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Abstract— Semi-blind spatial equalisation is considered for
multiple-input multiple-output (MIMO) systems that employ
high-throughput quadrature amplitude modulation scheme. A
minimum number of training symbols, equal to the number of
transmitters, are first utilised to provide a rough least squares
channel estimate of the system’s MIMO channel matrix for the
initialisation of the spatial equalisers’ weight vectors. A constant
modulus algorithm aided soft decision-directed blind algorithm
is then employed to adapt the spatial equalisers. This semi-
blind scheme has a very-low computational complexity, and
it converges fast to the minimum mean-square-error spatial
equalisation solution as demonstrated in our simulation study.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technologies are capa-
ble of substantially improving the achievable system’s capacity
and/or quality of service [1], [2], [3], [4]. The system’s ability
to approach the MIMO capacity heavily relies on the channel
state information. Accurately estimating a MIMO channel
is much more challenging than its single-input single-output
(SISO) counterpart. The various MIMO channel estimation
methods can be classified into three categories: training-
based methods, blind methods and semi-blind methods. Pure
training-based schemes are computationally less demanding
but a high proportion of training symbols is required in
order to obtain a reliable MIMO channel estimate, which
considerably reduces the achievable system throughput. The
family of blind methods for joint channel estimation and data
detection does not require training symbols and hence does
not reduce the achievable system throughput, although this
is achieved at the expense of high computational complexity.
Moreover, blind joint channel estimation and data detection
results in unavoidable estimation and decision ambiguities [5],
and these ambiguities must be resolved by other means. Semi-
blind schemes do not suffer from this ambiguity problem and
are computationally simpler than their blind counterparts, at
the cost of requiring a few training symbols.
Many semi-blind methods have been developed for MIMO
systems. In the schemes of [6], [7], [8], [9], a few training
symbols are used to provide an initial MIMO channel esti-
mate, and the channel estimator as well as the data detector
iteratively exchange their information, where the channel
estimator relies on decision-directed adaptation. In [10], the
MIMO channel matrix is decomposed into the product of a
whitening matrix and a rotational unitary matrix. The first

matrix is estimated blindly while the second is estimated with
the aid of training symbols. In contrast to these proposals,
recently we have proposed a novel semi-blind scheme for
joint maximum likelihood (ML) channel estimation and data
detection [11], where the joint ML channel and data esti-
mation optimisation process is decomposed into two levels.
At the upper level a global optimisation algorithm searches
for an optimal channel estimate, while at the lower level a
ML data detector recovers the transmitted data. Joint ML
channel estimation and data detection is achieved by iteratively
exchanging information between the channel estimator and
the data detector. A minimum number of training symbols,
equal to the number of transmitters, are used to provide an
initial least squares channel estimate (LSCE) [12] for aiding
the upper level channel estimator to improve convergence. The
employment of a minimum training overhead has an additional
benefit in terms of avoiding the ambiguities inherent in pure
blind joint channel estimation and data detection.
In the above-mentioned semi-blind methods, the data detector
is typically based on the ML detection principle. These semi-
blind joint ML schemes are attractive because they are capa-
ble of approaching the optimal joint ML solution. However,
for MIMO systems that employ high-throughput quadrature
amplitude modulation (QAM) [13], these schemes become
computationally prohibitive owe to the high complexity of ML
data detection. Instead of performing joint channel estimation
and data detection, we consider direct spatial filtering or
equalisation for MIMO systems that employ high-order QAM
schemes. The proposed method is semi-blind as we employ a
minimum number of pilots to estimate the MIMO channel
matrix via the LSCE. The resulting LSCE is used to ini-
tialise the weight vectors of the spatial equalisers. In general,
this initialisation is not sufficiently accurate to achieve “eye
opening”, and therefore it is not safe to carry out decision-
directed (DD) adaptation for the spatial equalisers. We propose
to use a constant modulus algorithm (CMA) assisted soft DD
(SDD) blind adaptive algorithm to adapt the spatial equalisers.
The concurrent CMA and SDD algorithm was originally
derived for blind equalisation of single-input single-output
(SISO) QAM systems [14], and it was extended to single-
input multiple-output (SIMO) systems in [15]. This blind
adaptive scheme has a very low computational complexity. In
the present MIMO application, owing to the initial information
provided by the training pilots, the algorithm converges much
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faster than the pure blind adaptation case, and it is capable
of approaching the performance of the minimum mean square
error (MMSE) spatial equalisers based on the perfect channel
knowledge, as will be shown in our simulation study.
To the best of our knowledge, this is the first time that a very
low-complexity stochastic gradient adaptive semi-blind spatial
equalisation scheme is proposed for MIMO-aided high-order
QAM schemes. Recently, we have found one journal paper
[16] in which the authors propose to adapt the spatial equaliser
by minimising the combined cost function of the training-
based sum of the squared errors and a higher-order statistic
(HOS) aided criterion using a block-data based gradient algo-
rithm. In terms of computational requirements, the complexity
of the block-data based algorithm in [16] is significantly higher
than that of our proposed stochastic gradient algorithm. In
terms of the achievable equalisation performance, our simpler
stochastic gradient scheme actually outperforms the more
complex block-data based gradient scheme of [16]. This is
because the blind adaptive process in the semi-blind scheme
of [16] is based on the HOS (e.g. CMA) criterion, while our
blind adaptive process is based on the HOS (CMA) aided
SDD criterion. The latter can approach the optimal MMSE
solution more accurately and achieve a faster convergence, as
a benefit of the fact that SDD adaptation is more like the true
training. Furthermore, in [16] the authors make an unnecessary
assumption of the known MIMO channel matrix1.
Throughout our discussions we adopt the following notational
conventions. Boldface capitals and lower-case letters stand for
matrices and vectors, respectively, while IK denotes the K×K
identity matrix. Furthermore, (•)T and (•)H are the transpose
and Hermitian operators, respectively, while ‖ • ‖ and | • |
denote the norm and magnitude operators, respectively. E [•]
is the expectation operator, while (•)∗ denotes the complex
conjugate. Finally, j =

√−1.

II. SYSTEM MODEL

We consider a MIMO system consisting of nT transmitters and
nR receivers, which communicates over flat fading channels.
The system is described by the well-known MIMO model

x(k) = Hs(k) + n(k), (1)

where k is the symbol index, H denotes the nR × nT

MIMO channel matrix, s(k) = [s1(k) s2(k) · · · snT
(k)]T is

the transmitted symbols vector of the nT transmitters with the
symbol energy given by E

[|sm(k)|2] = σ2
s for 1 ≤ m ≤ nT ,

x(k) = [x1(k) x2(k) · · ·xnR
(k)]T denotes the received signal

vector, and n(k) = [n1(k) n2(k) · · ·nnR
(k)]T is the complex-

valued Gaussian white noise vector associated with the MIMO
channels with E

[
n(k)nH(k)

]
= 2σ2

nInR
. We assume that

nT ≤ nR and the channels are non-dispersive. Frequency
selective channels can be made narrowband using for example
the orthogonal frequency division multiplexing technique [17].

1If the MIMO channel matrix were known, the MMSE spatial equaliser
could be designed directly and there would be no need for any semi-blind
adaptation.

Specifically, the narrowband MIMO channel matrix is defined
by H = [hl,m], for 1 ≤ l ≤ nR and 1 ≤ m ≤ nT ,
where hl,m denotes the non-dispersive channel coefficient
linking the m-th transmitter to the l-th receiver. Moreover, the
fading is assumed to be sufficiently slow, so that during the
time period of a transmission block or frame, all the channel
impulse response (CIR) taps hl,m in the MIMO channel matrix
H may be deemed unchanged. From frame to frame, the
CIR taps hl,m are independently and identically distributed
(i.i.d.) complex-valued Gaussian processes with zero mean and
E

[|hl,m|2] = 1. The modulation scheme is the M -QAM and,
therefore, the transmitted data symbols sm(k), 1 ≤ m ≤ nT ,
take the values from the M -QAM symbol set

S �
= {si,q = ui + juq, 1 ≤ i, q ≤

√
M} (2)

with the real-part symbol �[si,q] = ui = 2i − √
M − 1 and

the imaginary-part symbol �[si,q] = uq = 2q−√
M − 1. The

average signal-to-noise ratio (SNR) is defined by

SNR = nT × σ2
s/2σ2

n. (3)

A bank of the spatial filters or equalisers

ym(k) = wH
mx(k), 1 ≤ m ≤ nT , (4)

are used to detect the transmitted symbols sm(k) for 1 ≤ m ≤
nT , where wm is the nR × 1 complex-valued weight vector
of the m-th spatial equaliser.

III. THE PROPOSED SEMI-BLIND ALGORITHM

Let the number of training symbols be K, and denote the
available training data as XK = [x(1) x(2) · · ·x(K)] and
SK = [s(1) s(2) · · · s(K)]. The LSCE of the MIMO channel
matrix H based on {SK ,XK} is readily given as

Ĥ = XKSH
K

(
SKSH

K

)−1
. (5)

As a byproduct of the LSCE (5), an estimated noise variance
is also produced as 2σ̂2

n = 1
K·nR

‖XK − ĤSK‖2. In order to
maintain throughput, the number of training pilots should be
as small as possible. A necessary condition for SKSH

K to have
full rank is K ≥ nT . We will assume a minimum number of
training symbols, namely K = nT . The rough LSCE Ĥ is
utilised to provide the initialisation of the spatial equalisers’
weight vectors via the MMSE solutions

wm(0) =
(
ĤĤH +

2σ̂2
n

σ2
s

InR

)−1

ĥm, 1 ≤ m ≤ nT , (6)

where ĥm denotes the m-th column of Ĥ. Because the training
data are insufficient, the weight vectors (6) are not sufficiently
accurate to open the eye. Therefore, DD adaptation is generally
unsafe. However, we can apply the concurrent CMA and SDD
blind scheme [14], [15] to adapt the spatial filters (4) with
wm(0) of (6) as their initial weight vectors. Let the weight
vector of the m-th spatial equaliser be split into two parts,
yielding wm = wm,c +wm,d. The initial wm,c and wm,d can
simply be set to wm,c(0) = wm,d(0) = 0.5wm(0). Denote the
spatial equaliser’s output at sample k as ym(k) = wH

m(k)x(k).
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Fig. 1. Illustration of local decision regions for the soft decision-directed
adaptation procedure for QAM constellation.

Specifically the weight vector wm,c is updated using the
classical CMA [18], [19]

εm(k) = ym(k)
(
∆ − |ym(k)|2) ,

wm,c(k + 1) = wm,c(k) + µCMAε∗m(k)x(k),

}
(7)

where ∆ = E
[|si(k)|4] /E

[|si(k)|2] and µCMA is the step
size of the CMA. The weight vector wm,d by contrast is
updated using the SDD scheme [14], [15], which has its root in
the blind scheme of [20]. The complex phasor plane is divided
into the M/4 rectangular regions, as illustrated in Fig. 1. Each
region Si,l = {sp,q, p = 2i−1, 2i, q = 2l−1, 2l} contains four
symbol points. If the spatial equaliser’s output ym(k) ∈ Si,l,
a local approximation of the marginal probability density
function (PDF) of ym(k) is given by [14], [15]

p̂(wm, ym(k)) ≈
2i∑

p=2i−1

2l∑
q=2l−1

1
8πρ

e−
|ym(k)−sp,q|2

2ρ , (8)

where ρ defines the cluster width associated with the four
clusters of each region Si,l. The SDD algorithm is de-
signed to maximise the log of the local marginal PDF cri-
terion E[JLMAP(wm, ym(k))], where JLMAP(wm, y(k)m) =
ρ log (p̂(wm, ym(k))), via a stochastic gradient optimisation.
Specifically, wm,d is updated according to

wm,d(k + 1) = wm,d(k) + µSDD
∂JLMAP(wm(k), ym(k))

∂wm,d
,

(9)
where µSDD is the step size of the SDD, and

∂JLMAP(wm, ym(k))
∂wm,d

=

1
ZN

2i∑
p=2i−1

2l∑
q=2l−1

e−
|ym(k)−sp,q|2

2ρ (sp,q − ym(k))∗x(k), (10)

TABLE I

THE SIMULATED STATIONARY 4 × 4 MIMO SYSTEM

−1.377 − 0.600j 0.474 + 1.105j 0.370 − 0.775j −0.569 − 0.298j
1.700 − 0.290j 1.346 − 0.348j −0.130 − 1.413j −0.532 − 0.494j
1.027 + 0.466j −0.580 + 0.833j −0.586 − 0.231j −0.340 + 0.184j
1.352 − 1.313j −0.678 + 0.968j 0.874 − 0.338j −0.128 + 0.659j

with the normalisation factor

ZN =
2i∑

p=2i−1

2l∑
q=2l−1

e−
|ym(k)−sp,q|2

2ρ . (11)

The choice of ρ, defined in the context of local PDF (8), should
ensure a proper separation of the four clusters of Si,l. As the
minimum distance between the two neighbouring constellation
points is 2, ρ is typically chosen to be less than 1. More
specifically, when the equalisation objective is accomplished,
ym(k) ≈ sm(k)+em(k), where em(k) is Gaussian distributed
with zero mean. Therefore, the value of ρ is related to the
variance of em(k), which is 2σ2

nwH
mwm. Thus, for high SNR

situations, small ρ is desired, while for low SNR cases, large
ρ is preferred. Soft decision nature becomes explicit in (10),
because rather than committing to a single hard decision
Q[ym(k)], where Q[•] denote the quantisation operator, as
the hard DD scheme would, alternative decisions are also
considered in the local region Si,l that includes Q[ym(k)],
and each tentative decision is weighted by an exponential
term e{•}, which is a function of the distance between the
equaliser’s soft output ym(k) and the tentative decision sp,q .
This soft decision nature substantially reduces the risk of error
propagation and achieves faster convergence, compared with
the hard DD scheme [14], [15].

IV. SIMULATION STUDY

The achievable performance was assessed in the simulation
using the symbol error rate (SER). The analytical SER for the
spatial equaliser (4) is given in [21].
Stationary MIMO system. We considered a fixed MIMO
system with nT = 4 and nR = 4, and the modulation scheme
was 16-QAM. The simulated stationary 4× 4 MIMO channel
matrix H is listed in Table I. The number of pilot symbols
used for the semi-blind scheme was K = 4. Firstly, training-
based spatial filtering was demonstrated. Given K training
symbols, the LSCE Ĥ was obtained, which was then used
to calculate the MMSE solution for the weight vectors of the
four spatial equalisers. The average SER performance over all
the four spatial equalisers as a function of the training symbols
K are depicted in Fig. 2, with the average SER of the true
MMSE spatial equalisers calculated based on the true MIMO
channel matrix H as the benchmark. It can be seen from Fig. 2
that the training-based scheme required more than 64 training
pilots to closely approach the optimal MMSE performance.
For the simulated MIMO system, the 4-th spatial equaliser
had the worst SER performance while the 1st spatial equaliser
had the best SER performance. Therefore, the average SER
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Fig. 2. Average SER performance of the training-based spatial equalisation
given different numbers of training symbols, in comparison with the case of
perfect channel knowledge.

performance shown in Fig. 2 was dominated by the worst case
of the 4-th spatial equaliser.
The proposed semi-blind spatial equalisation scheme was next
investigated. Given the average SNR of 21.7 dB, K = 4
training pilots were first used to provide the initial weight
vectors of the four spatial equalisers according to (6). The
appropriate values for the step sizes of the CMA and SDD
were found empirically to be µCMA = 0.000005 and µCMA =
0.0005. Fig. 3 plots the learning curves of the combined CMA
and SDD adaptive algorithm, in terms of the average SER
over all the four spatial equalisers and over ten different runs,
for the three values of the cluster width ρ. It is observed
from Fig. 3 that, aiding by the information provided by the
four training pilots, the convergence rate of the concurrent
CMA and SDD algorithm was much faster than the pure blind
adaptive counterpart of [14], [15]. Furthermore, the proposed
semi-blind scheme is capable of approaching the optimal
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Fig. 4. The 4-th spatial equaliser’s output constellation after blind adaptation,
given SNR of 21.7 dB.

MMSE solution, as can be seen in Fig. 3.
Given the average SNR of 21.7 dB, K = 4 training symbols
were generally insufficient for a spatial equaliser to achieve
opening-eye. By contrast, the 4-th spatial equaliser’s output
constellation after blind adaptation is illustrated in Fig. 4,
clearly showing that the eye was opened. Finally, the average
SER performance achieved by the proposed semi-blind spatial
equalisation scheme with assistant of four training pilots is
compared with that of the perfect channel knowledge as well
as that of the training-based scheme utilising only four training
pilots. The results showing in Fig. 5 clearly confirm that
the proposed semi-blind spatial equalisation scheme closely
approached the optimal MMSE spatial equalisation solution.
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Fig. 5. Average SER performance of the proposed semi-blind spatial
equalisation scheme with four training symbols, in comparison with the
cases of training only based on four training symbols and perfect channel
knowledge.
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Flat fading MIMO system. A flat fading MIMO system with
nT = 4, nR = 5 and the 16-QAM modulation scheme was
simulated, whose CIR taps hl,m, 1 ≤ l ≤ 5 and 1 ≤ m ≤ 4,
were i.i.d. complex-valued Gaussian processes with zero mean
and E

[|hl,m|2] = 1. The number of pilot symbols used for
the semi-blind scheme was K = 5, and the performance
was averaged over 100 channel realisations. The average SER
performance over all the four spatial equalisers for the purely
training based scheme with 5, 15 and 55 training symbols,
respectively, as well as the proposed semi-blind spatial equal-
isation scheme with aid of 5 training symbols are shown in
Fig. 6, in comparison with the achievable performance given
the perfect channel knowledge. The step size of the CMA
as well as the step size and cluster width of the SDD were
empirically set to µCMA = 2 × 10−6, µSDD = 5 × 10−4

and ρ = 0.5. The blind adaptive process was observed to
achieve convergence typically within 300 samples. It can be
seen from Fig. 6 that to achieve a similar performance as
the semi-blind CMA-SDD scheme the training based scheme
required 55 training symbols.

V. CONCLUSIONS

A semi-blind spatial equalisation scheme has been proposed
for MIMO systems that employ high throughput QAM sig-
nalling. A minimum number of training symbols, equal to
the number of transmitters, is used to estimate the MIMO
channel matrix and the resulting rough LSCE is utilised for
the initialisation of the spatial equalisers. The CMA aided
SDD blind adaptive scheme is then adopted to adapt the
spatial equalisers. The proposed semi-blind spatial equalisa-
tion scheme has a very low computational complexity. Our
simulation study has confirmed that this semi-blind concurrent
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Fig. 6. Average symbol error rate performance of the proposed semi-blind
spatial equalisation scheme with five training symbols, in comparison with
the cases of training only based on different numbers of training symbols and
perfect channel knowledge, averaged over 100 realisations of the flat Rayleigh
fading 5 × 4 16-QAM MIMO system.

CMA and SDD adaptive algorithm converges much faster than
its pure blind counterpart, and it is capable of approaching the
optimal MMSE spatial equalisation solution calculated based
on the perfect channel knowledge.
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