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Abstract

A semi-blind adaptive space–time equaliser (STE) has recently been proposed based on a

concurrent gradient-Newton (GN) constant modulus algorithm (CMA) and soft decision-directed

(SDD) scheme for dispersive multiple-input multiple-output (MIMO) systems that employ high-

throughput quadrature amplitude modulation signalling. A minimum number of training symbols,

approximately equal to the dimension of the STE, is used to provide a rough initial estimate of the

STE’s weight vector. The concurrent GN based CMA and SDD blind adaptive scheme is then

adopted to adapt the STE. This semi-blind STE has a complexity similar to that of the training-based

recursive least squares (RLS) algorithm. For stationary MIMO channels, it has been demonstrated

that this semi-blind adaptive STE is capable of converging fast to the optimal minimum mean square

error STE solution. In this contribution, we investigate the performance of this semi-blind adaptive

STE operating in Rayleigh fading MIMO systems. Our results obtained show that the tracking

performance of this semi-blind adaptive algorithm is close to that of the training-based RLS

algorithm. Thus, this semi-blind adaptive STE offers an effective and practical means to successfully

operate under the highly dispersive and fading MIMO environment.
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1. Introduction

Multiple-input multiple-output (MIMO) techniques are capable of offering a high
channel capacity in interference-free scenarios, albeit their achievable performance is
limited by the multi-user interference. For frequency selective MIMO systems, space–time
equalisers (STEs) [1–18] offer an effective means of suppressing both intersymbol
interference and co-channel interference at the receiver. For the sake of further improving
the achievable bandwidth efficiency, high-throughput quadrature amplitude modulation
(QAM) schemes [19] have become popular in numerous wireless network standards. For
example, the 16-QAM and 64-QAM schemes were adopted in the recent WiMAX standard
[20]. Adaptive implementation of STE can be realised using training based adaptive
algorithms, such as the recursive least squares (RLS) algorithm [21]. However, a large
number of training symbols is required to properly train a STE, which considerably
reduces the achievable system throughput. Note that under a dispersive MIMO
environment, the STE’s input signal is highly correlated, and stochastic-gradient (SG)
based adaptive algorithms, such as the training-based least mean square (LMS) algorithm,
suffer seriously from slow convergence and high steady-state misadjustment [21].
Blind adaptive methods do not require training symbols and, therefore, do not reduce

the achievable system throughput. However, pure blind adaptive STEs typically require
excessively high complexity and suffer from very slow convergence. Moreover, blind
methods result in unavoidable estimation and decision ambiguities [22,23]. An effective
means of resolving the estimation and decision ambiguities of blind adaptive methods is to
employ a few training symbols, and this leads to attractive semi-blind schemes. Many SG-
based semi-blind methods [24–30] have been proposed for frequency nonselective MIMO
systems. In particular, the work of [30] developed a SG-based concurrent constant
modulus algorithm (CMA) and soft decision-directed (SDD) scheme for narrowband
MIMO systems that employ high-order QAM signalling. In this semi-blind method, a few
training symbols, approximately equal to the dimension of the spatial equaliser, are first
used to provide a rough least squares (LS) estimate of the spatial equaliser’s weight vector.
The SG based CMA and SDD scheme, originally developed for blind equalisation of
single-input single-output systems [31,32], is then employed to adapt the spatial equaliser.
This semi-blind SG based scheme converges fast to the minimum mean square error
(MMSE) spatial equalisation solution, with a complexity similar to that of the training-
based LMS algorithm. A SG-based semi-blind adaptive scheme however suffers from slow
convergence and high steady-state misadjustment, when operating in frequency selective
MIMO systems.
Recently, a gradient-Newton (GN) based semi-blind concurrent CMA and SDD

algorithm [33] was proposed to adapt the STE that operates in wideband MIMO systems.
GN-type algorithms [34,35] employ the inverse of the input signal’s autocorrelation matrix
to modify stochastic gradient, which results in much faster convergence than SG-type
algorithms in highly correlated signal environments. The inverse of the autocorrelation
matrix is implemented in the same way as in the RLS algorithm [21]. The complexity of a
GN-based adaptive algorithm is therefore similar to that of the RLS algorithm. For
stationary dispersive MIMO systems, the results reported in [33] have demonstrated that
this semi-blind GN-CMAþSDD based STE is capable of converging fast to the optimal
MMSE STE solution and its convergence speed is very close to that of the training-based
RLS algorithm. No result however has been produced to date for this semi-blind
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GN-CMAþSDD based STE operating in time-varying MIMO channels. The contribution
of this paper is that we investigate the tracking performance of this semi-blind adaptive
STE operating in dispersive Rayleigh fading MIMO systems. Our results obtained show
that the tracking performance and the symbol error rate (SER) of this semi-blind adaptive
STE are close to those of the continuously training-based RLS STE. These results are very
significant, because the continuously training-based RLS STE is impossible to realise
and its SER offers a low bound of the system’s achievable performance. This study thus
demonstrates that the semi-blind GN-CMAþSDD based algorithm offers an efficient and
practical means to adapt a STE in the hostile dispersive fading MIMO environment.
2. System model and STE structure

We consider the space-division multiple-access (SDMA) induced MIMO system as
depicted in Fig. 1, where each of the Q users is equipped with a single transmit antenna and
the receiver is assisted by a P-element antenna array. We point out that this structure is
equally applicable to a single-user Q-layered spatial multiplexing based MIMO system.
Denote the symbol-rate channel impulse response (CIR) connecting the qth transmit
antenna to the pth receive antenna at the symbol index k as

cp,qðkÞ ¼ ½c0,p,qðkÞ c1,p,qðkÞ � � � cnC�1,p,qðkÞ�
T , ð1Þ

where without loss of generality we have assumed that each of the P�Q CIRs has the
same length of nC. Magnitudes of the CIR taps are uncorrelated Rayleigh processes, and
each CIR tap has a root mean power of

ffiffiffiffiffiffiffi
0:5
p

þ j
ffiffiffiffiffiffiffi
0:5
p

. The normalised Doppler frequency
of the system is denoted by fd, and continuously fluctuating fading is assumed, which
provides a different fading magnitude and phase for each CIR tap ci,p:q at each k.

The symbol-rate received signal samples xp(k), for 1rprP, can be expressed as [36,37]
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Fig. 1. SDMA induced MIMO system, where each of the Q users is equipped with a single transmit antenna and

the receiver is assisted by a P-element antenna array.
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where np(k) is a complex-valued Gaussian white noise process with E½9npðkÞ9
2
� ¼ 2s2n, sq(k)

is the kth transmitted symbol of user q with the symbol energy E½9sqðkÞ9
2
� ¼ s2s , and sq(k)

takes the values from the M-QAM symbol set

S9fsi,l ¼ ui þ jul , 1ri,lr
ffiffiffiffiffiffi
M
p
g ð3Þ

with the real-part symbol R½si,l � ¼ ui ¼ 2i�
ffiffiffiffiffiffi
M
p
�1 and the imaginary-part symbol

I½si,l � ¼ ul ¼ 2 l�
ffiffiffiffiffiffi
M
p
�1. The average signal-to-noise ratio (SNR) of the system is defined as

SNR¼

PQ
q ¼ 1

PP
p ¼ 1 E½cH

p,qðkÞcp,qðkÞ�s2s
2QPs2n

¼
nCs2s
2s2n

: ð4Þ

The STE for detecting the qth user’s data is depicted in Fig. 2. The qth STE’s output,
given by

yqðkÞ ¼
XP

p ¼ 1

XD�1
i ¼ 0

wn

i,p,qðkÞxpðk�iÞ, ð5Þ

is passed to the decision device to produce an estimate ŝqðk�tqÞ of the transmitted symbol
sqðk�tqÞ, where D is the temporal filter’s length, wi,p,qðkÞ are the weights of the STE at the
symbol index k, and 0rtqrDþ nC�2 is the decision delay.
Define the overall received signal vector xðkÞ ¼ ½xT

1 ðkÞ x
T
2 ðkÞ � � �x

T
P ðkÞ�

T , where

xpðkÞ ¼ ½xpðkÞ xpðk�1Þ � � � xpðk�Dþ 1Þ�T , ð6Þ

for 1rprP. Then xðkÞ can be expressed by the well-known MIMO model

xðkÞ ¼CðkÞsðkÞ þ nðkÞ, ð7Þ
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Fig. 2. Space–time equaliser for user q, where D denotes the symbol-spaced delay, P is the number of receive

antennas, D denotes the length of temporal filter, and 1rqrQ with Q being the number of users.
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where nðkÞ ¼ ½nT
1 ðkÞ n

T
2 ðkÞ � � � n

T
P ðkÞ�

T with

npðkÞ ¼ ½npðkÞ npðk�1Þ � � � npðk�Dþ 1Þ�T , ð8Þ

for 1rprP, the transmitted symbol vector of all the users sðkÞ ¼ ½sT
1 ðkÞ s

T
2 ðkÞ � � � s

T
QðkÞ�

T

with

sqðkÞ ¼ ½sqðkÞ sqðk�1Þ � � � sqðk�D�nC þ 2Þ�T , ð9Þ

for 1rqrQ, and the overall system’s CIR matrix at the symbol index k

CðkÞ ¼

C1;1ðkÞ C1;2ðkÞ � � � C1,QðkÞ

C2;1ðkÞ C2;2ðkÞ � � � C2,QðkÞ

^ ^ � � � ^

CP,1ðkÞ CP,2ðkÞ � � � CP,QðkÞ

2
66664

3
77775, ð10Þ

with the D� ðDþ nC�1Þ CIR matrix associated with the user q and the receive antenna p

given by the Toeplitz form

Cp,qðkÞ ¼

cT
p,qðkÞ 0 � � � 0

0 cT
p,qðkÞ & ^

^ & & 0

0 � � � 0 cT
p,qðkÞ

2
66664

3
77775 ð11Þ

for 1rprP and 1rqrQ. Similarly, the STE for detecting the qth user’s data can be
expressed as

yqðkÞ ¼wH
q ðkÞxðkÞ ð12Þ

where the weight vector of the qth STE at k is given by wqðkÞ ¼ ½w
T
1,qðkÞ w

T
2,qðkÞ � � �w

T
P,qðkÞ�

T

with

wp,qðkÞ ¼ ½w0,p,qðkÞ w1,p,qðkÞ � � �wD�1,p,qðkÞ�
T : ð13Þ

The dimension of the STE is therefore NSTE ¼P �D.
The mean square error (MSE) value for the STE of Eq. (12) with the weight vector wqðkÞ

can be expressed by

JMSEðwqðkÞ,kÞ ¼ s2s ð1�w
H
q ðkÞC9qZðkÞ�w

T
q ðkÞC

n

9qZ
ðkÞÞ

þs2sw
H
q ðkÞ CðkÞCH

ðkÞ þ
2s2n
s2s

I

� �
wqðkÞ, ð14Þ

where I denotes the NSTE �NSTE dimensional identity matrix, qZ ¼ ðq�1ÞðDþ nC�1Þ þ
ðtq þ 1Þ and C9i the ith column of C. Then the average MSE

JAMSEðWðkÞ,kÞ ¼
1

Q

XQ

q ¼ 1

JMSEðwqðkÞ,kÞ, ð15Þ

over all the Q users can be used to investigate the tracking performance of an adaptive
STE, where WðkÞ ¼ ½w1ðkÞ w2ðkÞ � � �wQðkÞ� denotes the weight matrix of all the Q STEs.
Since JMSEðwqðkÞ,kÞ is a stochastic quantity, whose value depends on the channel
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realisation, averaging over a number of different runs is necessary. Ultimately, the SER
can be simulated to assess the equalisation performance.

3. Semi-blind GN-CMAþSDD algorithm

Let the number of available training symbols be K, and denote the available training
data as

XK ¼ ½xð1Þ xð2Þ � � �xðKÞ�,

sK,q ¼ ½sqð1�tqÞ sqð2�tqÞ � � � sqðK�tqÞ�
T :

(
ð16Þ

The LS estimate of the STE’s weight vector based on fXK ,sK,qg is readily given as

wqð0Þ ¼ ðXKX
H
K Þ
�1XKs

n

K,q: ð17Þ

In order to maintain throughput, the number of training pilots should be as small as
possible. To ensure that XKX

H
K has a full rank, on the other hand, K should be chosen to be

slightly larger than NSTE, the dimension of xðkÞ. Because the training data with K � NSTE

are generally insufficient, the initial LS weight vector (17) may not be sufficiently accurate
to open the eye. Therefore, decision direct adaptation is generally unsafe. Also directly
applying the SG-CMAþSDD blind scheme of [31] to adapt the STE (12) with wqð0Þ of
Eq. (17) as the initial weight vector suffers from slow convergence and high steady-state
MSE misadjustment, because xðkÞ is highly correlated. In the work [33], a GN-
CMAþSDD algorithm was proposed to adjust the STE (12) with wqð0Þ of Eq. (17) as
the initial weight vector, which is capable of converging fast and accurately to the optimal
MMSE STE solution under a stationary environment.
In the GN-CMAþSDD based STE [33], the STE’s weight vector is split into two parts,

yielding wqðkÞ ¼wq,cðkÞ þ wq,dðkÞ. The initial wq,c and wq,d are simply set to wq,cð0Þ ¼
wq,dð0Þ ¼ 0:5wqð0Þ, where wqð0Þ is given by the LS estimate of Eq. (17). A GN algorithm uses
the inverse of the autocorrelation matrix of xðkÞ to modify the stochastic gradient [34,35]. Just
like in the RLS algorithm, this inverse matrix can be updated recursively according to [21]

PðkÞ ¼ l�1Pðk�1Þ�l�1gðkÞxH ðkÞPðk�1Þ, ð18Þ

with

gðkÞ ¼
l�1Pðk�1ÞxðkÞ

1þ l�1xH ðkÞPðk�1ÞxðkÞ
, ð19Þ

where 0olo1 is the forgetting factor [21]. The initial Pð0Þ can be set to Pð0Þ ¼ ðXKX
H
K Þ
�1.

The weight vector wq,c is updated using the GN-CMA according to

wq,cðk þ 1Þ ¼wq,cðkÞ þ mCMAPðkÞe
nðkÞxðkÞ, ð20Þ

with

eðkÞ ¼ yqðkÞðD�9yqðkÞ9
2
Þ, ð21Þ

where yqðkÞ ¼wH
q ðkÞxðkÞ, D¼ E½9sqðkÞ9

4
�=E½9sqðkÞ9

2
� and mCMA is the step size of the CMA.

This GN-CMA algorithm reduces to the conventional SG-CMA [38,39] if PðkÞ is replaced
with an identity matrix. It is well-known that the step size for the SG-CMA must be
chosen sufficiently small to avoid divergence, particularly in a highly correlated signal
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environment. By contrast, the step size of the GN-CMA algorithm can be set to a value
much larger than the step size of the SG-CMA counterpart.

The weight vector wq,d is updated using the GN-SDD scheme, which is now summarised.
The complex phasor plane is divided into the M/4 rectangular regions, as illustrated in Fig. 3,
and each region Si,l contains four symbol points as defined by

Si,l ¼ fsr,m, r¼ 2i�1; 2i,m¼ 2l�1; 2lg, ð22Þ

where 1ri,lr
ffiffiffiffiffiffi
M
p

=2. If the STE’s output yqðkÞ 2 Si,l , a local approximation of the marginal
probability density function (PDF) of yq(k) is given by [31,32]

p̂ðwqðkÞ,yqðkÞÞ �
X2i

r ¼ 2i�1

X2l

m ¼ 2l�1

1

8pr
e�ð9yqðkÞ�sr,m9

2
=2rÞ, ð23Þ

where r is the cluster width associated with the four clusters of each Si,l . The SDD scheme
[31–33] is designed to maximise the local marginal PDF criterion

JLMAPðwqðkÞ,kÞ ¼ r log ðp̂ðwqðkÞ,yqðkÞÞÞ: ð24Þ

In particular, the GN-SDD algorithm updates wq,d according to

wq,dðk þ 1Þ ¼ wq,d ðkÞ þ mSDDPðkÞ
@JLMAPðwqðkÞ,kÞ

@wq,d
, ð25Þ

where mSDD is the step size of the SDD, and

@JLMAPðwqðkÞ,kÞ

@wq,d
¼

1

ZN

X2i

r ¼ 2i�1

X2l

m ¼ 2l�1

e�ð9yqðkÞ�sr,m9
2
=2rÞðsr,m�yqðkÞÞ

nxðkÞ, ð26Þ

with

ZN ¼
X2i

r ¼ 2i�1

X2l

m ¼ 2l�1

e�ð9yqðkÞ�sr,m9
2
=2rÞ: ð27Þ

This GN-SDD algorithm reduces to the SG-SDD algorithm of [31,32] by replacing PðkÞ with
an identity matrix. Note that, for the SG-SDD algorithm, the step size mSDD has significant
influence on the performance of the algorithm, as too large value of mSDD results in divergence
while too small value of mSDD leads to slow convergence. By contrast, for the GN-SDD
algorithm, mSDD can be set to a much larger value than for the step size of the SG-SDD
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counterpart. The performance of the GN-SDD algorithm is not overly sensitive to the cluster
width r, defined in the context of the local PDF (23), as in the case of the SG-SDD [30–32].
It is interesting to point out that a more generic partition of the STE’s weight vector is

wq ¼ awq,c þ ð1�aÞwq,d , ð28Þ

where 0rar1. It is clear that a¼ 1 corresponds to a pure CMA based STE while a¼ 0 is
related to a pure SDD based STE. Setting a¼ 0:5 leads to the concurrent CMAþSDD
based STE considered here. Depending on the channel condition, appropriate value of a
may be chosen to yield a potentially better performance. However, this appropriate
weighting value is difficult to find. In the absence of any a priori information, the weight
vector partition of wq,c ¼ wq,d ¼ 0:5wq can be regarded as an optimal choice.

4. Simulation study

4.1. Stationary system

This example, taken from [40], was used to demonstrate that the semi-blind
GN-CMAþSDD based STE was capable of converging fast to the optimal MMSE STE
solution and its convergence speed was very close to that of the training-based RLS
algorithm under a stationary dispersive MIMO environment. The system supported Q¼3
users with P¼4 receive antennas, and the modulation scheme was 16-QAM. The P �

Q¼ 12 constant CIRs cp,q, 1rpr4 and 1rqr3, can be found in [40], where each CIR had
nC¼3 taps. The STE’s temporal filter order was chosen as D¼7. The optimal decision
delays were found to be t1 ¼ 5 for user one, t2 ¼ 4 for user two and t3 ¼ 3 for user three.
These decision delays were used in the simulation. The average SER over all the Q¼3
optimal MMSE STEs, depicted in Fig. 4, was used as the benchmark performance. For
Fig. 4. Comparison of the average SER performance for the training-based LS STE with K¼34 symbols as well

as the semi-blind SG-CMAþSDD, semi-blind GN-CMAþSDD, and optimal MMSE STEs, for the stationary

MIMO system.
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this example, the STE’s dimension was NSTE ¼ 28 and we chose K¼34 for the initial
training of a semi-blind STE. Given the K¼34 training data, the LS estimate of the STE
weight vector was provided by Eq. (17), and the average SER performance of this LS
training-based STE is also depicted in Fig. 4, where it can be seen that K¼34 was
insufficient for the LS training based STE to achieve an adequate SER performance.

Because this was a stationary system, the forgetting factor was set to l¼ 1:0 for both the
training-based RLS and semi-blind GN-CMAþSDD based STEs. We also tested the semi-
blind SG-CMAþSDD based STE [30] for a comparison. Given a SNR value, K¼34 training
pilots were first used to provide the initial weight vector of the STE according to (17). For
all the Q¼3 SG-CMAþSDD based STEs, mCMA ¼ 0:00001, mSDD ¼ 0:0002 and r¼ 0:1 were
chosen, while mCMA ¼ 0:01, mSDD ¼ 0:95 and r¼ 0:1 were used for all the three GN-CMAþ
SDD based STEs. These parameters were found empirically to yield the best performance in
terms of convergence speed and steady-state misadjustment. Fig. 5 plots the learning curve of
the GN-CMAþSDD adaptive algorithm, in terms of the average MSE, in comparison with
that obtained by the SG-CMAþSDD adaptive algorithm as well as the result obtained by the
training-based RLS algorithm. It can be seen from Fig. 5 that the SG-CMAþSDD algorithm
converged very slowly and was incapable of approaching the optimal MMSE STE solution due
to an excessively high steady-state misadjustment, under a highly dispersive MIMO
environment. By contrast, the GN-CMAþSDD algorithm was capable of converging fast
and accurately to the MMSE STE solution. Next, given a range of SNR values, the average
SER performance of the GN-CMAþSDD based and SG-CMAþSDD based semi-blind STEs
after convergence were plotted in Fig. 4, in comparison with that of the optimal MMSE STE
solution. The performance of the training-based RLS STE, not shown, was indistinguishable
from the MMSE STE solution.

4.2. Non-stationary system

The system used in our simulation again supported Q¼3 users with P¼4 receive
antennas, and the modulation scheme was 16-QAM. Each of the P �Q¼ 12 CIRs had
nC¼3 taps. The system was however under continuously fluctuating fading, leading to
Fig. 5. Convergence performance of the SG-CMAþSDD, GN-CMAþSDD and training-based RLS STEs in

terms of the average mean square error, given SNR of 19 dB and averaged over 20 runs, for the stationary MIMO

system.
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a different fading magnitude and phase for each CIR tap ci,p:q at each time instant k. The
STE’s temporal filter order was chosen as D¼5. Note that there was a trade off in
choosing an appropriate temporal filter length D. A larger D offered potentially a better
Fig. 6. Influence of the forgetting factor l to the average MSE of the training-based RLS algorithm, given SNR of

20 dB and averaged over 50 runs, for the continuously fluctuating fading MIMO system with fd ¼ 10�5.

Fig. 7. Influence of (a) the forgetting factor l with mCMA ¼ 0:01, mSDD ¼ 0:65 and r¼ 0:4, (b) the CMA step size

mCMA with l¼ 0:985, mSDD ¼ 0:65 and r¼ 0:4, (c) the SDD step size mSDD with l¼ 0:985, mCMA ¼ 0:01 and

r¼ 0:4, and (d) the cluster width r with l¼ 0:985, mCMA ¼ 0:01 and mSDD ¼ 0:65, to the average MSE of the semi-

blind GN-CMAþSDD algorithm, given SNR of 20 dB and averaged over 50 runs, for the continuously

fluctuating fading MIMO system with fd ¼ 10�5.



Fig. 8. Influence of (a) the CMA step size mCMA with mSDD ¼ 3� 10�4 and r¼ 0:4, (b) the SDD step size mSDD

with mCMA ¼ 5� 10�6 and r¼ 0:4, and (c) the cluster width r with mCMA ¼ 5� 10�6 and mSDD ¼ 3� 10�4, to the

average MSE of the semi-blind SG-CMAþSDD algorithm, given SNR of 20 dB and averaged over 50 runs, for

the continuously fluctuating fading MIMO system with fd ¼ 10�5.

Fig. 9. Tracking performance comparison of the training-based RLS, semi-blind SG-CMAþSDD and semi-blind

GN-CMAþSDD based STEs, in terms of the average MSE, given SNR¼20 dB and averaged over 50 runs, for

the continuously fluctuating fading MIMO system with fd ¼ 10�5.
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performance but could result in a longer adaptation period and higher steady-state
misadjustment, which was a particular problem for time-varying channels. The three
decision delays of the three STEs were set to t1 ¼ t2 ¼ t3 ¼ 2. As the CIRs were changed at
each k, the RLS based STE benchmark kept training continuously, which was obviously
impractical to implement in reality but its performance offered a lower bound of the
system’s achievable performance. For a semi-blind adaptive STE, the number of training
symbols was K¼24, which was slightly larger than the STE’s dimension of NSTE ¼ 20.
We considered the fading system with the normalised Doppler frequency fd ¼ 10�5. Given

the SNR value of 20 dB, Fig. 6 plots the influence of the forgetting factor l to the average MSE
performance of the training-based RLS algorithm. The result of Fig. 6 suggests that the optimal
forgetting factor for the training-based RLS STE was l¼ 0:995. The procedure of choosing the
algorithmic parameters of the GN-CMAþSDD algorithm was illustrated in Fig. 7, given the
Fig. 10. SER performance comparison of the training-based RLS, semi-blind SG-CMAþSDD and semi-blind

GN-CMAþSDD based STEs: (a) user one, (b) user two, (c) user three, and (d) average over all the three users, for

the continuously fluctuating fading MIMO system with fd ¼ 10�5.
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SNR value of 20 dB, where it can be seen that appropriate algorithmic parameter values were
the forgetting factor l¼ 0:985, the CMA step size mCMA ¼ 0:01, the SDD step size mSDD ¼ 0:65
and the cluster width r¼ 0:4. Similarly, appropriate algorithmic parameters found empirically
for the SG-CMAþSDD algorithm were the CMA step size mCMA ¼ 5� 10�6, the SDD step
size mSDD ¼ 3� 10�4 and the cluster width r¼ 0:4, as confirmed in Fig. 8.

Fig. 9 plots the learning curves of the training-based RLS, semi-blind SG-CMAþSDD
and semi-blind GN-CMAþSDD based STEs, in terms of the average MSE over all the
Q¼3 users, given the SNR value of 20 dB. It can be seen from Fig. 9 that the tracking
performance of the semi-blind GN-CMAþSDD algorithm was close to that of the
continuously training-based RLS algorithm. The result of Fig. 9 also confirms that the
semi-blind SG-CMAþSDD algorithm suffered from slow convergence and excessively
high steady-state misadjustment in the highly dispersive and fading MIMO signal
environment. The SERs of the continuously training-based RLS, semi-blind SG-CMAþ
SDD and semi-blind GN-CMAþSDD based STEs are depicted in Fig. 10(a)–(c), for the
users one to three, respectively, while the average SERs over all the three users for the three
adaptive STEs are compared in Fig. 10 (d). The results obtained in Fig. 10 demonstrate
that the SER performance of the semi-blind GN-CMAþSDD based STE was close to that
of the continuously training-based RLS STE. This is very significant, considering the fact
that the continuously training-based RLS STE is impossible to realise and its SER offers a
low bound of the system’s achievable performance.

We next increases the normalised Doppler frequency to fd ¼ 10�4, which represented a
fast fading scenario. The three STEs had the same structure as in the case of fd ¼ 10�5 and
the number of the initial training symbols was again set to K¼24. Fig. 11 depicts the
learning curves of the training-based RLS, semi-blind SG-CMAþSDD and semi-blind
GN-CMAþSDD based STEs, in terms of the average MSE over all the Q¼3 users, given
the SNR value of 20 dB. For the training-based RLS algorithm, the optimal forgetting
factor was empirically found to be l¼ 0:993. For the GN-CMAþSDD algorithm,
appropriate algorithmic parameters were found to be l¼ 0:98, mCMA ¼ 0:01, mSDD ¼ 0:45
and r¼ 0:4, while the algorithmic parameters of the SG-CMAþSDD algorithm were
chosen empirically to be mCMA ¼ 5� 10�6, mSDD ¼ 0:0005 and r¼ 0:4. From Fig. 11, it can
Fig. 11. Tracking performance comparison of the training-based RLS, semi-blind SG-CMAþSDD and semi-

blind GN-CMAþSDD based STEs, in terms of the average MSE, given SNR¼20 dB and averaged over 50 runs,

for the continuously fluctuating fading MIMO system with fd ¼ 10�4.



Fig. 12. SER performance comparison of the training-based RLS and semi-blind GN-CMAþSDD based STEs:

(a) user one, (b) user two, (c) user three, and (d) average over all the three users, for the continuously fluctuating

fading MIMO system with fd ¼ 10�4.
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be seen that the SG-CMAþSDD algorithm was incapable of tracking such a fast fading
MIMO channel. By contrast, the GN-CMAþSDD algorithm was able to offer an
adequate tracking performance under such a fast fading environment. This observation is
further confirmed by the SER plots of Fig. 12(a)–(d).
5. Conclusions

A semi-blind STE based on a concurrent CMA and SDD adaptive algorithm has been
investigated for frequency selective Rayleigh fading MIMO systems that employ high
throughput QAM signalling. The scheme is semi-blind, as a minimum number of training
symbols, approximately equal to the dimension of the STE, is used to provide a rough LS
estimate of the STE weight vector for the initialisation. The concurrent GN-CMAþSDD
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blind adaptive scheme is then adopted to adapt the STE. This semi-blind STE scheme has a
complexity similar to that of the training-based RLS algorithm. Our simulation results
involving a continuously fluctuating fading MIMO channel have demonstrated that the
tracking performance of this semi-blind GN-CMAþSDD algorithm is close to that of the
continuously training-based RLS algorithm. This confirms that the semi-blind adaptive
GN-CMAþSDD based STE offers an effective and practical means to successfully operate
under the highly dispersive and fading MIMO environment.
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