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Abstract— A novel sparse kernel density estimator is derived
based on a regression approach, which selects a very small
subset of significant kernels by means of the D-optimality
experimental design criterion using an orthogonal forward
selection procedure. The weights of the resulting sparse ker-
nel model are calculated using the multiplicative nonnegative
quadratic programming algorithm. The proposed method is
computationally attractive, in comparison with many existing
kernel density estimation algorithms. Our numerical results also
show that the proposed method compares favourably with other
existing methods, in terms of both test accuracy and model
sparsity, for constructing kernel density estimates.

I. INTRODUCTION

The problem of estimating probability density functions

(PDFs) is of fundamental importance to machine learning

and all fields of engineering, see for example [1], [2], [3],

[4], [5], [6]. The non-parametric approach for estimating

the PDF based on a realisation sample drawn from the

underlying density [1], [2], [3] has attracted considerable

interests, because it does not require to specify the functional

form for the unknown underlying density distribution. The

best-known non-parametric density estimation technique is

perphase the classical Parzen window (PW) estimate [1],

which is remarkably simple and accurate. However, the

PW estimate, also known as the kernel density estimate,

employs the full data sample set in defining density estimate

for subsequent observation. Thus its computational cost for

testing scales directly with the sample size. In today’s data

rich environment, this may become a practical difficulty in

employing the PW estimator. It also motivates the research

on the sparse kernel density (SKD) estimation techniques.

The support vector machine (SVM) method was applied to

SKD estimation in [7], [8] and an interesting SKD estimation

technique was proposed in [9]. These techniques employ

the full data set as the kernel set and obtain a sparse

representation by making as many kernel weights to (near)

zero as possible based on some chosen criteria. A regression-

based estimation method was reported in [10], which selects

SKD estimates based on an orthogonal forward regression

(OFR) algorithm that incrementally minimises the training

mean square error (MSE). We proposed an OFR algorithm

for SKD estimation based on the leave-one-out test MSE

and regularisation [11]. Similar to the SVM-based density

estimation [7], [8], the algorithms of [10], [11] select SKD

S. Chen and C.J. Harris are with School of Electronics and Computer
Science, University of Southampton, Southampton SO17 1BJ, U.K. E-mails:
{sqc, cjh}@ecs.soton.ac.uk

X. Hong is with School of Systems Engineering, University of Reading,
Reading RG6 6AY, U.K. E-mail: x.hong@reading.ac.uk

estimates in the cumulative distribution function (CDF) space

by converting the kernels into the associated CDFs and using

the empirical distribution function (EDF) calculated on the

training set as the desired respone. As a PDF estimate,

the kernel weights must satisfy the nonnegative and unity

constraints. In [10], [11], the unity constraint is met by

normalising the kernel weight vector and the nonnegative

constraint is ensured by adding a test to the OFR selection

procedure at the cost of an increased complexity. Recently,

we have developed an OFR algorithm [12] that selects SKD

estimates in the original PDF space by adopting the PW

estimate as the desired response and calculating the kernel

weights of the selected kernel model using the multiplicative

nonnegative quadratic programming (MNQP) algorithm [13].

Optimal experimental designs [14] have been used for

data analysis to construct smooth model response surface

based on the setting of the experimental variables under well

controlled experimental conditions, where model adequacy

is evaluated by design criteria that are statistical measures

of goodness of experimental designs by virtue of design

efficiency and experimental effort. For regression models,

quantitatively model adequacy is measured as function of

the eigenvalues of the design matrix, as these eigenvalues

are linked to the covariance matrix of the least squares

(LS) parameter estimate. There exist a variety of optimal

experimental design criteria based on different aspects of

experimental design [14], and the D-optimality criterion is

most effective in optimising the parameter efficiency and

model robustness via maximisation of the determinant of

the design matrix. Optimal experimental designs have been

adopted to construct sparse regression models based on an

OFR procedure [15], [16], [17], [18]. These previous works

have demonstrated the effectiveness of optimal experimental

design methods in obtaining a robust and parsimonious

model structure with unbiased model parameter estimate.

Motivated by the effectiveness of optimal experimental

designs in constructing robust and sparse regression models,

we propose a simple yet effective regression-based method

for SKD estimation using the D-optimality criterion. Our

proposed method first selects a very small subset of sig-

nificant kernels from the full kernel set generated from the

training data set. Note that the problem of kernel density

estimation is enssentially an unsupervised learning problem

and typically an ill-conditioned one. Our proposed OFR

procedure based on the D-optimality is a computationally

efficient unsupervised learning method and it is capable of

yielding robust and accurate as well as sparse kernel model

structure. Thus, this D-optimality based OFR method is well-
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suited to the problem of kernel density estimation. After

obtaining a very sparse kernel model structure, the associated

kernel weights can readily be calculated using a modified

version of the MNQP algorithm of [13]. Because the size of

kernel model is very small, this MNQP algorithm requires

little extra computational effort. Moreover, it further sets

some kernel weights to zero, yielding an even sparser kernel

density estimate. The proposed SKD estimation approach

based on the combined D-optimality design and MNQP

algorithm is computationally much more efficient than other

existing regression-based methods. Several examples demon-

strate that this proposed method compares favourably with

other existing methods for constructing SKD estimates, both

in terms of test accuracy and model sparsity.

II. KERNEL DENSITY ESTIMATION VIA REGRESSION

Let a finite data sample set DN = {xk}N
k=1 be

drawn from a density p(x), where the data sample xk =
[x1 x2 · · ·xm]T ∈ Rm. The task is to infer the unknown

density p(x) using the kernel density estimate of the form

p̂(x;βN , ρ) =

N∑
k=1

βkKρ(x,xk) (1)

with the constraints

βk ≥ 0, 1 ≤ k ≤ N, (2)

and

βT
N1N = 1, (3)

where βN = [β1 β2 · · ·βN ]T is the kernel weight vector, 1N

denotes the vector of ones with dimension N , and Kρ(•, •)
is a chosen kernel function with the kernel width ρ. In this

study, we use the Gaussian kernel of the form

Kρ(x,xk) =
1

(2πρ2)
m/2

e
−

‖x−xk‖2

2ρ2 , (4)

but many other types of kernel functions can also be used

in the density estimate (1). The well-known PW estimate is

obtained by setting all the elements of βN to 1
N . The optimal

kernel width ρ is typically determined via cross validation.

The PW estimate in fact can be derived as the maximum

likelihood estimator using the divergence-based criterion

[19]. The negative cross-entropy or divergence between the

true density p(x) and the estimate p̂(x; βN , ρ) is defined as∫
Rm

p(u) log p̂(u; βN , ρ) du ≈ 1

N

N∑
k=1

log p̂(xk; βN , ρ)

=
1

N

N∑
k=1

log

(
N∑

n=1

βnKρ(xk,xn)

)
. (5)

Minimising this divergence subject to the constraints (2)

and (3) leads to βn = 1
N for 1 ≤ n ≤ N , i.e. the PW

estimate. Because of this “optimality” property, we may view

the PW estimate as the “observation” of the true density

contaminated by some “observation noise”, namely

p̂(x;1N/N, ρPar) = p(x) + ε̃(x), (6)

where ρPar denotes the kernel width used for the PW

estimate. Thus the generic kernel density estimation problem

(1) can be viewed as the following regression problem with

the PW estimate as the “desired response”

p̂(x;1N/N, ρPar) =

N∑
k=1

βkKρ(x,xk) + ε(x) (7)

subject to the constraints (2) and (3), where ε(x) is the

modelling error at x.

Most SKD estimation techniques [7], [8], [10], [11] refor-

mulate the density estimation problem (1) into a regression

one by using the EDF as the desired response and converting

the kernels into CDFs, that is,

FN (x) =

N∑
k=1

βkqρ(x,xk) + ε̂(x) (8)

where the regressor qρ(x,xk) is defined by

qρ(x,xk) =

∫
x

−∞

Kρ(u,xk) du (9)

and the EDF FN (x) is defined by

FN (x) =
1

N

N∑
k=1

m∏
j=1

θ (xj − xj,k) (10)

with

θ(x) =

{
1, x > 0,
0, x ≤ 0,

(11)

where xk = [x1,k x2,k · · ·xm,k]T ∈ DN . Our regression-

based approach is computationally simpler and it can use any

type of kernel function. Moreover, our empirical results will

demonstrate that the proposed method yields sparser kernel

density estimates without sacrificing the accuracy.

Define φT (k) = [Kk,1 Kk,2 · · ·Kk,N ] with Kk,i =
Kρ(xk,xi), yk = p̂(xk;1N/N, ρPar), and εk = ε(xk). Then

the model (7) at the data point xk ∈ DN is expressed as

yk = ŷk + εk = φT (k)βN + εk. (12)

Introduce the regression matrix Φ = [φ1 φ2 · · ·φN ] with

φk = [K1,k K2,k · · ·KN,k]T . Note that φk is the kth column

of Φ, while φT (k) is the kth row of Φ. With the additional

notations ε = [ε1 ε2 · · · εN ]T and y = [y1 y2 · · · yN ]T , the

model (12) over DN can be written in the matrix form

y = ΦβN + ε. (13)

III. PROPOSED SPARSE DENSITY ESTIMATION METHOD

Our aim is to seek a sparse representation for p̂(x; βN , ρ)
with most elements of βN being zero and yet maintaining

a comparable test performance or generalisation capability

to that of the PW estimate. One approach is to work on

the full regression matrix Φ and to make as many kernel

weights to (near) zero as possible based on some appropriate

criteria, thus yielding a sparse representation, as in [7], [8],

[9]. Alternatively, the efficient OFR procedure can be used

to select a small subset of significant kernels based on some

relevant criteria, thus constructing a sparse kernel model, as

in [10], [11], [12]. We adopt the second approach here.
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A. Subset Kernel Selection Using D-Optimality Criterion

Consider the model (13) in the generic data modelling

context. The LS estimate of βN is given by β̂N =(
ΦT Φ

)−1

ΦT y. Assume that (13) represents the true data

generating process and the design matrix ΦT Φ is nonsingu-

lar. The estimate β̂N is unbiased and the covariance matrix

of the estimate is determined by the design matrix, namely⎧⎨
⎩

E
[
β̂N

]
= βN ,

Cov
[
β̂N

]
∝

(
ΦT Φ

)−1

.
(14)

The condition number of the design matrix is given by

C =
max{λi, 1 ≤ i ≤ N}
min{λi, 1 ≤ i ≤ N} (15)

with λi, 1 ≤ i ≤ N , being the eigenvalues of ΦT Φ. Too

large a condition number will result in unstable LS parameter

estimate while a small C improves model robustness. The D-

optimality design criterion [14] maximises the determinant of

the design matrix for the constructed model. Specifically, let

ΦNs
be a column subset of Φ representing a constructed

Ns-term subset model. According to the D-optimality cri-

terion, the selected subset model is the one that maximises

det
(
ΦT

Ns
ΦNs

)
. This helps to prevent the selection of an

oversized ill-posed model and the problem of high parameter

estimate variances. Moreover, the design matrix does not

depend on y explicitly. Hence, the D-optimality design is

an unsupervised learning, making it particularly suitable for

determining the structure of kernel density estimate.

Let an orthogonal decomposition of the regression matrix

Φ be Φ = WA, where

A =

⎡
⎢⎢⎢⎢⎣

1 a1,2 · · · a1,N

0 1
. . .

...
...

. . .
. . . aN−1,N

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ (16)

and W = [w1 w2 · · ·wN ] with orthogonal columns satisfy-

ing wT
i wj = 0, if i �= j. Similarly, the orthogonal matrix

corresponding to ΦNs
is denoted as WNs

. Maximising

det
(
ΦT

Ns
ΦNs

)
is identical to maximising det

(
WT

Ns
WNs

)
or, equivalently, minimising − log det

(
WT

Ns
WNs

)
. In fact,

det
(
ΦT Φ

)
= det

(
AT

)
det

(
WT W

)
det (A)

= det
(
WT W

)
=

N∏
i=1

λi, (17)

and

− log det
(
WT W

)
=

N∑
i=1

− log
(
wT

i wi

)
. (18)

Denote B = ΦT Φ = [bi,j ] ∈ RN×N . The fast algorithm

for the modified Gram-Schmidt orthogonalisation procedure

[20] can readily be used to orthogonalise B and to calculate

A. For convenience, the same notation B = [bi,j ] is used to

denote the design matrix after its first n× n block has been

orthogonalised. The n-th stage of the D-optimality based

OFR selection procedure is given as follows.

D-optimality based OFR

Begin: For n ≤ j ≤ N , calculate J
(j)
n = − log (bj,j) and

find Jn = J
(jn)
n = min{J (j)

n , n ≤ j ≤ N}
• If

Jn > ξ (19)

where ξ is a threshold value that determines the size of

the subset model, goto Stop.

• Otherwise, the jn-th column of B is interchanged from

the n-th row upwards with the n-th column of B, and

then the jn-th row of B is interchanged from the n-

th column upwards with the n-th row of B. The jn-th

column of A is interchanged up to the (n − 1)-th row

with the n-th column of A.

This effectively selects the jn-th candidate as the n-th

regressor in the subset model.

• For n+1 ≤ j ≤ N , compute αn,j = bn,j/bn,n, and for

n + 1 ≤ j ≤ N and j ≤ l ≤ N , compute{
bj,l = bj,l − αn,jαn,lbn,n,
bl,j = bj,l.

Set n = n + 1 and go to Begin.

Stop: This selects n−1 most significant kernels according to

the D-optimality criterion to form the selected subset model.

The desired threshold value ξ is problem dependent, and

it is typically determined by simply observing the values

of − log
(
wT

i wi

)
= − log (bi,i) for i = 1, 2, · · ·, and ter-

minating the selection when it is appropriate. Alternatively,

one can simply set a maximum number Ns for the selected

kernels, where Ns � N . It does not matter if Ns is set too

large, as the MNQP algorithm [13] used will automatically

make some of the kernel weights to (near) zero, and thus

reduces the model size to an appropriate level. It can be

seen that the computational complexity of this D-optimality

based OFR algorithm is no more than O(N2), which is much

simpler than other existing regression-based algorithms for

SKD estimation [10], [11], [12].

B. Calculating Kernel Weights

After the structure determination using the D-optimality

based OFR, we obtain a Ns-term subset kernel model, where

Ns � N . The resulting regression modelling problem is

y = ΦNs
βNs

+ ε (20)

subject to the constraints

βT
Ns

1Ns
= 1 and βi ≥ 0, 1 ≤ i ≤ Ns. (21)

where βT
Ns

= [β1 β2 · · ·βNs
]. The kernel weight vector can

be obtained by solving the following constrained nonnegative

quadratic programming

min
β

Ns

{1
2βT

Ns
BNs

βNs
− vT

Ns
βNs

}

s.t. βT
Ns

1Ns
= 1 and βi ≥ 0, 1 ≤ i ≤ Ns,

(22)
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where BNs
= ΦT

Ns
ΦNs

= [bi,j ] ∈ RNs×Ns and vNs
=

ΦT
Ns

y = [v1 v2 · · · vNs
]T . The solution for βNs

can be

obtained iteratively using a modified MNQP algorithm [9].

As the elements of BNs
and vNs

are strictly positive, the

Lagrangian for the above problem can be formed as [9]

L =
1

2

Ns∑
i=1

Ns∑
j=1

bi,j

β
(t)
j

(
β

(t+1)
i

)2

β
(t)
i

−
Ns∑
i=1

viβ
(t+1)
i

−η(t)

(
Ns∑
i=1

β
(t+1)
i − 1

)
(23)

where the superindex (t) denotes the iteration index and η
is the lagrangian multiplier. Setting the gradients of L with

respect to β
(t+1)
i and η(t) to zeros, leads to the following

updating equations

c
(t)
i = β

(t)
i

⎛
⎝ Ns∑

j=1

bi,jβ
(t)
j

⎞
⎠

−1

, 1 ≤ i ≤ Ns, (24)

η(t) =

(
Ns∑
i=1

c
(t)
i

)−1 (
1 −

Ns∑
i=1

c
(t)
i vi

)
, (25)

β
(t+1)
i = c

(t)
i

(
vi + η(t)

)
. (26)

The initial condition can be set as β
(0)
i = 1

Ns
, 1 ≤ i ≤ Ns.

During the iterative procedure, some of the kernel weights

may be driven to (near) zero, particularly when the subset

model size Ns is chosen to be larger than necessary. The

corresponding kernels can then be removed from the kernel

model, leading to a reduction in the subset model size.

Because Ns is typically very small, this MNQP algorithm

imposes only a small amount of computational requirements.

IV. NUMERICAL EXPERIMENTS

Several examples were used to test the proposed SKD

estimator using the combined D-optimality OFR and MNQP

algorithm and to compare its performance with the PW

estimator as well as other existing SKD estimators. The value

of the kernel width ρ was determined by test performance

via cross validation. For each example, a data set of N
randomly drawn samples was used to construct kernel density

estimates, and a separate test data set of Ntest = 10, 000
samples was used to calculate either the L2 or the L1 test

errors for the resulting estimate according to

L2 =
1

Ntest

Ntest∑
k=1

∣∣p(xk) − p̂(xk;βNs
, ρ)

∣∣2 , (27)

and

L1 =
1

Ntest

Ntest∑
k=1

∣∣p(xk) − p̂(xk; βNs
, ρ)

∣∣ , (28)

respectively. The experiment was repeated by Nrun different

random runs for each example.

TABLE I

PERFORMANCE COMPARISON IN TERMS OF L2 TEST ERROR AND

NUMBER OF KERNELS REQUIRED FOR THE ONE-DIMENSIONAL EXAMPLE

OF EIGHT-GAUSSIAN MIXTURE, QUOTED AS MEAN ± STANDARD

DEVIATION OVER 200 RUNS.

method L2 test error kernel number

PW estimate (2.9311 ± 2.0601) × 10−3 200 ± 0
SKD estimate of [12] (3.0181 ± 2.0991) × 10−3 10.2 ± 1.6

proposed SKD estimate (2.8762 ± 2.0775) × 10−3 8.7 ± 0.9

A. One-Dimensional Examples

Example 1. The density to be estimated was the mixture of

eight Gaussian distributions given by

p(x) =
1

8

7∑
i=0

1√
2πσi

e
−

(x−μi)
2

2σ2
i (29)

with

σi =

√(
2

3

)i

, μi = 3

((
2

3

)i

− 1

)
, 0 ≤ i ≤ 7. (30)

Our previous SKD estimator [12] was shown to be

favourable, compared with the estimator of [9], in terms

of test performance and model sparsity. Here we compared

the proposed SKD estimator with the PW estimator and

our previous estimator [12]. The number of data points

for density estimation was N = 200. The experiment was

repeated Nrun = 200 times. The optimal kernel widths were

found to be ρ = 0.17 and ρ = 0.31 empirically for the PW

and proposed SKD estimators, respectively. We observed that

the significant kernel terms according to the D-optimality

criterion were in the range of 8 to 10 and the threshold

value could be set to ξ = −1.0. However, we simply set the

maximum number of selected kernels by the D-optimality

OFR to be Ns = 16 and let the MNQP algorithm to decide

the final model size. Table I compares the performance of

the three density estimates. It can be seen that the accuracy

of the proposed SKD estimator was comparable to that of

the PW estimator, but it realised very sparse estimates with

an average kernel number less than 5% of the data samples.

Example 2. The density to be estimated for this one-

dimensional example was the mixture of Gaussian and Lapla-

cian distributions given by

p(x) =
1

2
√

2π
e−

(x−2)2

2 +
0.7

4
e−0.7|x+2|. (31)

TABLE II

PERFORMANCE COMPARISON IN TERMS OF L1 TEST ERROR AND

NUMBER OF KERNELS REQUIRED FOR THE ONE-DIMENSIONAL EXAMPLE

OF GAUSSIAN AND LAPLACIAN MIXTURE, QUOTED AS MEAN ±

STANDARD DEVIATION OVER 200 RUNS.

method L1 test error kernel number

PW estimator (1.9503 ± 0.5881) × 10−2 100 ± 0
SKD estimate of [11] (2.1785 ± 0.7468) × 10−2 4.8 ± 0.9
SKD estimate of [12] (1.9436 ± 0.6208) × 10−2 5.1 ± 1.3

proposed SKD estimate (1.8333 ± 0.6144) × 10−2 3.3 ± 0.7
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The number of data points for density estimation was N =
100. The optimal kernel widths were found to be ρ = 0.54
and ρ = 1.1 for the PW and SKD estimators, respectively.

The experiment was repeated Nrun = 200 times. According

to the D-optimality criterion, only three kernel terms were

significant and the threshold value could be set to ξ =
0.0. But we simply set the maximum number of selected

kernels by the D-optimality based OFR to be Ns = 10 and

let the MNQP algorithm to further reduce the model size.

Table II compares the performance of the four kernel density

estimates, in terms of the L1 test error and the number of

kernels required. Compared with the results given in [9], it

can be seen that our proposed SKD estimator also had better

performance than the SKD estimator of [9] and the SVM-

based density estimator, both in terms of test performance

and model sparsity, for this one-dimensional example.

B. Two-Dimensional Examples

Example 3. The density to be estimated for this two-

dimensional example was defined by the mixture of Gaussian

and Laplacian distributions given as follows

p(x1, x2) =
1

4π
e−

(x1−2)2

2 e−
(x2 − 2)2

2

+
0.35

8
e−0.7|x1+2|e−0.5|x2+2|. (32)

The estimation data set contained N = 500 samples, and

the empirically found optimal kernel widths were ρ = 0.42
for the PW estimate and ρ = 1.1 for the SKD estimate.

The experiment was repeated Nrun = 100 times. We simply

set the maximum selected kernels by the D-optimality OFR

procedure to be Ns = 16 and let the MNQP algorithm to

decide the final model size. Table III lists the L1 test errors

and the numbers of kernels required for the four density

estimators, where it can be seen that our proposed SKD

estimator produced the best result. Note that the proposed

SKD estimator is also computationally much simpler than

our previous density estimators [11], [12].

Example 4. The true density to be estimated for this two-

dimensional example was defined by the mixture of five

Gaussian distributions given as follows

p(x1, x2) =

5∑
i=1

1

10π
e−

(x1−μi,1)2

2 e−
(x2−μi,2)2

2 (33)

and the means of the five Gaussian distributions, [μi,1 μi,2],
1 ≤ i ≤ 5, were [0.0 −4.0], [0.0 −2.0], [0.0 0.0], [−2.0 0.0],

TABLE III

PERFORMANCE COMPARISON IN TERMS OF L1 TEST ERROR AND

NUMBER OF KERNELS REQUIRED FOR THE TWO-DIMENSIONAL

EXAMPLE OF GAUSSIAN AND LAPLACIAN MIXTURE, QUOTED AS MEAN

± STANDARD DEVIATION OVER 100 RUNS.

method L1 test error kernel number

PW estimate (4.2453 ± 0.8242) × 10−3 500 ± 0
SKD estimate of [11] (3.8381 ± 0.8263) × 10−3 11.9 ± 2.6
SKD estimate of [12] (3.8379 ± 0.7797) × 10−3 15.3 ± 3.9

proposed SKD estimate (3.7672 ± 0.6937) × 10−3 8.6 ± 1.0

TABLE IV

PERFORMANCE COMPARISON IN TERMS OF L1 TEST ERROR AND

NUMBER OF KERNELS REQUIRED FOR THE TWO-DIMENSIONAL

EXAMPLE OF FIVE-GAUSSIAN MIXTURE, QUOTED AS MEAN ±

STANDARD DEVIATION OVER 100 RUNS.

method L1 test error kernel number

PW estimate (3.6204 ± 0.4394) × 10−3 500 ± 0
SKD estimate of [12] (3.6100 ± 0.5025) × 10−3 13.2 ± 2.9

proposed SKD estimate (3.2355 ± 0.5575) × 10−3 7.9 ± 0.8

and [−4.0 0.0], respectively. The number of data points for

density estimation was N = 500. The optimal kernel widths

were found to be ρ = 0.5 and ρ = 1.0 for the PW and

SKD estimators, respectively. The experiment was repeated

Nrun = 100 times. The maximum number of selected kernels

by the D-optimality based OFR was set to Ns = 16, and the

final model size was determined by the MNQP algorithm

automatically. Table IV compares the performance of the

three density estimators.

Example 5. This was a two-class classification problem in

a two-dimensional feature space [21] and we obtained the

data from [22]. The training set contained 250 samples with

125 points for each class, and the test set had 1000 points

with 500 samples for each class. The optimal Bayes error

rate based on the true underlying probability distribution was

known to be 8%. We first estimated the two conditional PDFs

p̂(x; βNs
, ρ|C0) and p̂(x; βNs

, ρ|C1) from the training data,

and then applied the Bayes decision rule

if p̂(x;βNs
, ρ|C0) ≥ p̂(x; βNs

, ρ|C1), x ∈ C0

else, x ∈ C1

}
(34)

to the test data set. Table V lists the results obtained by the

four density estimators, where the values of the kernel width

ρ were found by cross validation. It can be seen that the

proposed SKD estimator required only two kernels for each

conditional PDF estimate, and the resulting test error rate

was identical to the optimal Bayes classification error rate.

C. Multi-Dimensional Examples

Example 6. The underlying density to be estimated was

p(x) =
1

3

3∑
i=1

1

(2π)
6/2

1

det1/2 |Γi|
e−

1
2 (x−μ

i
)T Γ−1

i (x−μ
i
) (35)

with
μ1 = [1.0 1.0 1.0 1.0 1.0 1.0]T ,
Γ1 = diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0}, (36)

TABLE V

PERFORMANCE COMPARISON FOR THE TWO-CLASS TWO-DIMENSIONAL

CLASSIFICATION EXAMPLE.

method p̂(•|C0) p̂(•|C1) test error rate

PW estimate 125 kernels 125 kernels 8.0%
SKD estimate of [11] 5 kernels 4 kernels 8.3%
SKD estimate of [12] 6 kernels 5 kernels 8.0%

proposed SKD estimate 2 kernels 2 kernels 8.0%
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TABLE VI

PERFORMANCE COMPARISON IN TERMS OF L1 TEST ERROR AND

NUMBER OF KERNELS REQUIRED FOR THE SIX-DIMENSIONAL EXAMPLE

OF THREE-GAUSSIAN MIXTURE, QUOTED AS MEAN ± STANDARD

DEVIATION OVER 100 RUNS.

method L1 test error kernel number

PW estimate (3.5195 ± 0.1616) × 10−5 600 ± 0
SKD estimate of [11] (4.4781 ± 1.2292) × 10−5 14.9 ± 2.1
SKD estimate of [12] (3.1134 ± 0.5335) × 10−5 9.4 ± 1.9

proposed SKD estimate (2.7822 ± 0.2271) × 10−5 8.4 ± 0.9

μ2 = [−1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T ,
Γ2 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}, (37)

μ3 = [0.0 0.0 0.0 0.0 0.0 0.0]T ,
Γ3 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}. (38)

The estimation data set contained N = 600 samples. The

optimal kernel width was found to be ρ = 0.65 for the

PW estimate and ρ = 1.2 for the SKD estimate, via cross

validation. The experiment was repeated Nrun = 100 times.

The number of kernels selected by the D-optimality OFR

was set to Ns = 16, and the final model size was left to the

MNQP algorithm to determine. The results obtained by the

four density estimators are summarised in Table VI.

Example 7. This was a two-class classification data set,

Titanic [23]. The feature space dimension was m = 3. There

were 100 realisations of the data set, each containing 150

training samples and 2051 test samples. Note that the two-

class data samples were imbalanced, with the class-0 training

samples approximately twice of the class-1 training samples.

In [24], a range of classifiers were applied to this data set,

and the best classification test error rate in %, obtained

by the SVM classifier, averaged over the 100 realisations

was 22.42 ± 1.02. We estimated the two conditional PDFs

p̂(x; βNs
, ρ|C0) and p̂(x; βNs

, ρ|C1) from the training data,

and then applied the Bayes decision rule (34) to the test data

and calculated the corresponding error rate. The kernel width

was set to ρ = 1.0 for both the PW and SKD estimates. The

results obtained in terms of total kernel number required for

p̂(x; βNs
, ρ|C0) and p̂(x;βNs

, ρ|C1) and test performance

are listed in Table VII.

V. CONCLUSIONS

An efficient construction algorithm has been proposed for

obtaining SKD estimates. A very small subset of significant

kernels was first selected using the OFR procedure based

on the D-optimality criterion. The associated kernel weights

are calculated using a modified MNQP algorithm, which can

further reduce the kernel model size by making some of

TABLE VII

PERFORMANCE COMPARISON FOR THE TITANIC DATA SET IN TERMS OF

TOTAL KERNEL NUMBER REQUIRED FOR TWO CONDITIONAL PDF

ESTIMATES AND TEST ERROR RATE OVER 100 REALISATIONS.

method kernel number test error rate in %

PW estimate 150 ± 0 22.48 ± 0.43
proposed SKD estimate 7.8 ± 4.4 22.34 ± 0.34

the kernel weights to zero. The proposed method is simple

to implement and computationally efficient. Several exam-

ples have demonstrated that the proposed method compares

favourably with other existing SKD estimation methods, both

in terms of test accuracy and sparsity of the estimate.
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