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Background

1 Complex-valued neural networks have been applied widely in
nonlinear signal processing and data processing

1 many good techniques for identifying CV nonlinear models
2 very few good techniques for inverting CV nonlinear models

2 Communication applications often involve complex-valued
signals propagating through CV Wiener systems, which require

modelling and inverting CV Wiener systems

3 Digital predistorter design for broadband systems employing
power-efficient nonlinear high power amplifier, which needs

1 Identifying CV Wiener system that represents nonlinear
HPA with memory

2 Pre inverting identified Wiener model to obtain predistorter
for compensating nonlinear HPA
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Our Approach

1 B-spline neural networks with De Boor algorithm offers effective
means of modelling Wiener systems

Best numerical properties, and computational efficiency

2 Our previous work has developed complex-valued B-spline
model for complex-valued Wiener systems

Tensor product between two sets of univariate B-spline
basis functions
Gauss-Newton algorithm with effective initialisation exploits
efficiency of De Boor recursion

3 In this work, we further develop efficient technique for inverting
complex-valued Wiener system with B-spline model

Gauss-Newton algorithm with efficient De Boor inverse

4 Our approach is applied to digital predistorter design
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Wiener System

CV Wiener system: cascade
of FIR filter of order L

H(z) =
L∑

i=0

hiz−i , h0 = 1

followed by nonlinear static
function Ψ(•) : C→ C

Ψ(.)H(z) Σ
x(k) y(k)

(k)ξ

y(k)^
H(z) Ψ(.)^^

−
Σ

e(k)

Specifically, given input x(k) ∈ C,

w(k) =
L∑

i=0

hix(k − i) and y(k) = Ψ (w(k)) + ξ(k)

output y(k) ∈ C, noise ξ(k) ∈ C with E
[
|ξR(k)|2

]
= E

[
|ξI(k)|2

]
= σ2

ξ

Task: given {x(k), y(k)}K
k=1, identify Ψ(•) and h =

[
h1 · · · hL

]T ∈ CL
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Real B-Spline
Set of B-spline basis functions on Umin < wR < Umax is parametrised by piecewise
polynomial of order Po − 1, and knot vector of (NR + Po + 1) knot values

1 (NR + Po + 1) knot values break wR -axis:

U0 < · · · < UPo−1 = Umin < UPo < · · · < UNR < UNR +1 = Umax < · · · < UNR +Po

2 NR B-spline basis functions B(<,Po)
q (wR), 1 ≤ q ≤ NR , by De Boor recursion

B(<,0)
q (wR) =


1, if Uq−1 ≤ wR < Uq ,
0, otherwise, 1 ≤ q ≤ NR + Po

B(<,p)
q (wR) =

wR − Uq−1

Up+q−1 − Uq−1
B(<,p−1)

q (wR) +
Up+q − wR

Up+q − Uq
B(<,p−1)

q+1 (wR)

for q = 1, · · · ,NR + Po − p and p = 1, · · · ,Po

3 Derivatives of B(<,Po)
q (wR), 1 ≤ q ≤ NR , also by De Boor recursion

dB(<,Po)
q (wR)

dwR
=

Po

UPo+q−1 − Uq−1
B(<,Po−1)

q (wR)−
Po

UPo+q − Uq
B(<,Po−1)

q+1 (wR)
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Imaginary B-Spline
Similarly, set of B-spline basis functions on Vmin < wI < Vmax is parametrised by
piecewise polynomial of order Po − 1, and knot vector of (NI + Po + 1) knot values

1 (NI + Po + 1) knot values break wI -axis:

V0 < · · · < VPo−1 = Vmin < VPo < · · · < VNI < VNI +1 = Vmax < · · · < VNI +Po

2 NI B-spline basis functions B(=,Po)
m (wI), 1 ≤ m ≤ NI , by De Boor recursion

B(=,0)
m (wI) =


1, if Vm−1 ≤ wI < Vm,
0, otherwise, 1 ≤ m ≤ NI + Po

B(=,p)
m (wI) =

wI − Vm−1

Vp+m−1 − Vm−1
B(=,p−1)

m (wI) +
Vp+m − wI

Vp+m − Vm
B(=,p−1)

m+1 (wI)

for m = 1, · · · ,NI + Po − p and p = 1, · · · ,Po

3 Derivatives of B(=,Po)
m (wI), 1 ≤ m ≤ NI , also by De Boor recursion

dB(=,Po)
m (wI)

dwI
=

Po

VPo+m−1 − Vm−1
B(=,Po−1)

m (wI)−
Po

VPo+m − Vm
B(=,Po−1)

m+1 (wI)



Introduction Identification of CV Wiener Systems Inverse of CV Wiener Systems Digital Predistorter Application Conclusions

Complex-Valued B-Spline

Form tensor product between B(<,Po)
q (wR), 1 ≤ q ≤ NR , and B(=,Po)

m (wI),

1 ≤ m ≤ NI , yields new set of B-spline basis functions B(Po)
q,m (w)

Give rise to complex-valued B-spline neural network

by = bΨ(w) =

NRX
q=1

NIX
m=1

B(Po)
q,m (w)ωl,m =

NRX
q=1

NIX
m=1

B(<,Po)
q (wR)B(=,Po)

m (wI)ωq,m

ωq,m = ωRq,m + jωIq,m ∈ C are complex-valued weights

Complex-valued B-spline model equals to two real-valued B-spline ones

byR =

NRX
q=1

NIX
m=1

B(<,Po)
q (wR)B(=,Po)

m (wI)ωRq,m

byI =

NRX
q=1

NIX
m=1

B(<,Po)
q (wR)B(=,Po)

m (wI)ωIq,m

Complexity of De Boor recursion is O(P2
o ), and thus complexity of CV B-spline

model is approximately 3 · O(P2
o )⇒ Po is very small
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Gauss-Newton Algorithm

1 With N = NRNI , ĥ = ĥR + jĥI as estimate of h = hR + jhI , and
ω = ωR + jωI , parameter vector of Wiener model is

θ =
[
θ1 · · · θ2(N+L)

]T
=
[
ωT

R ω
T
I ĥ

T
R ĥ

T
I
]T ∈ R2(N+L)

2 Minimise cost function JSSE(θ) = εTε, with e(k) = y(k)− ŷ(k),

ε = [ε1 · · · ε2K ]T = [eR(1) · · · eR(K ) eI(1) · · · eI(K )]T ∈ R2K

3 Gauss-Newton algorithm:

θ(τ) = θ(τ−1) − µ
((

J(τ))TJ(τ)
)−1(

J(τ))T
ε
(
θ(τ−1)

)
Jacobian J of ε(θ) can be evaluated efficiently with aid of
De Boor recursions for B-spline functions and derivatives

Biased LS estimates ĥ
(0)

and ω(0) can be quickly generated
for parameter initialisation θ(0)
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Hammerstein Model

ΣΨ(.)

Hammerstein system Wiener system

(a) Pre−Inverse

x(k) y(k)

ξ (k)

H(z)
x(k)

Wiener system Hammerstein system
(b) Post−Inverse

H(z)Ψ
−1

Ψ(.)

(k)ξ

y(k)
Σ

(.) H  (z)
−1v(k)

Ψ
−1
(.)

v(k) −1
H  (z)

Inverse of Wiener system is Hammerstein system, which consists of

Static nonlinearity Ψ−1(•) inverting static nonlinearity Ψ(•) in
Wiener system,

followed by linear filter H−1(z) inverting linear filter H(z) in
Wiener system
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Inverse of Static Nonlinearity Ψ(•)

Inverse of CV Wiener system’s static nonlinearity, defined by v(k) = Ψ−1(x(k)),
is identical to find complex-valued root of x(k) = Ψ(v(k)), given x(k)

Given identified bΨ(•), we have

bxR(k) =

NRX
q=1

NIX
m=1

B(<,Po)
q (vR(k))B(=,Po)

m (vI(k))ωRl,m

bxI(t) =

NRX
q=1

NIX
m=1

B(<,Po)
q (vR(k))B(=,Po)

m (vI(k))ωIl,m

Define ζ(k) = x(k)− bx(k) and cost function S(k) = ζ2
R(k) + ζ2

I (k)⇒ If
S(k) = 0, then v(k) is CV root of x(k) = bΨ(v(k))

With Umin < v (0)
R (k) < Umax, Vmin < v (0)

I (k) < Vmax, Gauss-Newton algorithm:"
v (τ)

R (k)

v (τ)
I (k)

#
=

"
v (τ−1)

R (k)

v (τ−1)
I (k)

#
− η
“`

J(τ)
v
´TJ(τ)

v

”−1`
J(τ)

v
´T

"
ζ

(τ−1)
R (k)

ζ
(τ−1)
I (k)

#

2× 2 Jacobian of ζ(k), Jv , can also be evaluated efficiently with aid of De Boor
recursions for B-spline functions and derivatives
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Inverse of Linear Filter

1 Given identified Wiener system’s linear filter

Ĥ(z) =
L∑

i=0

ĥiz−i

2 Hammerstein model’s linear filter

G(z) = z−ι ·
Lg∑

i=0

giz−i

3 can readily be obtained by solving set of linear equations

G(z) · Ĥ(z) = z−ι

4 Delay ι = 0 if H(z) is minimum phase, and g0 = 1 as h0 = 1
5 To guarantee accurate inverse, length of g = [g0 g1 · · · gLg ]T

should be three to four times of length of h
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Wiener Model for HPA

High power amplifier with memory is
widely modelled as CV Wiener system

CV input to HPA’s static nonlinearity
Ψ(•) is w(k) = r(k) · exp(jψ(k))

Output of HPA is expressed as

y(k) = A(r(k)) · exp(j(ψ(k) + Φ(r(k))))

Re

−3d

3d

Im
3d

d

−3d d−d

−d

16-QAM constellationM-QAM input x(k) to HPA

S = {d(2l −
√

M − 1) + jd(2q −
√

M − 1),1 ≤ l ,q ≤
√

M}

Amplitude and phase response of HPA’s static nonlinearity are

A(r) =

{
αar

1+βar2 , 0 ≤ r ≤ rsat,

Amax, r > rsat,
and Φ(r) =

αφr2

1 + βφr2

rsat: saturation input amplitude, Amax: saturation output amplitude
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A HPA Example

Operating status of HPA is specified by input back-off (IBO),

IBO = 10 · log10
Psat

Pavg

Parameters of Wiener HPA: h = [0.75 + j0.2 0.15 + j0.1 0.08 + j0.01]T and
t = [αa βa αφ βφ]T = [2.1587 1.15 4.0 2.1]T

(a) HPA’s input x(k), and (b) HPA’s output y(k), given IBO= 4 dB
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Wiener HPA Identification

B-spline model setting: piecewise cubic polynomial (Po = 4),
NR = NI = 8 with empirically determined knot sequence

{−12.0,−6.0,−2.0, − 1.2,−0.6,−0.3, 0.0, 0.3, 0.6, 1.2, 2.0, 6.0, 12.0}

Identification results for HPA’s linear filter part h

true parameter vector:
hT =

[
0.7500 + j0.2000 0.1500 + j0.1000 0.0800 + j0.0010

]
estimate under IBO= 0 dB:

ĥ
T

=
[
0.7502 + j0.1996 0.1499 + j0.0999 0.0800 + j0.0008

]
estimate under IBO= 4 dB:

ĥ
T

=
[
0.7502 + j0.2001 0.1501 + j0.1001 0.0800 + j0.0011

]
At IBO= 0 dB, HPA is heavily saturated
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Results for HPA’s Static Nonlinearity

(a) IBO= 0 dB
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(b) IBO= 4 dB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

A
m

pl
itu

de
 r

es
po

ns
e

Input amplitude

true
B-spline estimate

 0

 0.4

 0.8

 1.2

 1.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

P
ha

se
 r

es
po

ns
e

Input amplitude

true
B-spline estimate



Introduction Identification of CV Wiener Systems Inverse of CV Wiener Systems Digital Predistorter Application Conclusions

Predistorter Design

Length of predistorter’s inverse filter is set to Lg = 12.

Output of combined predistorter and HPA y(k), marked by ×,
for 16-QAM input signal x(k), marked by •
(a) IBO of 4 dB, and (b) IBO of 0 dB
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Mean Square Error

Mean square error metric

MSE = 10 log10

( 1
Ktest

Ktest∑
k=1

|x(k)− y(k)|2
)

with Ktest = 105 test samples
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Bit Error Rate

Output signal after HPA is transmitted over additive white Gaussian noise
channel to determine bit error rate at receiver

Channel signal to noise ratio: SNR = 10 log10
`
Eb
‹

No
´
, where Eb is energy per

bit, and No power of channel’s AWGN

(a) BER versus SNR, and (b) BER versus IBO for different SNR
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Summary

1 Identification of complex-valued Wiener systems

Tensor product of two univariate B-spline neural networks
to model Wiener system’s static nonlinearity
Efficient Gauss-Newton algorithm for parameter estimate
Naturally incorporate De Boor recursions for both B-spline
function values and derivatives

2 Accurate inverse of complex-valued Wiener systems

Inverse of complex-valued static nonlinearity is directly
calculated from estimated B-spline model
Efficient Gauss-Newton algorithm for this inverting
Naturally utilise De Boor recursions for both B-spline
function values and derivatives

3 Application to digital predistorter design for high power amplifiers
with memory has been demonstrated
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