Modelling and Inverting Complex-Valued Wiener Systems

Xia Honga, Sheng Chenb,c, Chris J. Harrisb

a School of Systems Engineering, University of Reading, Reading RG6 6AY, UK
x.hong@reading.ac.uk

b Electronics and Computer Science, Faculty of Physical and Applied Sciences, University of Southampton, Southampton SO17 1BJ, UK
sqc@ecs.soton.ac.uk cjh@ecs.soton.ac.uk

c Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

IEEE World Congress on Computational Intelligence
Brisbane Australia, June 10-15, 2012
Outline

1. Introduction
 - Motivations and Solutions

2. Identification of CV Wiener Systems
 - System Modelling
 - Identification Algorithm

3. Inverse of CV Wiener Systems
 - Inverse Algorithm

4. Digital Predistorter Application
 - High Power Amplifier
 - Digital Predistorter Solution

5. Conclusions
 - Concluding Remarks
Outline

1. Introduction
 - Motivations and Solutions

2. Identification of CV Wiener Systems
 - System Modelling
 - Identification Algorithm

3. Inverse of CV Wiener Systems
 - Inverse Algorithm

4. Digital Predistorter Application
 - High Power Amplifier
 - Digital Predistorter Solution

5. Conclusions
 - Concluding Remarks
Complex-valued neural networks have been applied widely in nonlinear signal processing and data processing:

1. many good techniques for identifying CV nonlinear models
2. very few good techniques for inverting CV nonlinear models

Communication applications often involve complex-valued signals propagating through CV Wiener systems, which require:

- modelling and inverting CV Wiener systems

Digital predistorter design for broadband systems employing power-efficient nonlinear high power amplifier, which needs:

1. Identifying CV Wiener system that represents nonlinear HPA with memory
2. Pre inverting identified Wiener model to obtain predistorter for compensating nonlinear HPA
Our Approach

1. **B-spline** neural networks with **De Boor** algorithm offers effective means of modelling Wiener systems
 - Best numerical properties, and computational efficiency

2. Our previous work has developed **complex-valued** B-spline model for complex-valued Wiener systems
 - **Tensor product** between two sets of univariate B-spline basis functions
 - Gauss-Newton algorithm with effective initialisation exploits efficiency of De Boor recursion

3. In this work, we further develop efficient technique for **inverting** complex-valued Wiener system with B-spline model
 - Gauss-Newton algorithm with efficient De Boor inverse

4. Our approach is applied to digital **predistorter** design
Outline

1. Introduction
 - Motivations and Solutions

2. Identification of CV Wiener Systems
 - System Modelling
 - Identification Algorithm

3. Inverse of CV Wiener Systems
 - Inverse Algorithm

4. Digital Predistorter Application
 - High Power Amplifier
 - Digital Predistorter Solution

5. Conclusions
 - Concluding Remarks
Wiener System

CV Wiener system: cascade of FIR filter of order L

$$H(z) = \sum_{i=0}^{L} h_i z^{-i}, \quad h_0 = 1$$

followed by nonlinear static function $\psi(\bullet) : \mathbb{C} \to \mathbb{C}$

Specifically, given input $x(k) \in \mathbb{C}$,

$$w(k) = \sum_{i=0}^{L} h_i x(k-i) \quad \text{and} \quad y(k) = \psi(w(k)) + \xi(k)$$

output $y(k) \in \mathbb{C}$, noise $\xi(k) \in \mathbb{C}$ with $E[|\xi_R(k)|^2] = E[|\xi_I(k)|^2] = \sigma_\xi^2$

Task: given $\{x(k), y(k)\}_{k=1}^{K}$, identify $\psi(\bullet)$ and $h = [h_1 \cdots h_L]^T \in \mathbb{C}^L$
Real B-Spline

Set of B-spline basis functions on $U_{\text{min}} < w_R < U_{\text{max}}$ is parametrised by piecewise polynomial of order $P_o - 1$, and knot vector of $(N_R + P_o + 1)$ knot values

1. $(N_R + P_o + 1)$ knot values break w_R-axis:

 $$U_0 < \ldots < U_{P_o-1} = U_{\text{min}} < U_P < \ldots < U_{N_R} < U_{N_R+1} = U_{\text{max}} < \ldots < U_{N_R+P_o}$$

2. N_R B-spline basis functions $B_q^{(\mathcal{R}, P_o)}(w_R), 1 \leq q \leq N_R$, by De Boor recursion

 $$B_q^{(\mathcal{R}, 0)}(w_R) = \begin{cases} 1, & \text{if } U_{q-1} \leq w_R < U_q, \\ 0, & \text{otherwise,} \end{cases} 1 \leq q \leq N_R + P_o$$

 $$B_q^{(\mathcal{R}, p)}(w_R) = \frac{w_R - U_{q-1}}{U_{p+q-1} - U_{q-1}} B_q^{(\mathcal{R}, p-1)}(w_R) + \frac{U_{p+q} - w_R}{U_{p+q} - U_q} B_{q+1}^{(\mathcal{R}, p-1)}(w_R)$$

 for $q = 1, \ldots, N_R + P_o - p$ and $p = 1, \ldots, P_o$

3. Derivatives of $B_q^{(\mathcal{R}, P_o)}(w_R), 1 \leq q \leq N_R$, also by De Boor recursion

 $$\frac{dB_q^{(\mathcal{R}, P_o)}(w_R)}{dw_R} = \frac{P_o}{U_{P_o+q-1} - U_{q-1}} B_q^{(\mathcal{R}, P_o-1)}(w_R) - \frac{P_o}{U_{P_o+q} - U_q} B_{q+1}^{(\mathcal{R}, P_o-1)}(w_R)$$
Imaginary B-Spline

Similarly, set of B-spline basis functions on $V_{min} < w_I < V_{max}$ is parametrised by piecewise polynomial of order $P_o - 1$, and knot vector of $(N_I + P_o + 1)$ knot values

1. $(N_I + P_o + 1)$ knot values break w_I-axis:

$$V_0 < \cdots < V_{P_o-1} = V_{min} < V_P < \cdots < V_{N_I} < V_{N_I+1} = V_{max} < \cdots < V_{N_I+P_o}$$

2. N_I B-spline basis functions $B_{m}^{(\xi,P_o)}(w_I)$, $1 \leq m \leq N_I$, by De Boor recursion

$$B_{m}^{(\xi,0)}(w_I) = \begin{cases} 1, & \text{if } V_{m-1} \leq w_I < V_{m}, \\ 0, & \text{otherwise,} \end{cases} \quad 1 \leq m \leq N_I + P_o$$

$$B_{m}^{(\xi,p)}(w_I) = \frac{w_I - V_{m-1}}{V_{p+m-1} - V_{m-1}} B_{m}^{(\xi,p-1)}(w_I) + \frac{V_{p+m} - w_I}{V_{p+m} - V_{m}} B_{m+1}^{(\xi,p-1)}(w_I)$$

for $m = 1, \cdots, N_I + P_o - p$ and $p = 1, \cdots, P_o$

3. Derivatives of $B_{m}^{(\xi,P_o)}(w_I)$, $1 \leq m \leq N_I$, also by De Boor recursion

$$\frac{dB_{m}^{(\xi,P_o)}(w_I)}{dw_I} = \frac{P_o}{V_{P_o+m-1} - V_{m-1}} B_{m}^{(\xi,P_o-1)}(w_I) - \frac{P_o}{V_{P_o+m} - V_{m}} B_{m+1}^{(\xi,P_o-1)}(w_I)$$
Complex-Valued B-Spline

- Form **tensor product** between \(B_{q}^{(\mathbb{R}, P_{o})}(w_{R}) \), \(1 \leq q \leq N_{R} \), and \(B_{m}^{(\mathbb{I}, P_{o})}(w_{I}) \), \(1 \leq m \leq N_{I} \), yields new set of B-spline basis functions \(B_{q,m}^{(P_{o})}(w) \)

- Give rise to **complex-valued** B-spline neural network

\[
\hat{y} = \hat{\psi}(w) = \sum_{q=1}^{N_{R}} \sum_{m=1}^{N_{I}} B_{q,m}^{(P_{o})}(w)\omega_{l,m} = \sum_{q=1}^{N_{R}} \sum_{m=1}^{N_{I}} B_{q}^{(\mathbb{R}, P_{o})}(w_{R})B_{m}^{(\mathbb{I}, P_{o})}(w_{I})\omega_{q,m}
\]

- \(\omega_{q,m} = \omega_{R_{q,m}} + j\omega_{l_{q,m}} \in \mathbb{C} \) are complex-valued **weights**

- Complex-valued B-spline model equals to two real-valued B-spline ones

\[
\hat{y}_{R} = \sum_{q=1}^{N_{R}} \sum_{m=1}^{N_{I}} B_{q}^{(\mathbb{R}, P_{o})}(w_{R})B_{m}^{(\mathbb{I}, P_{o})}(w_{I})\omega_{R_{q,m}}
\]

\[
\hat{y}_{I} = \sum_{q=1}^{N_{R}} \sum_{m=1}^{N_{I}} B_{q}^{(\mathbb{R}, P_{o})}(w_{R})B_{m}^{(\mathbb{I}, P_{o})}(w_{I})\omega_{l_{q,m}}
\]

- Complexity of De Boor recursion is \(\mathcal{O}(P_{o}^{2}) \), and thus complexity of CV B-spline model is approximately \(3 \cdot \mathcal{O}(P_{o}^{2}) \Rightarrow P_{o} \text{ is very small} \)
Outline

1. Introduction
 - Motivations and Solutions

2. Identification of CV Wiener Systems
 - System Modelling
 - Identification Algorithm

3. Inverse of CV Wiener Systems
 - Inverse Algorithm

4. Digital Predistorter Application
 - High Power Amplifier
 - Digital Predistorter Solution

5. Conclusions
 - Concluding Remarks
Gauss-Newton Algorithm

1. With $N = N_R N_I$, $\hat{\mathbf{h}} = \hat{\mathbf{h}}_R + j\hat{\mathbf{h}}_I$ as estimate of $\mathbf{h} = \mathbf{h}_R + j\mathbf{h}_I$, and $\mathbf{\omega} = \mathbf{\omega}_R + j\mathbf{\omega}_I$, **parameter vector** of Wiener model is

 $$\theta = \begin{bmatrix} \theta_1 & \cdots & \theta_{2(N+L)} \end{bmatrix}^T = \begin{bmatrix} \mathbf{\omega}_R^T & \mathbf{\omega}_I^T & \hat{\mathbf{h}}_R^T & \hat{\mathbf{h}}_I^T \end{bmatrix}^T \in \mathbb{R}^{2(N+L)}$$

2. Minimise **cost function** $J_{\text{SSE}}(\theta) = \mathbf{\varepsilon}^T \mathbf{\varepsilon}$, with $e(k) = y(k) - \hat{y}(k)$,

 $$\mathbf{\varepsilon} = [\varepsilon_1 \cdots \varepsilon_{2K}]^T = [e_R(1) \cdots e_R(K) e_I(1) \cdots e_I(K)]^T \in \mathbb{R}^{2K}$$

3. **Gauss-Newton** algorithm:

 $$\mathbf{\theta}^{(\tau)} = \mathbf{\theta}^{(\tau-1)} - \mu \left((\mathbf{J}^{(\tau)})^T \mathbf{J}^{(\tau)} \right)^{-1} (\mathbf{J}^{(\tau)})^T \mathbf{\varepsilon}(\mathbf{\theta}^{(\tau-1)})$$

 - **Jacobian** \mathbf{J} of $\mathbf{\varepsilon}(\mathbf{\theta})$ can be evaluated efficiently with aid of De Boor recursions for B-spline functions and derivatives
 - Biased LS estimates $\hat{\mathbf{h}}^{(0)}$ and $\mathbf{\omega}^{(0)}$ can be quickly generated for parameter **initialisation** $\mathbf{\theta}^{(0)}$
Outline

1. Introduction
 - Motivations and Solutions

2. Identification of CV Wiener Systems
 - System Modelling
 - Identification Algorithm

3. Inverse of CV Wiener Systems
 - Inverse Algorithm

4. Digital Predistorter Application
 - High Power Amplifier
 - Digital Predistorter Solution

5. Conclusions
 - Concluding Remarks
Inverse of Wiener system is **Hammerstein** system, which consists of

- **Static nonlinearity** $\Psi^{-1}(\bullet)$ inverting static nonlinearity $\Psi(\bullet)$ in Wiener system,
- followed by **linear filter** $H^{-1}(z)$ inverting linear filter $H(z)$ in Wiener system
Inverse of Static Nonlinearity $\Psi(\bullet)$

- **Inverse** of CV Wiener system’s static nonlinearity, defined by $v(k) = \Psi^{-1}(x(k))$, is identical to find complex-valued root of $x(k) = \Psi(v(k))$, given $x(k)$
- Given identified $\widehat{\Psi}(\bullet)$, we have

$$
\widehat{x}_R(k) = \sum_{q=1}^{N_R} \sum_{m=1}^{N_I} B_q^{(\Re, P_0)}(v_R(k)) B_m^{(\Im, P_0)}(v_I(k)) \omega_{R_{l,m}} \\
\widehat{x}_I(t) = \sum_{q=1}^{N_R} \sum_{m=1}^{N_I} B_q^{(\Re, P_0)}(v_R(k)) B_m^{(\Im, P_0)}(v_I(k)) \omega_{I_{l,m}}
$$
- Define $\zeta(k) = x(k) - \widehat{x}(k)$ and **cost function** $S(k) = \zeta_R^2(k) + \zeta_I^2(k) \Rightarrow$ If $S(k) = 0$, then $v(k)$ is CV root of $x(k) = \widehat{\Psi}(v(k))$
- With $U_{\min} < v_R^{(0)}(k) < U_{\max}, V_{\min} < v_I^{(0)}(k) < V_{\max}$, **Gauss-Newton** algorithm:

$$
\begin{bmatrix}
 v_R^{(\tau)}(k) \\
 v_I^{(\tau)}(k)
\end{bmatrix} =
\begin{bmatrix}
 v_R^{(\tau-1)}(k) \\
 v_I^{(\tau-1)}(k)
\end{bmatrix} - \eta \left((J_v^{(\tau)})^T J_v^{(\tau)} \right)^{-1} (J_v^{(\tau)})^T
\begin{bmatrix}
 \zeta_R^{(\tau-1)}(k) \\
 \zeta_I^{(\tau-1)}(k)
\end{bmatrix}
$$
- 2×2 **Jacobian** of $\zeta(k), J_v$, can also be evaluated efficiently with aid of De Boor recursions for B-spline functions and derivatives
Inverse of Linear Filter

1. Given identified **Wiener** system’s linear filter

 \[\hat{H}(z) = \sum_{i=0}^{L} \hat{h}_i z^{-i} \]

2. **Hammerstein** model’s linear filter

 \[G(z) = z^{-\iota} \cdot \sum_{i=0}^{L_g} g_i z^{-i} \]

3. can readily be obtained by solving set of linear equations

 \[G(z) \cdot \hat{H}(z) = z^{-\iota} \]

4. Delay \(\iota = 0 \) if \(H(z) \) is minimum phase, and \(g_0 = 1 \) as \(h_0 = 1 \)

5. To guarantee accurate inverse, length of \(g = [g_0 \ g_1 \ \cdots \ g_{L_g}]^T \) should be three to four times of length of \(h \)
Introduction
Identification of CV Wiener Systems
Inverse of CV Wiener Systems
Digital Predistorter Application
Conclusions

Wiener Model for HPA

- High power amplifier with memory is widely modelled as CV Wiener system
- CV input to HPA’s static nonlinearity $\psi(\bullet) = w(k) = r(k) \cdot \exp(j\psi(k))$
- Output of HPA is expressed as
 $$y(k) = A(r(k)) \cdot \exp(j(\psi(k) + \Phi(r(k))))$$
- M-QAM input $x(k)$ to HPA
 $$\mathbb{S} = \{d(2l - \sqrt{M} - 1) + jd(2q - \sqrt{M} - 1), 1 \leq l, q \leq \sqrt{M}\}$$
- Amplitude and phase response of HPA’s static nonlinearity are
 $$A(r) = \begin{cases} \frac{\alpha ar}{1+\beta ar^2}, & 0 \leq r \leq r_{\text{sat}}, \\ A_{\text{max}}, & r > r_{\text{sat}}, \end{cases} \quad \text{and} \quad \Phi(r) = \frac{\alpha_{\phi} r^2}{1 + \beta_{\phi} r^2}$$
- r_{sat}: saturation input amplitude, A_{max}: saturation output amplitude
A HPA Example

- Operating status of HPA is specified by **input back-off** (IBO),
 \[\text{IBO} = 10 \cdot \log_{10} \frac{P_{\text{sat}}}{P_{\text{avg}}} \]

- **Parameters** of Wiener HPA: \(h = [0.75 + j0.2 \ 0.15 + j0.1 \ 0.08 + j0.01]^T \) and \(t = [\alpha_a \ \beta_a \ \alpha_\phi \ \beta_\phi]^T = [2.1587 \ 1.15 \ 4.0 \ 2.1]^T \)

- (a) HPA’s input \(x(k) \), and (b) HPA’s output \(y(k) \), given IBO = 4 dB

![Graphs showing input and output of HPA with specified parameters and IBO](image)
Outline

1. Introduction
 - Motivations and Solutions

2. Identification of CV Wiener Systems
 - System Modelling
 - Identification Algorithm

3. Inverse of CV Wiener Systems
 - Inverse Algorithm

4. Digital Predistorter Application
 - High Power Amplifier
 - Digital Predistorter Solution

5. Conclusions
 - Concluding Remarks
Wiener HPA Identification

- B-spline model setting: piecewise cubic polynomial \((P_o = 4)\), \(N_R = N_I = 8\) with empirically determined knot sequence

\[
\{-12.0, -6.0, -2.0, -1.2, -0.6, -0.3, 0.0, 0.3, 0.6, 1.2, 2.0, 6.0, 12.0\}
\]

- Identification results for HPA’s linear filter part \(h\)

<table>
<thead>
<tr>
<th>true parameter vector:</th>
<th>estimate under IBO= 0 dB:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h^T = [0.7500 + j0.2000\ 0.1500 + j0.1000\ 0.0800 + j0.0010])</td>
<td>(\hat{h}^T = [0.7502 + j0.1996\ 0.1499 + j0.0999\ 0.0800 + j0.0008])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>estimate under IBO= 4 dB:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{h}^T = [0.7502 + j0.2001\ 0.1501 + j0.1001\ 0.0800 + j0.0011])</td>
</tr>
</tbody>
</table>

- At IBO= 0 dB, HPA is heavily saturated
Results for HPA’s Static Nonlinearity

(a) IBO = 0 dB

(b) IBO = 4 dB
Length of predistorter’s **inverse filter** is set to $L_g = 12$.

Output of **combined** predistorter and HPA $y(k)$, marked by \times, for 16-QAM input signal $x(k)$, marked by \bullet

(a) IBO of 4 dB, and (b) IBO of 0 dB
Mean Square Error

- **Mean square error** metric

\[
\text{MSE} = 10 \log_{10} \left(\frac{1}{K_{\text{test}}} \sum_{k=1}^{K_{\text{test}}} |x(k) - y(k)|^2 \right)
\]

with \(K_{\text{test}} = 10^5 \) test samples
Bit Error Rate

- Output signal after HPA is transmitted over additive white Gaussian noise channel to determine bit error rate at receiver.
- Channel signal to noise ratio: $\text{SNR} = 10 \log_{10} \left(\frac{E_b}{N_0} \right)$, where E_b is energy per bit, and N_0 power of channel’s AWGN.
- (a) BER versus SNR, and (b) BER versus IBO for different SNR.

![Graph showing Bit Error Rate vs. Eb/No and IBO for different SNR levels.](image)
Outline

1. Introduction
 - Motivations and Solutions

2. Identification of CV Wiener Systems
 - System Modelling
 - Identification Algorithm

3. Inverse of CV Wiener Systems
 - Inverse Algorithm

4. Digital Predistorter Application
 - High Power Amplifier
 - Digital Predistorter Solution

5. Conclusions
 - Concluding Remarks
Summary

1. Identification of complex-valued Wiener systems
 - Tensor product of two univariate B-spline neural networks to model Wiener system’s static nonlinearity
 - Efficient Gauss-Newton algorithm for parameter estimate
 - Naturally incorporate De Boor recursions for both B-spline function values and derivatives

2. Accurate inverse of complex-valued Wiener systems
 - Inverse of complex-valued static nonlinearity is directly calculated from estimated B-spline model
 - Efficient Gauss-Newton algorithm for this inverting
 - Naturally utilise De Boor recursions for both B-spline function values and derivatives

3. Application to digital predistorter design for high power amplifiers with memory has been demonstrated