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Abstract

Adaptive training of neural networks is typically done using some stochastic gradient al-
gorithm that aims to minimize the mean square error (MSE). For many classification appli-
cations, such as channel equalization and code-division multiple-access (CDMA) multiuser
detection, the goal is to minimize the error probability. For these applications, adopting the
MSE criterion may lead to a poor performance. A nonlinear adaptive near minimum error
rate algorithm called the nonlinear least bit error rate (NLBER) is developed for training
neural networks for these kinds of applications. The proposed method is applied to down-
link multiuser detection in CDMA communication systems. Simulation results show that
the NLBER algorithm has a good convergence speed and a small-size radial basis function
network trained by this adaptive algorithm can closely match the performance of the opti-
mal Bayesian multiuser detector. The results also confirm that training the neural network
multiuser detector using the least mean square algorithm, although generally converging
well in the MSE, can produce a poor error rate performance.

Keywords — Neural networks, adaptive algorithms, mean square error, error probability, CDMA,

multiuser detectors, Bayesian detector.

1 Introduction

We consider a class of neural network classifiers where pattern vectors are drawn from a finite

set and corrupted by an additive noise. Examples include neural network equalizers and mul-

tiuser detectors in communication systems [1]–[15]. Typically, sample-by-sample adaptation is

needed for practical applications to meet real-time computational constraints, and the training of

neural network classifiers is usually done using some stochastic gradient algorithm based on the

mean square error (MSE) criterion. It is often reported that a nonlinear classifier (e.g. a neural
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network equalizer or multiuser detector) can provide a considerable performance improvement

over a linear one. However, a close examination of the literature shows that the reported results

are often inconsistent, namely many of these reported works do not compare the classification

performance of their neural networks with the potentially achievable optimal performance for

the given classifier structure. As pointed out by Pados and Papantoni-Kazakos [16], a strange

situation exists that, on one hand, the performance of a classifier is evaluated using probability

of error while, one the other hand, a different MSE criterion is used at the learning stage.

For linear classifiers, such as linear equalizers and code-division multiple-access (CDMA)

multiuser detectors, there is a partial relationship between the MSE and the error probability. A

small MSE is usually associated with a small error rate. However, even in the linear case, the

minimum MSE (MMSE) solution in general is not the minimum error rate (MER) solution. For

the linear equalizer or multiuser detector with binary signalling, it is now well-known that the

bit error rate (BER) difference between the MMSE solution and the minimum BER (MBER)

one can be large in certain situations [17]–[29]. Recent research has aimed to develop adaptive

linear equalizer and multiuser detector based on the MBER criterion [20],[22],[25]–[29]. For

nonlinear classifiers, the relationship between the MSE and the error rate is more dubious, and

the MMSE solution does not necessarily correspond to a small error rate1. In effect, standard

adaptive algorithms for training nonlinear classifiers, such as the least mean square (LMS) algo-

rithm, is based on a criterion that may not be relevant to the true performance indicator. Notice

that this scenario exists only for the adaptive learning case.

For off-line or block-data based learning, the need for adopting a relevant criterion to train

classifiers has always been recognized. Given the underlying pattern space, that is, the infor-

mation available to a classifier, the maximum a posteriori probability or Bayesian classifier

provides the true optimal performance. The definition of the MER used in this paper is referred

to the achievable error rate for a classifier with an additional constraint of a given structure

(e.g. a radial basis function (RBF) classifier with a given number of hidden nodes). The basic

question is then whether it is possible to achieve this MER and how close it is to the true perfor-

mance of the Bayesian classifier. It is not surprising that the Bayesian learning approach is the

most general block-data based method for training a nonlinear classifier with given structure.

1Multiplying the two-class Bayesian classifier by a positive constant, its MSE value may increase but it remains
the optimal nonlinear classifier, see Subsection 3.2. Basically, the MSE is irrelevant here.
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Typical Bayesian learning algorithms include the so-called type-II maximum likelihood or ev-

idence procedure [30],[31], and the Markov chain Monte Carlo sampling method [32]. If the

classifier has a special structure of a kernel representation, the support vector machine [33] and

the relevance vector machine [34] have become popular. All these training algorithms suffer

from high computational costs and cannot be implemented in a true adaptive sample-by-sample

training manner.

The main contribution of this paper is to develop an adaptive near MER training algorithm

for a class of neural network classifiers that includes nonlinear equalizers and multiuser detec-

tors. It should be pointed out that adaptive near MER training can in theory be achieved by only

adjusting the classifier parameters when a classification error occurs. However, for applications

considered in this paper, error rate is typically very small. This strategy is impractical, since it

would require an extremely long training period. The approach adopted in this paper is based

on a Parzen window or kernel density estimation [35]–[37] to approximate the error rate from

training data and to derive a stochastic gradient adaptive algorithm. The resulting algorithm

will be called the nonlinear least error rate (NLER) algorithm. In channel equalization and

multiuser detection applications with binary modulation schemes, this NLER algorithm will be

referred to as the nonlinear least bit error rate (NLBER). The algorithm is used to train down-

link RBF multiuser detectors in CDMA communication systems [38][39]. Convergence rate of

the NLBER algorithm is investigated in simulation, and BERs of the RBF multiuser detector

trained by the LMS and NLBER algorithms are compared with those of the optimal Bayesian

multiuser detector. The results obtained show that the NLBER algorithm achieves consistent

performance and has a reasonable convergence speed. A small-size RBF network trained by

the NLBER algorithm can closely approximate the optimal Bayesian detector. The simulation

study also demonstrates that the RBF network trained by the LMS algorithm, although converg-

ing consistently in the MSE, can produce poor BER performance.

2 Adaptive near minimum error rate training

Consider a class of nonlinear classifiers that can be represented by

ĉ(k) = sgn(y(k)) with y(k) = f(r(k);w) (1)
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where k indicates the sample number, r(k) is an M -dimensional pattern vector with its asso-

ciated class label c(k) ∈ {±1}, f(•; •) denotes the classifier map, the vector w consists of all

the (adjustable) parameters of the classifier, and ĉ(k) is the estimated class label for r(k). The

pattern vector r(k) is assumed to take the form:

r(k) = r̄(k) + n(k) (2)

where the “clean” or noise-free part r̄(k) takes values from a finite set with equal probability

r̄(k) ∈ {r̄j, 1 ≤ j ≤ Nb} (3)

and the noise vector n(k) is white Gaussian with covariance matrix E[n(k)nT (k)] = σ2
nI,

I being an identity matrix of appropriate dimension. Each r̄j has an associated class label

c(j) ∈ {±1}.

A usual way of training such a nonlinear classifier is to adjust the classifier’s parameters w

so that the MSE

E[(c(k) − y(k))2] (4)

is minimized. Typically, a stochastic gradient algorithm called the LMS can be used in adaptive

implementation, and the algorithm has a simple form

y(k) = f(r(k);w(k − 1))

w(k) = w(k − 1) + µ(c(k) − y(k)) ∂f(r(k);w(k−1))
∂w







(5)

where µ is an adaptive gain. However, the true performance criterion is the error rate and it is

desirable to develop an adaptive training algorithm based on the MER criterion. We will first

consider the theoretical error rate of the classifier (1) and a block-data based training. This will

provide insight into the development of our adaptive near MER training algorithm.

2.1 An approximate error rate expression

As an error only occurs when the sign of y(k) is different from sgn(c(k)), the error probability

of the classifier (1) is

PE(w) = Prob{sgn(c(k))y(k) < 0} (6)

Define the signed variable

ys(k) = sgn(c(k))y(k) (7)
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and let the probability density function (p.d.f.) of ys(k) be py(ys). Then

PE(w) =
∫ 0

−∞
py(ys) dys (8)

By linearizing the classifier around r̄(k), it can be approximated as 2

y(k) = f(r̄(k) + n(k);w) ≈ f(r̄(k);w) +

[

∂f(r̄(k);w)

∂r

]T

n(k) = f(r̄(k);w) + e(k) (9)

where e(k) is Gaussian with zero mean and variance

ρ2(w) = E



σ2
n

[

∂f(r̄(k);w)

∂r

]T
∂f(r̄(k);w)

∂r



 =
σ2

n

Nb

Nb
∑

j=1

[

∂f(r̄j;w)

∂r

]T
∂f(r̄j;w)

∂r
(10)

Essentially, the classifier is approximated as an additive Gaussian noise model

y(k) ≈ ȳ(k) + e(k) (11)

when deriving its error rate expression, with ȳ(k) taking values from the finite set

ȳ(k) ∈ {ȳj = f(r̄j;w), 1 ≤ j ≤ Nb} (12)

The p.d.f. of ys(k) can thus be approximated by

py(ys) ≈
1

Nb

√
2πρ(w)

Nb
∑

j=1

exp

(

−(ys − sgn(c(j))ȳj)
2

2ρ2(w)

)

(13)

and the error probability of the classifier is approximately

PE(w) ≈ 1

Nb

√
2π

Nb
∑

j=1

∫ ∞

gj(w)
exp

(

−x2
j

2

)

dxj =
1

Nb

Nb
∑

j=1

Q(gj(w)) (14)

where

Q(x) =
1√
2π

∫ ∞

x
exp

(

−y2

2

)

dy (15)

and

gj(w) =
sgn(c(j))ȳj

ρ(w)
=

sgn(c(j))f(r̄j;w)

ρ(w)
(16)

The linearization (9) is valid only for small n(k) (in some statistical sense), but the assump-

tion of small n(k) usually holds in practice. In general, however, the error rate expression (14)

is a good approximation of the true error probability, and minimizing this approximate error

rate expression will lead to a near MER solution.

2This linearization is only used to derive an approximate expression of error rate.
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2.2 Approximate minimum error rate solution

If the set described by (3) is known (for example, in equalization application if the channel im-

pulse response (CIR) is known), an approximate MER solution can be obtained by minimizing

the approximate error rate expression (14) numerically. The gradient of PE(w) is approximately

∇PE(w) ≈ − 1

Nb

√
2π

Nb
∑

j=1

exp

(

− ȳ2
j

2ρ2

)

∂gj(w)

∂w

≈ − 1

Nb

√
2πρ

Nb
∑

j=1

exp

(

− ȳ2
j

2ρ2

)

sgn(c(j))
∂f(r̄j;w)

∂w
(17)

In the above second approximation, we have dropped the term containing ∂ρ
∂w

. The follow-

ing iterative steepest-descent gradient algorithm can be used to arrive at an approximate MER

solution. Given an initial w(0), at lth iteration, the algorithm computes:

ȳj(l) = f(r̄j;w(l − 1)), 1 ≤ j ≤ Nb

∇PE(w(l)) = − 1
Nb

√
2πρ

∑Nb

j=1 exp
(

− ȳ2

j
(l)

2ρ2

)

sgn(c(j))∂f(r̄j ;w(l−1))

∂w

w(l) = w(l − 1) − µ∇PE(w(l))























(18)

where µ is a step size. Since PE(w) is a highly complex nonlinear function of w, a steepest-

descent gradient algorithm may converge slowly. A simplified conjugate gradient algorithm

[40],[28] with a periodical resetting of the search direction to the negative gradient can alterna-

tively been used to speed up convergence.

Assuming ∂ρ
∂w

= 0 is to assume that the equivalent noise standard deviation ρ is independent

of w. Clearly, ρ depends on the value of w, unless the algorithm has already converged to

the (near) optimal solution wMER and ρ has been fixed to its optimal value. Therefore, in the

algorithm (18), ρ2 needs to be set appropriately. It is seen that in theory at least an approximate

MER solution can be obtained. More importantly, the derivation of this algorithm points out a

way of deriving the adaptive algorithms of the next two subsections.

2.3 Block-data based gradient adaptation

In practice, the set of r̄j is unknown. The key to developing an effective adaptive algorithm

is the p.d.f. py(ys) of the decision variable ys(k). Parzen window or kernel density estimation

[35]–[37] is a well-known method for estimating a probability distribution. Parzen window
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method estimates a p.d.f. using a window or block of ys(k) by placing a symmetric unimodal

kernel function (such as the Gaussian function) on each ys(k). This kernel density estimation

is capable of producing reliable p.d.f. estimates with short data records and in particular is

extremely natural when dealing with Gaussian mixtures. Given a block of K training samples

{r(k), c(k)}K
k=1, a kernel density estimate of the true p.d.f. py(ys) is readily given by

p̂y(ys) =
1

K
√

2πρ̄

K
∑

k=1

exp

(

−(ys − sgn(c(k))y(k))2

2ρ̄2

)

(19)

where the kernel width ρ̄ is an appropriately chosen positive constant. From the estimated p.d.f.

(19), an estimated error probability

P̂E(w) =
∫ 0

−∞
p̂y(ys) dys (20)

is obtained, and its gradient ∇P̂E(w) can be calculated exactly according to

∇P̂E(w) = − 1

K
√

2πρ̄

K
∑

k=1

exp

(

−y2(k)

2ρ̄2

)

sgn(c(k))
∂f(r(k);w)

∂w
(21)

Thus a block-data based adaptive steepest-descent gradient algorithm can be derived. At lth

iteration, the algorithm computes:

y(k) = f(r(k);w(l − 1)), 1 ≤ k ≤ K

∇P̂E(w(l)) = − 1
K
√

2πρ̄

∑K
k=1 exp

(

−y2(k)
2ρ̄2

)

sgn(c(k))∂f(r(k);w(l−1))
∂w

w(l) = w(l − 1) − µ∇P̂E(w(l))























(22)

where the adaptive gain µ and the kernel width ρ̄ are the two algorithm parameters that require

tuning. Specifically, µ and ρ̄ control the rate of convergence, and ρ̄ also helps to determine

the accuracy of the p.d.f. and hence error rate estimate. Alternatively, conjugate gradient based

adaptation can be adopted.

Several critical points need to be emphasized. Provided that the kernel width ρ̄ is chosen

appropriately, the Parzen window estimate (19) is an accurate estimate of the true density py(ys)

regardless whether the approximation (13) is valid or not. Accuracy analysis of Parzen window

density estimate is well documented in the literature. The p.d.f. estimate (19) is known to

possess a mean integrated square error convergence rate at order of K−1 [35] and it can achieve

an accurate estimate with a remarkably short data record. It is also worth re-iterating that the

gradient (21) is exact and involves no approximation.
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2.4 Stochastic gradient adaptation

Our aim is to develop a stochastic gradient adaptive algorithm with sample-by-sample updating,

in a similar manner to the LMS (5). The LMS algorithm is derived from its related ensemble

gradient algorithm by replacing the ensemble average of the gradient with a single data point

estimate of the gradient. Adopting a similar strategy, at sample k, a single-data-point estimate

of the p.d.f. is:

p̂y(ys, k) =
1√
2πρ̄

exp

(

−(ys − sgn(c(k))y(k))2

2ρ̄2

)

(23)

Using the instantaneous or stochastic gradient

∇P̂E(k;w) = − 1√
2πρ̄

exp

(

−y2(k)

2ρ̄2

)

sgn(c(k))
∂f(r(k);w)

∂w
(24)

a stochastic gradient algorithm is readily given by

y(k) = f(r(k);w(k − 1))

w(k) = w(k − 1) + µ√
2πρ̄

exp
(

−y2(k)
2ρ̄2

)

sgn(c(k))∂f(r(k);w(k−1))
∂w







(25)

where the adaptive gain µ and the kernel width ρ̄ are the two algorithmic parameters that have

to be set appropriately. Specifically, they are chosen to ensure adequate performance in terms

of convergence rate and steady-state error rate misadjustment.

Following a similar reasoning to the LMS for the MMSE criterion, the algorithm (25) will be

called the NLER for the near MER criterion. Specially, in equalization and multiuser detection

applications involving binary signalling, this stochastic gradient algorithm will be called the

NLBER for the near MBER criterion.

3 Adaptive training of neural network multiuser detectors

The performance of the NLBER algorithm (25) is investigated in an application to multiuser

detection in the CDMA downlink (base station to mobile), in which a detector estimates the

transmitted information bits of a desired user in the presence of interfering users.

3.1 Synchronous CDMA downlink system model

Using notations from the multi-rate filtering literature [41], the discrete-time baseband model

of the synchronous CDMA downlink system supporting N users with M chips per symbol
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is depicted in Fig. 1, where bi(k) ∈ {±1} denotes the k-th symbol of user i, the unit-length

signature sequence for user i is

s̃i = [s̃i,1 · · · s̃i,M ]T (26)

and the transfer function of the CIR at the chip rate is

H(z) =
nh−1
∑

i=0

hiz
−i (27)

The baseband model for received signal sampled at chip rate is given by [42],[43]

r(k) = P













b(k)
b(k − 1)

...
b(k − L + 1)













+ n(k) = r̄(k) + n(k) (28)

where the user symbol vector b(k) = [b1(k) · · · bN(k)]T , the white Gaussian noise vector

n(k) = [n1(k) · · · nM(k)]T with E[n(k)nT (k)] = σ2
nI, r̄(k) denotes the noise-free received

signal, and the M × LN system matrix P has the form

P = H















S̃A 0 · · · 0

0 S̃A
. . .

...
...

. . . . . . 0

0 · · · 0 S̃A















(29)

with the M × LM CIR matrix H given by

H =













h0 h1 · · · hnh−1

h0 h1 · · · hnh−1

. . . . . . · · · . . .
h0 h1 · · · hnh−1













(30)

the normalized user code matrix given by S̃ = [s̃1 · · · s̃N ], and the diagonal user signal am-

plitude matrix given by A = diag{A1 · · · AN}. The channel intersymbol interference span L

depends on the CIR length nh and the chip sequence length M : L = 1 for nh = 1, L = 2 for

1 < nh ≤ M , L = 3 for M < nh ≤ 2M , and so on.

The detector at the receiver for user i estimates the transmitted bit bi(k) based on the received

signal r(k), and has a general form of

b̂i(k) = sgn(y(k)) with y(k) = f(r(k);w) (31)
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where w is the detector parameter vector for user i. This is obviously an example of the classifier

discussed in the previous section with bi(k) serving as the class label for r(k). Let the Nb = 2LN

possible combinations or sequences of [bT (k) bT (k − 1) · · · bT (k − L + 1)]T be

b(j) =













b(j)(k)
b(j)(k − 1)

...
b(j)(k − L + 1)













, 1 ≤ j ≤ Nb (32)

and b
(j)
i the ith element of b(j)(k). Define the set of Nb noise-free received signal states

R = {r̄j = Pb(j), 1 ≤ j ≤ Nb} (33)

and the set of Nb scalars

{ȳj = f(r̄j;w), 1 ≤ j ≤ Nb} (34)

Notice that r̄(k) can only take the values from the set R, the class label for r̄j is b
(j)
i ∈ {±1}

for user i, and R can be divided into two subsets

R± = {r̄j ∈ R : b
(j)
i = ±1} (35)

3.2 Linear and optimal detectors

A linear detector for user i has the decision variable given by

yL(k) = fL(r(k);w) = wT r(k) (36)

The most popular solution for this linear detector is the MMSE one given [42],[44]–[47]

wMMSE =
(

σ2
nI + PPT

)−1
pi (37)

where pi is the ith column of P. More recently, the linear MBER solution for the linear detector

(36) has been derived [28]. However, a linear detector only performs adequately if R+ and R−

are linearly separable. If R+ and R− are not linearly separable, a linear detector will have a

high BER floor even without noise and a nonlinear detector will be required [48]. Even in the

case that R+ and R− are linearly separable, a nonlinear detector can often outperform a linear

one considerably at a cost of increased complexity.
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Applying the maximum a posteriori probability principle, it can be shown that the optimal

one-shot detector is the following Bayesian one [48]:

yB(k) = fB(r(k);w) =
∑

rj∈R

ξjb
(j)
i

(2πσ2
n)M/2

exp

(

−‖r(k) − r̄j‖2

2σ2
n

)

(38)

where ξj are a priori probabilities of r̄j and, since all the r̄j are equiprobable, ξj = 1
Nb

. The

Bayesian decision variable can also be written as

yB(k) = fB(r(k);w) =
Nb
∑

j=1

βj exp

(

−‖r(k) − r̄j‖2

2σ2
n

)

(39)

with

βj =
b
(j)
i

Nb(2πσ2
n)M/2

(40)

Notice that, for binary data symbols {±1}, multiplying all βj by any positive constant still gives

the same optimal Bayesian solution, and the performance of the Bayesian solution is insensitive

to whether a precise noise variance or an estimate is used [49],[50]. For example, substituting

σ2
n in (39) by, say, 0.5σ2

n or 2σ2
n, the BER performance are indistinguishable from the exact

Bayesian solution. Implementation of the optimal Bayesian detector (39) is computationally

very expensive with the associated difficulty of adaptively estimating the set of noise-free signal

states (33).

3.3 Adaptive radial basis function network detector

To test the NLBER algorithm for adaptive training of neural network multiuser detectors, we

choose the RBF network detector of the form

yRBF (k) = fRBF (r(k);w) =
nc
∑

j=1

αj exp

(

−‖r(k) − cj‖2

σ̃j

)

(41)

The parameter vector w contains all the RBF weights αj , widths σ̃j and centers cj . The dimen-

sion of w is therefore Np = nc × (M + 2). It should be emphasized that other neural networks,

such as the multilayer perceptron or the polynomial kernel function network of the form

yPol(k) = fPol(r(k);w) =
np
∑

j=1

αj

(

cT
j r(k) + 1

)d
(42)

can similarly be used as multiuser detectors. A reason for using the RBF network (41) in this

study is that we would like to investigate whether the NLBER algorithm can achieve the optimal
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Bayesian performance when the form and size of the detector is similar to that of the Bayesian

detector.

To implement an adaptive algorithm, such as the LMS or NLBER, the derivatives of the

detector with respect to the detector parameters are required. For the RBF network (41), these

derivatives can readily be calculated:

∂fRBF

∂αj
= exp

(

−‖r(k)−cj‖2

σ̃j

)

∂fRBF

∂σ̃j
= αj exp

(

−‖r(k)−cj‖2

σ̃j

) ‖r(k)−cj‖2

σ̃2

j

∂fRBF

∂cj
= 2αj exp

(

−‖r(k)−cj‖2

σ̃j

)

r(k)−cj

σ̃j



























1 ≤ j ≤ nc (43)

Both the LMS and NLBER algorithms are used to train the RBF network detector with the

adaptive gain µ given in the form µk = µ0k
−1/4, where µ0 is an appropriately chosen constant.

For the NLBER algorithm, the value of ρ̄2 also needs to be determined. In the simulation study,

µ0 and ρ̄2 are chosen empirically. Specifically, µ0 is chosen for the LMS algorithm to ensure fast

convergence speed and a small steady-state MSE, while µ0 and ρ̄2 are chosen for the NLBER

algorithm to achieve fast convergence rate and a small steady-state BER.

3.4 Simulation study

In all simulations, the first nc/2 data points that belong to the class +1 and the first nc/2 data

points that belong to the class −1 are used as initial centers. The initial weights are set to ±η

accordingly, where η is a small positive number. To take into account the influence of initial

centers, the algorithm are run many times with different random initializations for different

runs. All the RBF widths are initially set to 8σ2
n, assuming an estimated noise variance of 4σ2

n.

Two kinds of BER are mentioned in the results, the true BER that is computed using Monte

Carlo simulation with a sufficiently long test sequence and the estimated BER calculated using

the approximate BER expression (14) with gj(w) = sgn(b
(j)
i )ȳj/ρ̃. The value of ρ̃2 is fixed

such that, for k = 0 and k equal to the final training sample, the estimated BERs agree with

the true BERs. This ρ̃ should not be confused with the NLBER algorithm parameter ρ̄ used in

adaptation. The estimated BER is used to illustrate the learning rate of an adaptive algorithm,

providing an “estimate” for PE(w(k)), the true BER of the detector with the weight vector

w(k), at each training sample k. An alternative would be to provide the true learning rate of the
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algorithm. This would require to calculate the true BER using Monte Carlo simulation at each

training sample k, which is computationally too demanding, if not impossible.

Example 1. This was a very simple two-user system with 2 chips per symbol. The code

sequences of the two users were (−1,−1) and (−1, +1), respectively, and the transfer function

of the CIR at chip rate was H(z) = 1.0 + 0.4z−1. The two users had equal signal power, that

is, the user 1 signal to noise ratio SNR1 was equal to SNR2 of user 2. The set R had 16 points,

but only 12 were distinct. This example was chosen to demonstrate that multiuser detection

can be considered as a classification problem, as a two-dimensional space can graphically be

illustrated. The system was so set up to ensure that R+ and R− were linearly separable and

hence a linear detector could work adequately. Fig. 2 displays R+ and R− for user 2 together

with the two decision boundaries of the linear MBER and optimal Bayesian detectors for a

SNR2 = 17 dB (corresponding to a user 2 signal to interference plus noise ratio of SINR2 =

−0.09 dB). The BERs of the linear MBER and optimal Bayesian detectors are depicted in Fig. 3

for user 2 given the range of SNR2 from 3 dB to 23 dB (SINR2 from -1.76 dB to -0.02 dB).

Given SNR2 = 17 dB, RBF detectors with 4 and 12 centers were trained by the LMS and

NLBER algorithms, respectively. The NLBER had ρ̄2 = 4σ2
n for both detectors, and µ0 = 0.2

for the 4-center RBF and µ0 = 0.25 for the 12-center RBF; while the LMS had µ0 = 0.1 for the

4-center RBF and µ0 = 0.3 for the 12-center RBF. These values were found empirically to be

appropriate. At each sample k, the estimated BER was calculated for a detector with w(k), and

this resulted in the learning rates, plotted in Fig. 4, for the respective detectors, where the results

were averaged over 100 runs. For the LMS training, the MSE for a detector with w(k) was also

calculated using a block of 100 test samples, and this produced the learning rates in terms of

the MSE given in Fig. 5, where again the results were averaged over 100 runs. The decision

boundary of a typical 4-center RBF detector trained by the NLBER algorithm is compared with

the optimal Bayesian boundary in Fig. 6.

The learning rates for the estimated BER given in Fig. 4 need some explanations. It was

found that the estimated BERs of the 4-center RBF detector with the LMS training varied greatly

for different runs. For some runs the estimated BERs were close to that obtained by the average

NLBER training (0.001), but for other runs the estimated BERs converged to 0.5. Examining

the resulting RBF detectors for the latter case, it was seen that the 4 centers all converged to
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near the original with a symmetric configuration. This is not surprising, since this configuration

can correspond to a small MSE and is consistent with the LMS criterion. In fact, there was on

average about 4 dB reduction in the MSE for the 4-center RBF detector trained by the LMS

algorithm. Similar situations occurred for the 12-center RBF detector with the LMS training,

and the averaged BER performance of the 12-center RBF trained by the LMS is poorer than that

obtained for the 4-center detector trained by the NLBER. Note that this was more fundamental

than “local minima problem”. In fact, examining the MSE learning rate for the 12-center RBF

trained by the LMS, it was seen that different runs produced consistent performance and on

average it had 11 dB reduction in the MSE. However, there was no direct link between the MSE

value and the BER. In comparison, the NLBER training was found to produce consistent BER

results in different runs, and the 12-center RBF detector with the NLBER training converged

consistently to the optimal Bayesian performance, in terms of BER.

The influence of the algorithm parameter ρ̄2 on the performance of the NLBER algorithm

was also investigated. Fig.7 shows the (true) BERs of the 4-center RBF detector after the

NLBER training with a range of ρ̄2, where it can be seen that the algorithm performance is not

overly sensitive to ρ̄2 over a large range of values. The (true) BERs of the 4-center RBF detector

after the NLBER training are depicted in Fig. 3. The (true) BERs of the 12-center RBF detector

after the NLBER training are not shown here, as they are indistinguishable from the optimal

performance. The 4-center RBF detector trained by the LMS did not work as the (true) BERs

produced were often 50%, even though the algorithm converged well in the MSE. The (true)

BERs of the 12-center RBF detector trained by the LMS algorithm, not shown here, were not

much better than those of the linear MBER detector.

Example 2. This was a 3-user system with 8 chips per symbol. The code sequences for

the three users were (+1, +1, +1, +1,−1,−1,−1,−1), (+1,−1, +1,−1,−1, +1,−1, +1) and

(+1,−1,−1, +1,−1, +1, +1,−1), respectively, and the transfer function of the CIR at chip

rate was H(z) = 0.8 + 0.6z−1 + 0.5z−2. The three users had equal signal power. Again a

linear separable situation was simulated. The detector for user 3 was considered, and the BERs

of the linear MBER and optimal detectors are displayed in Fig.8 for the range of SNR3 from

0 dB to 25 dB (SINR3 from -4.77 dB to -3.02 dB). The noise-free state set R had 64 points.

Given SNR3 = 15 dB (SINR3 = −3.08 dB), RBF detectors with 16 and 64 centers were
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trained by the LMS and NLBER algorithms, respectively. The NLBER had ρ̄2 = 1000σ2
n and

µ0 = 0.6 for the 16-center RBF, and ρ̄2 = 50σ2
n and µ0 = 0.1 for the 64-center RBF; while

the LMS had µ0 = 0.2 for the both RBF detectors. These values were found empirically to

be appropriate. The learning rates in terms of the estimated BER are plotted in Fig. 9 for the

respective detectors, where the results were averaged over 100 runs. For the LMS training, the

MSE convergence performance, averaged over 100 runs, are given in Fig. 10.

The NLBER algorithm produced consistent results and, in particular, the 64-center detector

was able to achieve the optimal performance in terms of BER. For the LMS training, the algo-

rithm converged very well in the MSE and there was an almost 30 dB reduction in the MSE, as

can be seen in Fig. 10. However, the BERs of the two detectors trained by the LMS algorithm

both approached to 0.5! In fact, averagely, the initial 16-center RBF detector had a BER= 0.2

and the initial 64-center RBF detector had a BER= 0.008. Yet, after training using the LMS,

both yielded almost 1 in 2 errors (not much better than a random guess). This clearly illustrates

the fact that a small MSE is not related to a small BER. As far as the LMS algorithm is con-

cerned, it does a good job in what it supposes to do: getting the MSE down. The true BERs

of the 16-center RBF detector after the NLBER training are compared with the optimal perfor-

mance in Fig. 8, where it can be seen that its performance is very close to the optimal Bayesian

detector of 64 states. The true BERs of the 64-center RBF detector trained by the NLBER, not

depicted here, are indistinguishable from the optimal performance.

Example 3. The system had 4 equal power users with 8 chips per symbol. The code sequences

for the four users were (+1, +1, +1, +1,−1,−1,−1,−1), (+1,−1, +1,−1,−1, +1,−1, +1),

(+1, +1,−1,−1,−1,−1, +1, +1) and (+1,−1,−1, +1,−1, +1, +1,−1), respectively, and the

transfer function of the CIR at chip rate was H(z) = 0.4 + 0.7z−1 + 0.4z−2. The detector for

user 2 was considered. For user 2, R(+) and R(−) are almost linearly inseparable, and a linear

detector has a relatively poor BER performance at low SNRs, as is shown in Fig. 11. The BERs

of the optimal Bayesian detector is also shown in Fig. 11, where the range of SNR2 from 10 dB

to 30 dB corresponds to the SINR2 from −4.91 dB to −4.77 dB. Note that in this example

the number of channel states Nb = 256, and the Bayesian detector is computationally very ex-

pensive. The performance of the 64-center RBF detector trained by the NLBER algorithm is

depicted in Fig. 11. It can be seen that the performance of this NLBER RBF detector is very
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close to the full optimal Bayesian performance. In the simulation it was again observed that the

same 64-center RBF detector under the identical conditions but trained by the LMS algorithm,

although converged well in the MSE, often resulted in BERs not much better than those of the

linear MBER detector.

4 Conclusions

Adaptive training based on the MER criterion has been considered for a class of neural network

classifiers that includes nonlinear equalizers and multiuser detectors. A main contribution of

this research has been the derivation of an adaptive near MER algorithm called the NLER for

this kind of applications. In the context of channel equalization and multiuser detection with

binary modulation schemes, this adaptive algorithm has been referred to as the NLBER. Our

approach has been motivated from a kernel density estimation of the error rate as a smooth

function of the training data and an adoption of stochastic gradient of the estimated error prob-

ability. This adaptive algorithm has been applied to downlink multiuser detection in CDMA

communication systems using a RBF network. Simulation results have demonstrated that the

NLBER algorithm performs consistently and the algorithm has a good convergence speed. A

small-size RBF detector trained by the NLBER algorithm can closely approximate the optimal

Bayesian detector. When the size of the RBF detector is similar to the Bayesian detector, the

optimal performance can be achieved. The results also demonstrate that the standard adaptive

algorithm, the LMS, may not be very relevant for training neural network classifiers, as the

underlying criterion of the LMS is the MSE not the error probability.
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[39] Verdú, S. (1998). Multiuser Detection. Cambridge, U.K.: Cambridge University Press.

[40] Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (1993). Nonlinear Programming: Theory

and Algorithms. New York: John Wiley.

[41] Vaidyanathan, P.P. (1993). Multirate Systems and Filter Banks. Englewood Cliffs, NJ:

Prentice Hall.
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Figure 1: Discrete-time model of synchronous CDMA downlink.
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Figure 2: The set of noise-free signal points and the two decision boundaries (dotted: linear
MBER, solid: optimal) for user 2 of Example 1. SNR1 =SNR2 = 17 dB.
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Figure 3: Performance comparison of three detectors for user 2 of Example 1. SNR1 =SNR2.
The adaptive RBF detector has 4 centers and is trained by the NLBER algorithm.
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Figure 4: Learning curves in terms of the estimated BER for user 2 of Example 1.
SNR1 =SNR2 = 17 dB. The results are averaged over 100 runs. 4-LMS: the 4-center RBF
trained by the LMS with µ0 = 0.1, 12-LMS: the 12-center RBF trained by the LMS with
µ0 = 0.3, 4-LBER: the 4-center RBF trained by the NLBER with µ0 = 0.2 and ρ̄2 = 4σ2
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Figure 8: Performance comparison of three detectors for user 3 of Example 2. SNRi, 1 ≤ i ≤ 3,
are identical. The adaptive RBF detector has 16 centers and is trained by the NLBER algorithm.
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Figure 9: Learning curves in terms of the estimated BER for user 3 of Example 2. SNRi =
15 dB, 1 ≤ i ≤ 3. The results are averaged over 100 runs. 16-LMS: the 16-center RBF trained
by the LMS with µ0 = 0.2, 64-LMS: the 64-center RBF trained by the LMS with µ0 = 0.2,
16-LBER: the 16-center RBF trained by the NLBER with µ0 = 0.6 and ρ̄2 = 1000σ2
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Figure 10: Learning curves in terms of the MSE for user 3 of Example 2. SNRi = 15 dB,
1 ≤ i ≤ 3. The results are averaged over 100 runs. 16-LMS: the 16-center RBF trained by the
LMS with µ0 = 0.2, and 64-LMS: the 64-center RBF trained by the LMS with µ0 = 0.2.
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