(k) = M(k)Ra(k - l)MT(k) + L(k)RLT(k).
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AN INTEGRATED ALGORITHM FOR OPTIMIZATION AND ESTIMATION 329

In reality, R is often unknown and must be estimated by using, for example,
some off-line estimation method. If u(k) is a constant input and y(k) is the
corresponding output observation, the following simple scheme can be applied to
obtain &, an estimate of R:

The estimate of Ra(k), denoted by R\,(k), is given by the recursive formula

Aa(k) = M{k)fra(k - l)MT(k) + L(k)kLJ{k).
R\,(0) may be chosen as a zero matrix. The estimates of X{k) and Q(k), X(Jfc) and
Q(k), can be obtained by substituting Ra(k) into (3.14) and (3.15), respectively.
Based on the above discussion, a modified two-step algorithm (Fig. 1) can be
formulated:

Given u(l), tf (1), P(0), £«(()), /3, and A, for k = 2,3, . . . :
(1) The task of the estimation unit is to estimate the parameters A (A:), and

(2) A modification unit is introduced whose job is to compute A.(k) and Q(k),
which are termed modifiers.

(3) The optimization problem is obtained by modifying (3.5) with X(Jt) and

Modification unit:

Calculate Q(k), i(k)

>

Optimization unit:

Minimize

w.r.t. u(k) i.t.

A(k)

b(k)

u(k)

j

Estimation unit:

Parameters

a(k)

Moments

.(*)

i

Real process:

FIG. 1
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Q(k) provided by the modification unit:

'Find arg min \Jk + uT(k)Q(k)u(k) + 2>T(A:)u(A:)] s.t. (3.3) holds'. (3.17)
•(*)

The solution of (3.17), for given modifiers, is given by:

u'(fc) = [D + AT(k)CA(k) + Q(k)]-l{AT(k)C[yd - 6{k)) - X(k)} (3.18)

This is applied to the process and the above steps are repeated.
It is observed that two terms are added in the optimization objective function,

to take account of the inherent interaction between parameter estimation and
system optimization because imperfect model parameters are employed. If we
write

,-=, „,
al(k) = al(k)-al(k) ( i« 1 , . . . , n), b(k) = b(k)-6(k),

then it is clear that

qti(k) is an estimate of tr {E[at(k)aj(k) \ %k^]C} and

ii(k) is an estimate of tr {E[a,(k)BT(k) | ^k

The standard two-step algorithm can readily be implemented by setting &{k) = 0
and @(k) = 0 in this algorithm.

4. Convergence analysis of the algorithm

Firstly, the convergence of the modified two-step algorithm for the LQG
problem with unknown parameters given in the previous section is shown to
depend on the convergence of the RLS parameter estimation. The result is also
valid for the standard two-step algorithm by simply setting Q(k) and i(k) to zero
for all k.

Assume that the RLS estimation is convergent: that is, the sequence of
parameter estimates (ft(fc))fc«i,2i... is a Cauchy sequence. For any 6 > 0 , there
then exists a k0 such that

d(*)||<fi V(k,s)>{kQ,k0)

where ||»|| denotes the Euclidean norm, and

\\^k)-Aa(s)\\^M6 V(k,s)>(ko,ko)

where M is a positive constant. From (3.18),

\\[D + A\k)CA(k) + Q(k)T'{AT(k)C[yd - B{k)] -
[D + AT{s)CA{s) + a(s)]-l{A\s)C[yd - B(s)] - i{s)}\\
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AN INTEGRATED ALGORITHM FOR OPTIMIZATION AND ESTIMATION 331

where

{A\k)C\yd - 6(k)] - i(k) -AT(s)C[yd - 6(s)] + Us)}||,

u2 = ||{[D + A\k)CA(k) + ̂ k)}-1 -[D+ AJ(s)CA(s) + ^(s)]-1} •

{AJ(s)C[yd-8(s)]-Z(s)}\\.

Note that AJ(k)CA(k) and Q(k) are symmetric non-negative definite matrices.
Therefore D + AT(k)CA(k) + Q{k) 2= D and

u,« \\D-\A\k)C\yd - B{k)} - A\s)C\yd - 6(s)] - [i(k) - l(s)}}\\ < 1,6,

where lx is a positive constant. Similarly, with the help of the matrix-inversion
lemma, it can be shown that u2^l25, where l2 is a positive constant. Let
l = lx + l2, then ||u*0t)-«*(s)||</<5. This proves that (u*(fc))*_i,2,... is also a
Cauchy sequence. Thus, it can be concluded that the algorithm is convergent if
the RLS estimation is convergent.

It has been proved that LS estimation with /3 = 1 is convergent in probability if
the parameters in the system equation (3.1) are constant, the noise is white
Gaussian and the input sequence (u(k)) is persistently exciting (Van den Boom,
1982): that is, &(k) converges in probability to a as k—>°°, where a is the real
parameter vector.

If /3 = 1, then P(k) and K(k) in RLS estimation tend to become zero when k is
large enough: that is, P(fc) = 0 and K(k)^0 for k»ko. This will result in
u(k)~u* (k^k0), where u* is a constant vector. The input sequence will not
then be persistently exciting. However, Ljung has proved that if /3 is appropri-
ately chosen, RLS estimation for Gaussian noise has the best convergence
property (Ljung, 1977a, 1977b). Finally, it is well known that if the parameters in
(3.1) change slowly, RLS estimation with £ < 1 can follow the change.

5. Simulation study

Consider a time-invariant LQG problem with

2 - l " | | ~ - l '
A= -0-5 2-5 , B= 1

1 2 J 2
l 0 0

0

ya =

C = 0 1

0 0 1

and assume that the noise %(k) has zero mean and covariance

ro-ooi o i
L o o-ooi J

" l
0
0

0
1
0

0
0
1_
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This example was used in computer simulation to compare the modified two-step
algorithm with the standard two-step algorithm. The recursive procedure was
terminated after 200 recursive steps. The following statistical criteria were used to
assess the performance of the two algorithms.

Two scalars ŷ r and aj:
I N i 200

IN = T; 2 It (N = 1, . . . , 200), a] = — 2 Qt ~ J*)\
1\ k-l Ŵ

where y* is the real optimal mean performance, and y * is the value of the real
performance function at k.

Two vectors (^ and ot:

These are defined as the vectors whose elements are the diagonal elements of the
matrices

1 2OO

— 2 [«•(*) - «•
1

- «*]T, —
ZUU

200

- a*][a(k) - a*]\

respectively, where u* are the real optimal inputs, «*(Jfc) are the inputs at k, and
o* are the real parameters, with &(k) the parameter estimates at k. The three
statistics yv, o], and o, are directly connected with the control objective.

Xv can be observed in Fig. 2, and the other three statistics are given in Table 1,
where case (a) represents the two-step algorithm and cases (b) to (e) represent
the modified two-step algorithm with different estimated A and initial Ra(0).
Sequences of inputs generated in cases (a) and (b) are illustrated in Fig. 3 and
Fig. 4.

xlOO '

9-i

S 7 1
ji. 6i

5:

2 |

l j

(a)

(b)

(c)

(e)

20 40 60 80 100 120
Sample instant

140 160 180 200

FIG. 2
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AN INTEGRATED ALGORITHM FOR OPTIMIZATION AND ESTIMATION 333

TABLE 1
Statistics and initial conditions

Case

a,:

a.-

«t:

*.(0):

A:

(a)

1215-5

3-8382
4-9732

00811
00561
01400
00482
01098
01393
0-6717
0-7594
0-8711

(b)

774-8

2-3612
31911

01156
0-0720
0-1278
0-0627
01238
0-1422
0-8218
0-9690
0-8356

0

0-5I3

(c)

492-2

1-4215
2-0875

01058
00774
01564
00586
01281
0-1572
0-6837
1-0225
10947

0

t

(d)

275-5

0-9316
1-2817

01797
01398
0-6202
01237
0-1744
0-6431
0-3894
0-6269
0-4251

0

*

(e)

15-6

0-3410
01460

139-21
88-410
45-088
177-49
11105
51-741
0-2706
0-8448
0-3784

21,

t

d(l) = 0, u,(l) = 0 1 , u2(l) = - 0 1 , P(0) = 10% and 0 = 0-97 for all cases.
t diag (1-2,0-8,0-9), t diag (1-5,1-6,1-4).

3.00 (a) ••• (b) — Real optimum

20 40 60 80 100 120 140 160 180 200
1.00

FIG. 3

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/3/4/323/709745 by Southam

pton O
ceanography C

entre N
ational O

ceanographic Library user on 06 April 2021



334 C. HAN, J. E. aXIS, S. CHEN AND P. D. ROBERTS

2.00T (a) ••• (b) — Real optimum

1.50-

3
3
Q.

1.00

0.50
20 40 60 80 100 120

Sample instant

FIG. 4

140 160 180 200

The results show that, in the example tested, the modified two-step algorithm
gave significant improvement in the real average performance and reduced the
variances of the real performance, even with a poor estimate of /? (case (b)). It is
clear that the smaller mean performance and the smaller performance variances
were the direct results of the smaller variances of the inputs around the real
optimal values.

6. Conclusions

Theoretical analysis and simulation results indicate that the modified two-step
algorithm derived in this paper is superior to the standard two-step algorithm for
the LQG problem with unknown parameters.

The improvement achieved by the modified two-step algorithm depends on the
off-line estimation of the noise covariance matrix. The simulation results,
however, show that a rough estimate is enough to give substantial improvement
in the control goal. If the estimation results indicate that the noise is a correlated
process, the sampling interval must be increased appropriately so that the system
displays steady-state characteristics.

There is scope for further research to investigate how to estimate the noise
covariance matrix on-line and to study the possibility of extending the algorithm
to more-general, nonlinear systems with constraints.

REFERENCES

ASTROM, K. J. 1970 Introduction to Stochastic Control Theory. New York: Academic
Press.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/3/4/323/709745 by Southam

pton O
ceanography C

entre N
ational O

ceanographic Library user on 06 April 2021



AN INTEGRATED ALGORITHM FOR OPTIMIZATION AND ESTIMATION 335

BAR-SHALOM, Y., & TSE, E. 1976 Concepts and methods in stochastic control. In: Control
and Dynamic Systems: Advances in Theory and Application, Vol. 12 (Ed C. T.
Leondes). New York: Academic Press.

BRDYS, M.X CHEN, S., & ROBERTS, P. D. 1986 An extension to the modified two step
algorithm for steady state system optimisation and parameter estimation. Int. J.
Systems Sci. (to be published).

ELLIS, J. E., & ROBERTS, P. D. 1985 On the practical viability of integrated system
optimisation and parameter estimation. IEE International Conference 'Control 85',
Publication No. 252, University of Cambridge, England, pp. 281-285.

JAZWINSKI, A. H. 1970 Stochastic Processes and Filtering Theory. New York: Academic
Press.

LJUNG, L. 1977a Analysis of recursive stochastic algorithms. IEEE Trans, autom. Control
AC-22, 551-575.

LJUNG, L. 1977b On positive real functions and the convergence of some recursive
schemes. IEEE Trans, on autom. Control AC-22, 539-551.

ROBERTS, P. D. 1979 An algorithm for steady state system optimization and parameter
estimation. Int. J. Systems Sci. 10, 719-734.

ROBERTS, P. D., & ELLIS, J. E. 1981 Refinements to an algorithm for combined system
optimisation and parameter estimation. Proc. of the 1981 UKSC Conference on
Computer Simulation, Harrogate, England.

STEVENSON, I. A., BRDYS, M., & ROBERTS, P. D. 1985 Integrated system optimisation
and parameter estimation for a travelling load furnace. Preprints of the 7th
IFAC/IFORS Symposium on Identification and System Parameter Estimation,
University of York, England, pp. 1641-1646.

VAN DEN BOOM, A. J. W. 1982 System Identification. Ph.D. Thesis, Proefschrift
Eindhoven, Netherland. ISBN 90-9000352-5.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/3/4/323/709745 by Southam

pton O
ceanography C

entre N
ational O

ceanographic Library user on 06 April 2021


