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DSC SUBMISSION TO THE UNIVERSITY OF SOUTHAMPTON

Intelligent Nonlinear Learning Machines
by

Dr. S. Chen

1 The Motivation and Background

Learning is fundamental to all walks of science and engineering. Fig. 1 depicts a generic learning model

or machine. Such a learning machine takes an input provided by the environment and produces an output.

The purpose of the learning algorithm is to adjust the model so that the model output matches a reference

as close as possible in some statistic sense. In so-called supervised learning, the environment also provides

the reference in the form of a desired output or target for the model. By contrast, in unsupervised learning,

the environment does not provide a desired output for the learning machine. The learning machine must

somehow construct a reference itself, often based on some statistical information regarding the underlying

data generating mechanism. The classical learning machine deals with situations, where the model is linear

and the learning rule is also “linear”. For a linear model, the model output is linear with respect to both the

model inputs and model parameters. The linear learning machine typically adopts a quadratic cost function

of the modelling error for adjusting the model parameters, and the gradient of this cost function of a linear

model is proportional to the product of the error signal and model input. This is the basic characteristic of

linear learning that defines a linear learning machine. Linear learning has been studied widely and issues

concerning a linear learning system are well understood.

Σ

−

Model

Learning
Rule

ReferenceError

Input Output

Figure 1: Schematic of Generic Learning Machine.

Most practical systems are however nonlinear to some extent, and hence nonlinear models or learn-

ing rules are required to achieve an adequate performance. This submission deals with nonlinear learning

machines. A nonlinear learning machine is defined by either or both of the following characteristics:
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• The model output is nonlinear with respect to the model input.

• The learning rule that is used to adjust the model parameters is nonlinear.

That is, a nonlinear model and/or a nonlinear learning rule constitute a nonlinear learning system. Note that

a nonlinear model by definition must be nonlinear in the model input but it can be either linear in the model

parameters or nonlinear in the model parameters. A purely linear-in-the-parameters nonlinear model has an

obvious advantage, since linear learning methods can be adopted, but it may require a much larger model

dimension, compared to a nonlinear-in-the-parameters representation. Interestingly, a nonlinear learning

machine may consist of a linear model with a nonlinear learning rule. A nonlinear learning rule accrues,

for example, by adopting a more complicated and relevant cost function than the quadratic function of the

model error. Essentially, for a nonlinear learning machine, the gradient of the cost function with respect to

the model parameters is no longer proportional to the product of the error signal and the model input. This

has some serious implications for the learning process.

For most applications, a nonlinear learning machine offers significant performance improvements over

a linear one, as a nonlinear approach is capable of approximating or modelling the underlying data gener-

ating mechanism much better. Compared to the linear learning approach, however, the nonlinear learning

approach presents some major difficulties. The main challenges are:

1. The curse of dimensionality. A nonlinear model can easily become excessively large. A huge model

not only has little practical use but also leads to over-fitting. An over-fitted model simply fits into the

noise that is present in the training data. This prevents the model from discovering the underlying

data generating mechanism and leads to poor generalisation performance.

2. The complexity of learning process. A nonlinear learning process is often associated with high

computational requirements, and typically nonlinear learning problems are numerically ill-posed. The

slow convergence rate of a nonlinear learning process is also a major consideration. Moreover, care

must be exercised to avoid a nonlinear learning system for being trapped at some bad local solution.

To overcome or alleviate these difficulties, a successful nonlinear learning machine must be an intelligent

one.

First of all, a nonlinear learning machine must be intelligent and hence capable of determining the

correct model structure and arriving at a parsimonious representation. The objective of modelling from data

is not that a model can explain the training data well. Rather, a model should possesses good generalisation

performance. That is, it should capture the underlying dynamics that generate the training data instead of

simply fitting into the training data. A model should also be easy to interpret and extract knowledge from,

since a model is used to aid the understanding of the underlying data generating mechanism. All these

depend crucially on the ability of the learning process to derive an appropriate sparse model.

A nonlinear learning machine must be intelligent and hence capable of handling computation efficiently,

being robust to numerical ill-conditioning and escaping from bad local solution traps. In today’s data rich

environment, efficiency of a learning machine is a crucial factor for success. In many practical applications,

such as those found in communication systems, fast convergence speed of a learning machine is essential
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to meet time constraints. The cost functions associated with nonlinear learning are often multi-modal and

typically highly complex. To be successful, a learning algorithm must be robust and able to find a global

optimal solution or at least avoid bad local solutions.

Proposing a range of intelligent nonlinear learning machines to meet the above-mentioned challenges

and to successfully apply them in various key practical applications has been the motivation of my research

and constitutes the focus of this submission. The novel contributions of my research efforts spanning the past

decade or so are outlined in this submission with reference to the journal papers [1]-[103]. The submission

is organised in eight broad subject areas, and all these research areas can be unified within the nonlinear

learning machine framework of Fig. 1. The eight topics covered in this submission may be grouped into the

four parts.

Part 1 of the submission is composed of three chapters, each covering an important topic of machine

learning. Specifically, Chapter 2 contains my novel contributions to data regression modelling, Chapter 3

outlines my work on classification, and Chapter 4 summarises my recent research in probability density

function estimation. Regression and classification are supervised learning problems, while probability den-

sity function estimation is an unsupervised one.

Part 2 focuses specifically on the applications of intelligent nonlinear learning to communication sys-

tems, and consists of three chapters. Chapter 5 presents my original contributions to the minimum bit error

rate (MBER) design of linear receivers, while Chapter 6 summarises my novel research on nonlinear re-

ceiver design. These two topics belong to the class of supervised learning, as training is assumed. My work

on blind equalisation, which can be classified as unsupervised learning, is summarised in Chapter 7.

Chapter 8 forms Part 3 of the submission, which contains my recent contributions to finite-precision dig-

ital controller design. This problem is an interesting and challenging nonlinear learning problem, requiring

intelligent approaches to tackling it. Referring to Fig. 1, for this problem, the model is a closed-loop control

system consisting of a linear plant model and a linear controller, the reference is the designed closed-loop

performance if the controller is implemented in infinite precision or at a sufficiently high precision, and the

output is the actual closed-loop performance given an actual finite-precision controller. Learning or opti-

misation aims to find some optimal finite-precision realizations of the controller, which minimises some

measure of the difference between the desired closed-loop performance and the actual closed-loop perfor-

mance (as well as maintaining the closed-loop stability margin).

Evolutionary computation methods have found wide applications in intelligent nonlinear learning, owing

to their ability to find globally optimal solutions. Part 4 of the submission consists of a single chapter,

Chapter 9, which collects my research on the applications of evolutionary computation and optimisation

methods to various nonlinear learning problems.

2 Regression

Having a good generalisation capability and a sparse representation are two key requirements in creating an

intelligent learning machine. These two considerations have been the main motivations for my research on

learning machines. The journal papers [1]-[18] summarise my recent new results in the area of intelligent
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regression modelling. Most of these advances were achieved after I joined the University of Southampton

in 1999, and these new contributions provide significant enhancements to my previous research in this area.

Since the late 1980s, I have been working on nonlinear regression modelling, and before joining the

University of Southampton I developed a range of tools or algorithms [19]-[39]. The most successful one

of these nonlinear modelling toolkits has been the orthogonal least squares (OLS) algorithm for forward

selection regression [26],[34]. The basic principle of the OLS algorithm is simple but remarkably effective.

From a large pool of the candidate regressors, the algorithm selects significant and relevant regressors one

by one to form the final model, and the selection procedure is terminated when some prescribed modelling

accuracy is achieved, yielding a parsimonious subset model that contains only significant regressors. This

selection is carried out by incrementally minimising the mean square error over the training data set. Math-

ematically, the model regressors form a set of bases that span the model space. By a simple and efficient

orthogonalisation, these original model bases are transferred into the orthogonal bases. Each orthogonal

base corresponds to an original model regressor. This allows the subset model selection to be carried out

efficiently in the new orthogonal space. Since its derivation, the OLS algorithm has become very popular

among nonlinear data modelling practitioners, owing to its ability to efficiently construct parsimonious mod-

els that generalise well. It has become a standard nonlinear modelling toolkit and finds wide applications in

many diverse fields of science and engineering. The paper [26] has received an ISI citation index 432 and

the paper [34] has received an ISI citation index 171 by the end of November, 2004.

My recent works [1]-[18] involve enhancing the OLS algorithm with a range of advanced techniques for

aiding intelligent modelling. The main novel contributions are summarized as follows.

1. Combining the OLS algorithm with regularisation techniques. By introducing regularisation in the or-

thogonal modelling space and choosing the regularisation penalty as the l2-norm of the model weights

in the orthogonal space, the computational efficiency of the OLS forward selection procedure is pre-

served. The combined approach offers an enhanced generalisation performance with sparser repre-

sentations. Furthermore, regularisation also helps in deciding when to terminate the model selection

procedure. An alternative regularisation method called the basis pursuit, which employs the regulari-

sation penalty as the l1-norm of the model weights, has also been combined with the OLS algorithm.

2. Combining the OLS algorithm with optimal experimental design criteria. An optimal experimental

design aims to optimise both the parameter efficiency and model robustness. By combining the OLS

algorithm with an optimal experimental design, such as the D-optimality design, an enhanced model

construction algorithm is obtained. With an appropriate choice of the composite cost function, the

model construction becomes automatic, and the user does not have to specify any additional criterion

to terminate the model selection procedure. Regularisation can also be incorporated naturally with

this combined algorithm to further enforce the model sparsity.

3. Model construction by directly optimising the generalisation capability. By adopting the leave-one-

out test score, which is a measure of the model generalisation capability, within the orthogonal forward

selection framework, the resultant algorithm efficiently constructs a sparse model by incrementally

optimising the model’s generalisation capability. This is the first time that a model generalisation

criterion is directly utilised in selecting the model regressors, rather than the usual use of helping to
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decide the model size. Coupled with the advanced regularisation techniques, this approach results in

a state-of-the-art toolkit for sparse regression modelling.

4. Intelligent knowledge discovery and rule extraction from data. The OLS decomposition has been

extended to the neurofuzzy rule-based model construction. Specifically, a locally regularised OLS

algorithm, combined with a D-optimality experimental design for the subspace based rule selection,

has been developed for the fuzzy rule regularisation and subspace information extraction. This pro-

vides a powerful construction algorithm for extracting the relevant and significant rules from a large

dictionary and offers a state-of-the-art technique for discovering knowledge from data.

Below are my new contributions in regression given in detail with reference to the corresponding journal

papers.

2.1 Orthogonal Least Squares Combined with Regularisation

Regularisation is one of the principal techniques for improving the generalisation properties of a learning

machine. For the large class of linear-in-the-weights nonlinear models, such as the kernel-based model or

more generally the radial basis function (RBF) network, a useful regularisation technique is based on an l2-

norm penalty cost of the model weights, as this can be naturally incorporated into the classic quadratic least

squares cost function associated with the learning problem. From the viewpoint of the Bayesian learning

framework, this choice of regularisation is equivalent to choosing a Gaussian distribution as a prior for the

model weights. Classically, regularisation is applied to large full-size models for the purpose of alleviating

over-fitting and hence improving the model’s generalisation properties. The beauty of the Bayesian learning

is to “let the data speak” – the Bayesian procedure learns not only the model parameters but also the regular-

isation parameters or equivalently the hyperparameters of the prior distribution. The latter is usually carried

out via an iterative evidence procedure. Updating the regularisation parameters is based on the inverse of the

combined cost function Hessian matrix, which is non-trivial and often becomes numerically ill-conditioned.

Moreover, for a complex large model, some of the eigenvalues of this Hessian matrix may even become

numerically negative, causing severe learning difficulties.

The paper [1] is the first known journal publication to introduce regularisation within the framework of

the OLS forward subset model construction. It points out that the parsimonious principle alone is not entirely

immune to over-fitting and, therefore, regularisation is also useful for the small model construction. The

main contribution of the journal paper [1], however, is the introduction of regularisation in the orthogonal

model space, rather than in the original model space. Because of the one-to-one relationship between the

original model regressors and the orthogonal model bases, this type of regularisation is exactly equivalent

to the original one defined in the original model space, but it offers significant computational advantages.

Firstly, the efficient OLS subset selection procedure remains unaffected by the introduction of regularisation.

Secondly and most importantly, the Hessian matrix of the composite cost function becomes diagonal and is

always well-conditioned (as the OLS algorithm has a built-in mechanism to automatically guarantee well-

conditioning). Thus, updating the regularisation parameters is computationally trivial. Coupling of the

OLS subset selection procedure and this regularisation technique enhances both, yielding a computationally

efficient algorithm for constructing the sparse models that generalise well.
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Many nonlinear models, such as the RBF network or kernel-based model, exploit the advantages of lin-

ear learning. This is achieved however only after some nonlinear parameters of the model, such as the kernel

width, have been fixed or learnt by some other means, typically based on a cross validation. The choice of

the RBF width for example has a critical influence on the generalisation capability of a RBF network. It is

also plausible that using a different kernel width will require a different (optimal) regularisation parameter.

The journal paper [2] proposed a novel model construction algorithm by combining a genetic algorithm

(GA) optimisation with the regularised OLS learning. This novel approach can be viewed as forming a

two-layered learning hierarchy. At the lower layer, with the given RBF width and regularisation parame-

ter, the regularised OLS algorithm constructs a parsimonious subset model from the training data set. The

upper layer involves choosing the optimal RBF width and regularisation parameter jointly by optimising

the model’s generalisation capability using an additional validation data set. As the model’s generalisa-

tion capability is a highly complex function of both the RBF width and regularisation parameter, the GA

is used to arrive at a globally optimal solution. This construction approach attains a significantly enhanced

performance at the cost of some additional computational complexity involving the GA optimisation.

In many applications of regularisation, such as those considered in [1],[2], a single common regularisa-

tion parameter is employed for every model weight. This corresponds to choosing a same prior distribution

for every model weight. For many learning machines, such as kernel models, each regressor is modelled

on a data point. Each data (regressor) has different importance or relevance, and this should be reflected in

its prior distribution. This is the motivation behind using the multiple-regularisers or local regularisation, in

which each model weight is associated with an individual regularisation parameter. Local regularisation has

a remarkable property of enforcing model sparsity. During the iterative optimisation, many of the regular-

isation parameters are driven to very large values and this in turn forces the corresponding model weights

to take very small near-zero values. Thus, the model regressors associated with these near-zero weights can

be pruned out from the final model. My novel research on this advanced regularisation technique is sum-

marised in the journal paper [3]. In the submission [3], a locally regularised OLS algorithm is developed

for constructing sparse multi-output regression models. This algorithm combines the advantages of both the

OLS model selection, which has the ability to select only the significant regressors to explain the training

data, and the local regularisation, which enforces the sparsity of the models. The end result is an efficient

construction algorithm that is capable of producing parsimonious regression models with excellent general-

isation performance. As local regularisation is introduced in the orthogonal model space, the efficiency of

the subset selection procedure is ensured. Moreover, it has been shown in [3] that the decision concerning

when to terminate the model selection procedure is greatly assisted by the local regularisation.

2.2 Orthogonal Least Squares Combined with Optimal Experimental Design

Optimal experimental designs have been used to construct smooth model response surfaces based on the

appropriate setting of the experimental variables under well-controlled experimental conditions. In an op-

timal experimental design, the model’s adequacy is evaluated according to a specific design criterion that

is a statistical measure of the goodness of experimental design by virtue of design efficiency and experi-

mental effort. For regression models, in particular, the model’s adequacy is measured as a function of the

eigenvalues of the design matrix, since it is known that the eigenvalues of the design matrix are linked to

the covariance matrix of the least squares parameter estimate. There are a variety of optimal experimental
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design criteria based on different aspects of experimental design. The D-optimality criterion is the most ef-

fective in optimising the parameter efficiency and model robustness via the maximisation of the determinant

of the design matrix. The traditional nonlinear model structure determination based on optimal experimental

designs is however inefficient and computationally prohibitive, incurring the curse of dimensionality. The

journal papers [4]-[6] of the submission summarise my novel research on applying optimal experimental

designs to aid efficient parsimonious regression modelling.

To appreciate the benefits of incorporating an optimal experimental design in the subset model construc-

tion, it is informative to point out that there are two key questions to be answered for any model construction

process, namely which regressors to select and when to terminate the selection. The OLS algorithm is very

effective in selecting significant regressors based on the training performance. The number of regressors

that the model should have cannot be quantified based on the same training performance, since typically

this training performance is continuously improved as more model terms are added, which eventually leads

to over-fitting or a poor generalisation performance. Although the local regularisation can help to alleviate

this difficulty, ideally the modeller requires some additional criterion to decide when to stop the selection

procedure and ultimately to generate a parsimonious model that generalises well. Let us consider the usual

information based criteria. An information based criterion is typically a composite cost function consist-

ing of the mean square error over the training data set and some model complexity penalty term. Such

an information criterion is at least locally convex, and there exists an “optimal” model size at which the

composite cost function reaches a minimum value. While the information based criteria provide the infor-

mation concerning when to terminate the model selection, they do not tell the modeller which model terms

should be selected. That is, the use of an information based criterion in forward regression only affects the

termination point of the model selection, but does not penalise the regressor that would cause poor model

performance (e.g. too large a variance of the parameter estimate or ill-posedness of the regression matrix),

if it is selected. Optimal experimental design criteria offer better solutions as they are directly linked to the

model’s efficiency and the robustness of parameter estimate.

The work of [4]-[6] employed a composite cost function consisting of the training mean square error and

the negative log function of the determinant of the design matrix. The regressor selection is thus based on

incrementally minimising the training mean square error and simultaneously maximising the determinant of

the corresponding design matrix. Due to the orthogonal decomposition, the design matrix is diagonal, and

this ensures that the resultant OLS forward selection procedure is as computationally efficient as the origi-

nal OLS algorithm. The composite cost function combining the training performance and the D-optimality

criterion is at least locally convex, and there exists an optimal model size at which it achieves a minimum

value. Thus, the cost function used in the regressor selection also provides the decision regarding when to

stop the selection. The modeller only has to specify a weighting for the D-optimality cost in the composite

cost function and the entire model construction procedure becomes automatic. The value of this weight-

ing does not critically influence the model selection procedure and it can be chosen with ease from a wide

range of values. Furthermore, this approach can be naturally combined with the local regularisation. While

the D-optimality design improves the model’s efficiency and parameter robustness, the local regularisation

enforces the model’s sparsity and avoids over-fitting. The coupling effects of these two complimentary meth-

ods further enhance each other, yielding an efficient yet simple algorithm for constructing sparse regression

models with excellent generalisation performance, especially under highly noisy learning conditions.
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2.3 Orthogonal Least Squares with Leave-One-Out Test Score and Local Regularisation

The ultimate goodness of a model is characterised by its generalisation performance, yet the achievable

training performance has been the main driving force in model construction, namely in deciding which

regressors to select. Cross validation is an approach commonly employed to ensure an adequate model’s

generalisation capability. In a typical cross validation application, the model is constructed based on a

training data set and the constructed model is evaluated using a separate validation data set. The performance

over the validation set can be seen as an indicator of the model’s generalisation performance. The optimal

model can thus be determined as the one that minimises this generalisation mean square error over the

validation set. It should be obvious that in this approach the model’s generalisation capability is only used

as a measure of the model complexity, but is not involved in the selection of the model regressors. This

underlying “problem” will remain, so long as the basic criterion for the model construction procedure is

the training performance. Even in the locally regularised OLS algorithm combined with the D-optimality

experimental design, which takes into account the model’s generalisation ability in selecting regressors, the

main component in the model construction criterion is the training performance. Arguably, a better and more

natural approach is directly using a measure of the model’s generalisation capability in the model selection

procedure rather than only using it as a measure of the model complexity. This is the main motivation behind

the work presented in [7],[8].

A commonly used cross validation technique is the delete-one cross validation. The idea is illustrated by

the problem of choosing the best model from the K candidates using an N -sample training data set. For each

candidate, each data point in the training set is sequentially set aside in turn, the model is estimated using the

remaining N − 1 data points, and the prediction error is derived using the only data point that was removed

from training. The leave-one-out (LOO) test score of the model is the mean square error averaged over all

the N prediction errors. To select the best model from the K candidates, the same modelling procedure

is applied to each of the K candidates, and the model candidate with the minimum LOO test statistic is

selected. For the linear-in-the-parameters models, there is an elegant way of generating the LOO test score,

without actually sequentially splitting the training data set and repeatedly estimating the associated models.

However, the traditional nonlinear model structure determination based on the delete-one cross validation

is computationally prohibitive. The journal papers [7],[8] in the submission developed an efficient way for

sparse regression modelling using the LOO test score. The method proposed in [7],[8] uses the locally

regularised OLS algorithm as the basic toolkit for model construction, except that the regressor selection is

based on incrementally minimising the LOO test score, rather than the original regularised training mean

square error. Significant advantages of this novel model construction algorithm are:

• The model construction is based on directly optimising the model’s generalisation capability, without

resorting to use a separate validation data set. Moreover, owing to the orthogonal decomposition, the

computation of the LOO test statistic becomes efficient. This ensures the computational efficiency of

the model construction procedure.

• The LOO test score is at least locally convex. Thus the criterion used in selecting regressors also

provides the information regarding when to stop the selection. The model construction procedure

becomes fully automatic, and the user does not require to specify any algorithmic parameter for this

construction procedure.
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In summary, combining the LOO test score with the locally regularised OLS learning yields a truly automatic

and efficient algorithm capable of producing very sparse models with excellent generalisation performance,

using a single training data set only. The comparative study given in [7] clearly demonstrates that this

method compares favourably with the other existing state-of-the-art sparse regression modelling techniques.

2.4 Orthogonal Least Squares Combined with Basis Pursuit and D-optimality

The regularisation adopted in Sections 2.1 to 2.3 is based on the l2-norm of the model weights. This penalty

function can be “merged” naturally into the main quadratic cost function, and the learning problem remains

to be a quadratic optimisation problem, which admits efficient solutions. Moreover, efficient methods ex-

ist to optimise the regularisation parameters. An alternative regularisation technique is known as the basis

pursuit or least-angle regression, which is based on the l1-norm of the model weights. A Bayesian interpre-

tation for the basis pursuit method is that it adopts an exponential prior for the model parameters (compare

this with a Gaussian prior for the l2-norm regularisation). The basis pursuit technique is not particularly

computationally efficient, because it effectively changes a quadratic optimisation problem having a sim-

ple solution into a more sophisticated problem for which generally complex non-quadratic optimisation is

required. Furthermore, optimising the regularisation parameters becomes a highly complex problem for

which no simple solution exists. An important advantage of the basis pursuit is that it may result in a much

sparser model by forcing more parameters to zero than the model derived from the l2-norm regularisation.

The l2-norm method is good at producing small but non-zero parameter values. Normally, the basis pursuit

method is applied to train the large-size full model by forcing many weights to be zero and hence pruning

out the corresponding model terms to derive a sparse solution. This process is generally associated with a

high computational complexity.

The paper [9] developed an efficient model construction method that simultaneously optimises the

model’s approximation capability, sparsity and robustness by incorporating the basis pursuit regularisation

into the combined OLS algorithm and D-optimality design. The cost function for the subset model selection

includes a D-optimality criterion that maximises the determinant of the design matrix of the subset model

to ensure the model robustness and to allow the model selection procedure to be automatically terminated

at a sparse solution. The model weights derived in each forward regression step are initially estimated via

the OLS algorithm, and they are then tuned with the aid of a gradient-descent learning algorithm based on

the basis pursuit that minimises the l1-norm of the model’s weight vector. Since both the parameter tuning

procedure based on the basis pursuit and the regressor selection based on the D-optimality design are inte-

grated with the orthogonal forward regression (OFR), the inherent computational efficiency associated with

the original OLS algorithm is maintained. A simple heuristic method of choosing the basis pursuit regu-

larisation parameters is also proposed. This OFR algorithm using both the basis pursuit and D-optimality

design provides a powerful additional tool in the toolkit of intelligent nonlinear modelling.

2.5 Efficient Backward Elimination Methods

Two basic approaches of constructing parsimonious regression models are the forward selection and back-

ward elimination. Forward selection starts with a subset model containing no regressor and selects signif-
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icant regressors from a large set of candidates one by one to add to the subset model. This approach is

computationally more efficient and in particular the forward regression based on the OLS algorithm has

proved to be very successful in parsimonious modelling. In contrast, a completely backward elimination

procedure eliminates regressors from a full model that contains many regressors, which is a more difficult

and computationally complex task, particularly when the full model is very large. Integrating forward se-

lection and backward elimination offers a better model construction method than a purely forward selection

one, at the cost of an increased complexity. Alternatively, backward elimination can be employed as a

postprocessing procedure, and this can be used to form the hybrid approaches to prune the models that are

identified via other approaches. A model constructed via forward regression can gain extra sparsity using

backward elimination. This is because forward selection is basically a greedy algorithm, and a regressor

selected in a forward manner may become insignificant at a later stage and can then be removed. Adopting

backward elimination as a postprocessing tool is computationally affordable.

Conventional backward elimination removes model regressors one at a time based on the least deteriora-

tion in the model fit, i.e. based on the training performance. It is highly desired to incorporate some measure

of model generalisation capability into this backward elimination procedure. The journal paper [10] derived

three efficient backward elimination methods: 1) backward elimination based on the A-optimality design,

2) backward elimination based on the D-optimality design, and 3) backward elimination based on the basis

pursuit. The A-optimality experimental design aims to minimise the covariance of the parameter estimate,

which is proportional to the trace of the inverse of the design matrix. The similarity of the three methods is

that each is based on the balance between the model fit and one of the three alternative generalisation mea-

sures. Such a balance also ensures that the backward elimination processes can be automatically terminated.

The A-optimality and D-optimality based pruning processes require some orthogonalisation operation be-

tween the pruned model and the deleted regressor. The pruning formula of the l1-norm basis pursuit is

shown to be extremely simple, without the need for an orthogonalisation process.

2.6 Robust and Efficient Neurofuzzy Rule Base Knowledge Extraction and Estimation

Discovering knowledge from data is an ultimate objective of data modelling. A neurofuzzy network has an

inherent model transparency that helps users to understand the system’s behaviours, to oversee the critical

system operating regions, and/or to extract the physical laws or relationships that underpin the system’s

operation. Based on a Takagi-Sugeno fuzzy rule inference and model representation, a neurofuzzy model

can be functionally expressed as an operating point dependent fuzzy model with a local linear description

that directly lends itself to conventional estimation and control synthesis. The model output is decomposed

into a convex combination of the outputs of the individual rules, and the basis function can be interpreted as

a fuzzy membership function of the individual rules. This property is critically desirable in the context of

problems requiring insight into the underlying phenomena, i.e. into the interpretation of the internal system

behaviour and/or knowledge (rule) representation of the underlying process. The curse of dimensionality

however is a main obstacle in the transparent neurofuzzy rule base knowledge extraction and estimation. For

a high-dimensional system, a massive number of the potential rules can be generated, making it impossible

for a human to comprehend the resultant rule set. Consequently, the major purpose of neurofuzzy model

construction algorithms is to select a parsimonious model structure having a good generalisation capability

with a transparent interpretable representation.
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The paper [11] developed a novel robust neurofuzzy construction algorithm for modelling observed data

sets in the form of a set of fuzzy rules. Based on the Takagi-Sugeno inference mechanism, a one to one

mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables

the rule based knowledge to be extracted from the matrix subspace to enhance the model transparency. In

order to achieve the best possible model robustness and sparsity, an extended Gram-Schmidt orthogonal sub-

space decomposition has been introduced and combined with the two effective and complementary robust

modelling approaches of the regularisation and the D-optimality experimental design. The model rule bases

are decomposed into the orthogonal subspaces (compare this with the orthogonal bases in the conventional

orthogonal decomposition), so as to enhance the model transparency with the capability of interpreting the

derived rule base energy level and hence enabling the selection of the significant and relevant subspaces or

rule bases. With an appropriately chosen weighting for the D-optimality cost function, the entire neurofuzzy

model construction procedure becomes automatic. Thus, with the important extension from an orthogonal

decomposition to an orthogonal subspace decomposition, the major contribution of [11] is to extend the

locally regularised OLS algorithm with the D-optimality design for the conventional data modelling to the

fuzzy rule regularisation and subspace based information extraction. This neurofuzzy model construction

algorithm provides a powerful tool for extracting the relevant and significant rules from a large rule set and

offers a state-of-the-art technique for discovering knowledge from data.

2.7 Nonlinear System Modelling and Prediction

This section collects some of my recent publications related to three different applications of nonlinear data

regression. Specifically, Subsection 2.7.1 deals with nonlinear dynamic system identification and prediction

[12]-[14], a novel postprocessing technique designed for image compression [15],[16] is presented in Sub-

section 2.7.2, and Subsection 2.7.3 summarises an application of neural networks to the terrain prediction

for employment by legged robots [17],[18].

2.7.1 Dynamic System Identification and Prediction

I am one of the first researchers to apply the radial basis function (RBF) network to nonlinear dynamic

system identification and to demonstrate its advantages over other types of artificial neural networks, such

as the multilayer perceptron, as summarised in my early publications [25],[26],[28],[29]. By placing the

RBF centres on the training input data points, the RBF network becomes a linear-in-the-weights model and

the OLS algorithm provides an effective means of identifying a sparse RBF network model. Alternatively,

the RBF centres can be obtained using a clustering algorithm and the linear weights of the RBF network

can then be estimated using the usual least squares solution. Traditionally, the κ-means clustering algorithm

is used to obtain the RBF centres. This clustering algorithm can only achieve a local optimal solution,

which depends on the initial locations of the cluster centres. A consequence of this local optimality is that

some initial centres may become stuck in regions of the input domain with few or no input patterns, and

never move to where they are needed. This wastes resources and may result in an unnecessarily large RBF

network. The work [12] overcomes this drawback by adopting an enhanced clustering algorithm. By using a

cluster variation-weighted measure, this enhanced clustering algorithm guarantees to converge to an optimal

cluster configuration, regardless of the initial centre locations. Coupled with a cross validation, the method
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of [12] offers a simple but effective means of identifying nonlinear dynamic systems using a RBF model.

The RBF network has enjoyed considerable success in applications to nonlinear system identification

and time-series prediction. Most of the successful results, however, were obtained when the RBF network

is applied to stationary systems or signals. The performance of the RBF model applied to non-stationary

systems and signals is less satisfactory. This is because the standard RBF network, like many feedforward

neural network models, does not characterise the associated temporal variability sufficiently well. Since

the real-world systems and signals are often not only highly nonlinear but also highly non-stationary, it is

desirable to develop the models which can handle the signals that exhibit both of these characteristics. This

is what motivated the work in [13] to develop a novel gradient RBF (GRBF) network for nonlinear and non-

stationary time series prediction. For the non-stationary time series involving variations of local mean and

trend, the series can be made stationary by applying a suitable differential operation on the signal. This is the

principle behind the linear auto-regressive integrated moving average model used to predict non-stationary

signals. By incorporating a similar mechanism into the RBF network, the resultant model structure has a

better predictive performance for non-stationary homogeneous time series. In addition to using the first-

order difference of the signal as the input vector of the network, the response of each RBF node is also

modified with a first-order local model term which can be interpreted as a local one-step predictor. The

OLS algorithm is modified accordingly to provide an efficient construction algorithm for identifying the

parsimonious GRBF network models having an excellent predictive performance for nonlinear and non-

stationary time series.

The book chapter contribution [14] provides a comprehensive treatment of methods and techniques

designed for nonlinear dynamic system identification. A general principle of system identification is that

the model should not be more complex than required for capturing the underlying system dynamics. This

concept, known as the parsimonious principle, is particularly relevant in nonlinear model building, because

the size of a nonlinear model can become, to a great extent, excessively large. An overly complicated model

may simply conform to the noise in the training data, resulting in over-fitting. An over-fitted model does

not capture the underlying system structure sufficiently well and can, in fact, perform poorly on new data.

This consideration is the main motivation and central theme of my research reported in [14]. Conventional

nonlinear models as well as various neural network models are reviewed. A substantive array of system

identification techniques is discussed in the context of both the nonlinear-in-the-parameters and linear-in-

the-parameters models, with emphasis on determining the model structure. Model validation methods are

also provided, and the concept of (nonlinear) identifiability as well as the novel idea of local model fitting

are introduced. The work [14] offers a comprehensive reference for researchers and practitioners engaged

in nonlinear dynamic system identification.

2.7.2 Postprocessing Designed for Image Compression

Image coding is a technique involved for reducing the bandwidth and storage capacity requirements. How-

ever, the family of lossy image-coding methods causes quantisation distortions in the reconstructed images.

In practice, there is always a tradeoff between the affordable coding bit rate and the coded image quality.

Generally, increasing the coding bit rate improves the quality of the reconstructed image, but the coding

bit rate is limited by the channel bandwidth or by the storage capacity. As an attractive alternative, image
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postenhancement may be used for improving the quality of the reconstructed image, without increasing the

coding bit rate. Existing postprocessing methods can be divided into two categories: those employing fil-

tering to smooth the blocking artifacts in reconstructed images and those formulating postprocessing as an

image-recovery problem. Since filtering also causes unwanted over-smoothing on image edges, the class

of filtering methods is not appropriate for applications, which require genuinely good image quality with

minimum distortions. The second class of methods rely heavily on the accuracy of a priori image models

used and on the optimisation algorithms adopted. These methods often involve adaptive filtering to avoid

excessive smoothing. In addition, existing postprocessing methods are specifically designed for block-based

coding methods using fixed coding block sizes, such as those in transform coding (TC) and vector quan-

tisation (VC), where blocking artifacts constitute serious sources of distortions. These adaptive filtering

techniques are unable to improve the quality of predictive coding, where blocking artifacts do not exist and

blurred edges are the main coding distortions. These methods are also impractical to use for quadtee (QT)

coding, which has variable block sizes.

The motivation of my related research [15],[16] was to create a postprocessing technique, which is able

to correct the coding distortions of all major coding schemes, and the journal papers [15],[16] developed a

generic postprocessing technique. The key of this postprocessing method is the ability to recover the quanti-

sation distortion image, defined as the difference between the original and decoded images. It can be shown

that the main coding impairments are due to edge distortions, including blurred edges and spurious edges.

Spurious edges are caused by blocking artifacts. This suggests that the basic task of postprocessing is to

correct these edge distortions. The novel distortion-recovery model developed in [15],[16] consists of a vi-

sual feature extractor to extract edge information from the decoded image, and a mapping to map the visual

features of the decoded image onto the quantisation distortion image. Specifically, visually important edge

features are computed as multi-scale first-order derivatives of the decoded image. Interestingly, this gradient

extractor imitates certain characteristics of visual cortex. As the exact relationship between the gradient fea-

tures of the decoded image and the quantisation distortion image is unknown, an artificial neural network,

referred to as the neural network visual model (NNVM), is trained to learn this relationship. The advantages

of the proposed postprocessing technique have been demonstrated in a range of experiments involving four

coding systems, namely TC, VC, QT coding and predictive coding schemes. The experimental results ob-

tained confirm that the NNVM achieves significant improvements in the quality of the reconstructed images,

in terms of both the objective distortion measure used and subjective viewing assessment. More specifically,

the experiments were conducted on eight test images in conjunction with the aforementioned four coding

schemes, each having two different coding bit rates. The average coding peak signal to noise ratio (PSNR)

over these experimental conditions was approximately 30 dB without postprocessing. It is well-known that

the higher the PSNR is the more difficult for a postenhancement technique to achieve postprocessing gain.

The experimental conditions were designed specifically to create high PSNR conditions, so as to test the

proposed postprocessing method under “unfavourable” situations. Even under such a high average PSNR

condition, the proposed postprocessing technique achieved an average PSNR gain of over 1 dB1, which is

much better than other existing postprocessing methods can achieve.

1Due to a limited length, not all the experimental results could be presented in the journal papers [15],[16]. More detailed
experimental results are given in the PhD thesis “A Generic Postprocessing Technique for Image Coding Applications,” by my PhD
student, Zhongmin He, in 1999.
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2.7.3 Terrain Prediction for Legged Robots

Roughly half of the land surface of the earth is inaccessible to conventional wheeled or tracked vehicles.

Legged robots present significant advantages over wheeled or tracked mechanisms because of their ability to

move in very rough and unstructured terrains and to step over obstacles. However, without efficient walking

strategies these advantages cannot be realized. The walking gait algorithm is a decision based process re-

garding which leg should be lifted or placed to provide time-space coordination of the motion of the various

legs of the robot. It is the most crucial process in the control of legged robot motion. A terrain mapping

system, which can accurately predict unknown terrain, is capable of aiding the walking gait algorithm to

provide smooth and efficient walking motion of legged robots in unstructured environments. The work re-

ported in [17],[18] applied an artificial neural network as terrain predictor to aid the navigation of legged

robots across rough terrains. In the experiments involving an eight-leg robot called Robug IV roaming in

a range of terrain environments, this neural network terrain predictor was demonstrated to provide signif-

icantly improved prediction accuracy over an existing terrain mapping system previously implemented on

Robug IV.

3 Classification

Classification is another basic learning problem in machine learning. It has many similarities with regres-

sion, but also has some important differences. Notably, the desired output in a classification problem only

takes a finite number of discrete values. For example, in two-class classification problems, the desired

output or class label is binary. The construction of a classifier is often linked to probability distribution

estimation. This is because, if the conditional probability density functions of the classes are known, the

optimal Bayesian classifier can readily be formulated. For regression, the least squares or mean square error

is the principal criterion in deriving appropriate learning mechanisms. The ultimate objective of classifica-

tion is to maintain a high classification accuracy or a low error rate, and this should be the basic criterion

for deriving learning rules in classification applications. My research in the field of classification is both

research and application oriented, and the four journal papers [40]-[43], which provide a summary of my

recent contributions to this field, were selected for inclusion in the submission. My novel contributions in

the research field of classification can be summarised as follows.

1. Deriving a robust maximum likelihood learning method for heteroscedastic probabilistic neural net-

works by incorporating a statistical bootstrap technique known as the Jack-knife into the expectation-

maximisation (EM) algorithm.

2. Developing an efficient sparse kernel classifier construction technique based on an orthogonal for-

ward selection (OFS) procedure that chooses significant and relevant kernel terms by incrementally

maximising the Fisher ratio of class separability measure.

3. Developing a stochastic gradient based sample-by-sample learning technique, called the least error

rate algorithm, for real-time adaptation of a classifier, that directly minimises the (approximate) error

rate of the classifier.
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These novel contributions in classification are now described below in more detail with reference to the

corresponding journal papers.

3.1 Robust Training of Heteroscedastic Probabilistic Neural Networks

The key to applying the optimal Bayes strategy for pattern classification is the estimation of the conditional

probability density functions (PDFs) of the classes, and a classical PDF estimate is the Parzen window

estimator. The probabilistic neural networks (PNNs) implement the Parzen window estimator using mixtures

of Gaussian kernels. Traditionally, a common variance is used for every Gaussian basis function, and this

is termed as the homoscedastic PNNs. The expectation-maximisation (EM) algorithm is typically applied

to provide an optimal maximum likelihood (ML) training algorithm for PNNs. If each Gaussian basis

function is allowed to have a different variance, a much more parsimonious PNN can be used to adequately

approximate the underlying conditional PDFs of the training data but the associated learning problem is

much more difficult. Indeed, when extending the EM training algorithm to this class of heteroscedastic

PNNs, often numerical difficulties occur. The journal paper [40] analysed the root of this numerical problem,

and incorporated a robust statistical technique, referred to as the Jack-knife, into the EM algorithm to derive

a robust and effective ML training method for heteroscedastic PNNs.

The Jack-knife constitutes a simple yet effective statistical bootstrap method that is widely used in robust

statistical analysis for bias reduction and interval estimation. Basically, the Jack-knife procedure partitions

a sample space into several subsets and observes the influence of each subset on the estimation process. The

Jack-knife estimator is very effective in reducing the bias of the estimate. Another desired property of the

Jack-knife technique is that it can remove the effect of a few outliers within a data space, giving rise to a

robust estimate. Note that the effect of a few outliers is the main source that may cause the EM algorithm to

collapse when training heteroscedastic PNNs, as analysed mathematically as well as demonstrated numeri-

cally in [40]. Thus, this numerical difficulty can be overcome by incorporating the Jack-knife technique in

the EM algorithm, which represents the main contribution of [40]. The resultant robust ML training algo-

rithm for heteroscedastic PNNs is then applied in [40] to the real data involving success or failure prediction

of UK private construction companies, and the results obtained clearly demonstrate the effectiveness of this

robust ML learning method.

3.2 Kernel Classifier Construction with Fisher Ratio of Class Separability Measure

Just as in regression application, having a good generalisation capability in terms of test error rate and a

parsimonious representation are the two key requirements of kernel classifier construction. Support vector

machine (SVM) based methods are often regarded as the state-of-the-art techniques for kernel classifier

design. The SVM method can be viewed to start with a large classifier model (each training input data cor-

responding to a candidate kernel term), and learning involves the removal of the insignificant kernel terms

or equivalently to retain the significant support vectors. The SVM method is known to have excellent gen-

eralisation performance. However, the ability of the SVM method to produce sparse models is overstated,

and many practical applications have demonstrated that kernel classifiers constructed by the SVM methods

may not be sufficiently sparse. As a design alternative, the relevance vector machine (RVM) method has
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the ability to produce much sparser classifiers with similarly good generalisation performance as that of the

SVM method. The RVM method however is computationally much more demanding than the SVM method

and the resultant learning problem is often inherently ill-posed. Forward selection, which selects significant

kernel terms one by one to form a sparse classifier, has clear computational advantages. In my early work

[26], by formulating the classifier construction as regression modelling, the orthogonal least squares (OLS)

algorithm was applied to select a parsimonious radial basis function (RBF) classifier in an efficient orthog-

onal forward selection (OFS) procedure. The least squares cost used by the OLS algorithm for selecting

kernel terms is, however, not the most relevant one in the context of the classification objective. What is

really needed here is to find a suitable criterion for selecting significant kernel terms, which is directly linked

to the classification objective.

The degree of class separation is directly linked to the test error rate, and the Fisher ratio class separa-

bility measure thus offers a suitable criterion for selecting significant kernel terms. This was first suggested

in:

K.Z. Mao, “RBF neural network center selection based on Fisher ratio class separability measure,” IEEE

Trans. Neural Networks, Vol.13, pp.1211-1217, Sept. 2002.

My contribution [41],[42] involves refining the OFS procedure based on the Fisher ratio class separability

measure in a generic classifier design algorithm, applying it to some typical problems and demonstrating

its computational advantages over the other state-of-the-art kernel-based classifier design methods. By for-

mulating the kernel classifier design as regression modelling, orthogonal decomposition can be applied to

orthogonalise the “regression matrix”, and the Fisher ratio class separability measure can be efficiently com-

puted for each orthogonal base candidate. At each stage of the OFS procedure, a candidate base, namely

a candidate kernel term, is selected if it produces the maximum value of the Fisher ratio among the can-

didates that have not yet been selected. The orthogonalisation process and the computation of the kernel

weights remain identical to those employed by the original OLS algorithm used in regression. This OFS

procedure is inherently well-conditioned and efficient. The applications reported in [41],[42] show that it

has the same excellent generalisation performance and a similar level of sparsity as the RVM method, but it

is computationally much simpler than the RVM method. Thus, this OFS algorithm based on the Fisher ratio

class separability measure provides a viable alternative for constructing truly sparse kernel classifiers that

generalise well.

3.3 Stochastic Least Error Rate Training for Classifiers

As is mentioned previously, the mean square error (MSE) criterion is not a generally suitable cost function

for classifier design. For off-line or block-data based learning, such as those reported in Sections 3.1 and

3.2, the need for adopting a more relevant criterion to train classifiers has been widely recognised. Given the

underlying pattern space, that is, the information available to a classifier, the maximum a posteriori prob-

ability or Bayes classifier provides the true optimal performance. We should refer to the definition of the

minimum error rate (MER) as the achievable error rate for a classifier with an additional constraint of a given

structure (e.g. a RBF classifier with a given number of hidden nodes). The basic question is then whether it

is possible to achieve this MER and how close it is to the true optimal performance of the Bayes classifier.
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Kernel-based classifier construction algorithms, such as the support vector machine (SVM) method and the

orthogonal forward selection (OFS) algorithm with the Fisher ratio class separability measure, have been

shown to be capable of approximating the optimal Bayesian performance. All these training algorithms

are however block-data based and cannot be implemented in a truly sample-by-sample adaptive manner.

In many applications involving nonlinear (e.g. neural network) classifiers, adaptive training or sample-by-

sample adaptation is required to meet real-time computational constraints. Application examples include

neural network equalizers and multiuser detectors in communication systems. Typically, the adaptive train-

ing of neural network classifiers is usually carried out using some stochastic gradient algorithm, such as

the well-known least mean square (LMS) algorithm, based on the minimum MSE (MMSE) criterion. A

somewhat undesirable situation exists that, on one hand, the performance of a classifier is evaluated using

the probability of error while, on the other hand, a different MSE criterion is used during the learning stage.

The journal paper [43] developed a truly sample-by-sample adaptive training method based on directly

minimising the classifier’s approximate error rate for two-class classification problems, and applied the re-

sultant stochastic least error rate (LER) algorithm to nonlinear equalisers for binary signalling. The deriva-

tion of this LER algorithm is based on a reasonable assumption that the underlying pattern space is a finite-

state machine contaminated by additive Gaussian white noise. Thus, the distribution of the pattern space is

a multi-variate Gaussian mixture. By virtually linearising the output of a nonlinear classifier in the vicinity

of the states of the pattern space, the probability density function (PDF) of the classifier’s output can be

accurately approximated as a mixture of Gaussians. Given the PDF, the probability of error of a classifier

can be explicitly formulated, and the MER classifier is defined as the one that minimises this probability of

error, which can be obtained for example using a gradient based optimisation method initialising the search

from a suitably chosen initial solution. Since the states of the pattern space are generally unknown, the

PDF of the classifier’s output is also unknown. However, this PDF can be estimated using the Parzen win-

dow estimate based on a block of training data. The Parzen window based method estimates an unknown

PDF by placing a symmetric unimodal kernel function on each data sample and combining these kernels

to form a PDF estimate. This method is known to produce a remarkably accurate PDF estimate. For the

case of sample-by-sample adaptation, a single sample based PDF “estimate” is used and, conceptually, from

this one-sample PDF estimate, a one-sample or instantaneous “error probability” is derived. Using the in-

stantaneous gradient of this error probability naturally gives rise to a stochastic gradient algorithm referred

to as the LER algorithm. The results involving nonlinear equalisation reported in [43] have demonstrated

that a small RBF network trained by the LER algorithm can closely approximate the optimal Bayesian per-

formance, and the work in [43] also confirms that the same RBF network trained by the LMS algorithm

converges well in terms of the MSE, but may produce a poor error rate performance.

4 Probability Density Function Estimation

Estimation of the PDF from a representative sample drawn from the underlying density is a problem of

fundamental importance in both machine learning and many other fields of engineering. However, PDF es-

timation is a hard and often ill-posed learning problem. It is also an unsupervised one, as the learning process

relies only on observations or samples drawn from the underlying density to be estimated and the learning

machine does not have the corresponding “desired outputs”. There exist two basic approaches to density
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estimation, namely parametric and nonparametric methods. In the parametric approach, the unknown den-

sity is assumed to belong to a parametric set satisfying certain conditions and density estimation becomes a

problem of typically estimating these parameters using the maximum likelihood principle. The nonparamet-

ric approach does not have the limitation of assuming that the unknown density belongs to a particular form

from a parametric set. A well-known nonparametric density estimation technique is the classical Parzen

window based PDF estimate, which is remarkably simple and accurate. The particular problem associated

with the Parzen window method however is the high computational cost required for calculating the PDF

value of an observation which has a complexity proportional to the sample size, as the Parzen window based

PDF estimate employs the full data sample set in defining a density estimate for subsequent observations.

In today’s data rich environment, this can be a serious problem in practical applications.

Recently, the SVM method has been proposed as a promising tool for sparse kernel density estimation.

The motivation of the SVM density estimation technique comes from the claim that the SVM method can

effectively perform function approximations in high-dimensional spaces from finite data sets with sparse

representations. Currently, the machine learning community is actively engaged in the investigation of the

SVM density estimation method and a range of other related techniques, such as the data reduction method

reported in:

M. Girolami and C. He, “Probability density estimation from optimally condensed data samples,” IEEE

Trans. Pattern Analysis and Machine Intelligence, Vol.25, No.10, pp.1253–1264, 2003.

These SVM-type methods can be interpreted as search techniques starting from the full data sample set with

each data sample used as a candidate kernel centre, and learning is used to gradually discard (zero out) many

of the kernel weights, leaving only the most significant non-zero weights for the support vectors. This leads

to a sparse representation of the kernel density estimate. My novel research in sparse density estimation

[44] adopts an alternative forward selection approach. The motivation of adopting this alternative approach

arises from my research in regression and classification. In the context of regression and classification, it

is known that a properly designed forward selection algorithm can provide sparser representations than the

SVM method with equally good generalisation performance, as it was shown in Chapters 2 and 3 of this

submission.

4.1 A Novel Sparse Density Construction Method

My recent journal paper [44] presents an efficient construction algorithm for obtaining sparse kernel density

estimates based on a regression approach that directly optimises the model’s generalisation capability. To

demonstrate how the kernel density estimation, which is an unsupervised learning problem, can be refor-

mulated as “supervised” regression modelling, it is worth emphasising that the main objective of density

estimation is that the cumulative distribution function (CDF) corresponding to the density estimate should

realise or approximate the true CDF of the underlying density. The true CDF of the unknown density is

unknown. However, this CDF can be accurately approximated from an empirical CDF computed solely

from the observation samples. Hence, by substituting the empirical CDF in the place of the true CDF as the

“desired response” for the density estimation, the problem becomes a supervised regression modelling one.

All the sparse regression techniques presented in Chapter 2 may then readily be applied to construct parsi-
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monious representations of kernel density estimates achieving an excellent test performance. As discussed

in Section 2.3, the orthogonal least squares (OLS) with leave-one-out (LOO) test statistic and local regulari-

sation is particularly effective in obtaining very sparse models with excellent generalisation capability. This

construction algorithm was therefore chosen in [44] for sparse kernel density construction.

The work in [44] represents a significant contribution to the important topic of PDF estimation. The

advantages of this novel density construction method can be summarised as follows:

• The proposed algorithm incrementally minimises the leave-one-out test score, which is a measure

of generalisation capability. Thus, the resultant density construction technique is based on directly

optimising the model’s generalisation performance. A local regularisation method is naturally incor-

porated into the density construction process to enhance the achievable sparsity.

• This method is simple to implement and computationally efficient, owning to the application of an

orthogonal forward regression. Moreover, the density construction process is entirely automatic, and

except for the kernel width the algorithm contains no parameters that require tuning. This is in contrast

to the SVM based methods, which have to carefully choose some of the algorithmic parameters to

ensure a successful density construction. The method formulates density estimation as a regression,

where many data modelling practitioners feel more at home.

The experimental results reported in [44] have demonstrated the ability of this novel algorithm to effectively

construct a very sparse kernel density estimate having a comparable accuracy to that of the full sample

set based optimised Parzen window estimate. The results also show that the proposed algorithm compares

favourably with the SVM based methods in terms of both the achievable test accuracy and sparsity, when

constructing kernel density estimates.

5 Minimum Bit Error Rate Linear Receivers for Communication Systems

One of the prime tasks of receivers in wireless communication systems is to overcome or alleviate the

distortion effects of bandlimited channels and/or multiple access interference, so as to recover or detect

the transmitted data symbols as reliably as possible. Linear receivers are the most widely used receiver

structures, due to their advantages of low complexity, well-established adaptive procedures and convergence

properties. A linear receiver can loosely be defined as the one that linearly combines the received signals,

and we will allow the definition to include the class of linear-combiner aided decision feedback equalisers

(DFEs). A DFE is inherently a nonlinear structure, as it feeds back the detected symbols. However, we can

view the decision feedback as a space translation, which translates the original observation space into a new

reduced-dimensional space. In this translated observation space, the DFE becomes a linear equaliser. My

journal papers [45],[46] gave a detailed analysis of this space-translation property. In this chapter and in

Chapter 6, we will assume that training is available for the adaptive receiver structures. That is, we consider

supervised learning. In communication systems, this is achieved by organising the transmissions into a

frame structure, and each frame includes a short pre-determined training symbol sequence that is not part

of the transmitted data and it is known to both the transmitter and receiver. A synchronised receiver can

generate this training sequence locally and uses it as the desired response to adapt the receiver parameters.
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This trained receiver strategy is in contrast to the blind receiver strategy covered in Chapter 7, where the

receiver does not have access to a training sequence and must adapt the receiver parameters based on the

received signal only, using unsupervised learning.

Traditionally, the Wiener or minimum mean square error (MMSE) solution is regarded as the optimal

solution for the generic linear receiver. This thinking has its roots in adaptive filtering, and a range of

well-documented adaptive filtering techniques have found applications in adaptive communication receiver

design. In particular, a stochastic gradient based learning algorithm, the least mean square (LMS) algo-

rithm, offers a truly adaptive low-complexity means of realising the MMSE linear receiver solution. The

ultimate objective of a communication receiver however is to minimise the error probability in detecting

the transmitted data symbols or the bit error rate (BER). Thus, a linear receiver can be considered as a

linear classifier with certain real-time computational constraints. My publications [45]-[56] are instrumen-

tal in rediscovering the minimum BER (MBER) principle and revitalising active research in developing a

rich set of adaptive MBER techniques for a variety of communication systems. My novel contributions are

summarised as follows:

• Derived the generic linear MBER design that is applicable for all the major state-of-the-art communi-

cation systems, and demonstrate its superior performance in comparison to the MMSE solution.

• Developed a stochastic adaptive algorithm for approximating the exact linear MBER solution, which

has a similarly low complexity as the LMS algorithm, and therefore makes the MBER design practi-

cally applicable.

My detailed work in this novel research area is outlined below with reference to the relevant journal papers.

5.1 Minimum Bit Error Rate Linear Equalisation

Equalisation plays a vital role in combating distortion and interference in communication links and high-

density data storage systems. A linear equaliser may be viewed as the inverse of the channel having a linear

distortion. This leads to the zero-forcing solution that completely eliminates the intersymbol interference

(ISI). The zero-forcing equaliser however can cause serious noise enhancement, resulting in severe degra-

dation in detection accuracy. The MMSE solution is traditionally viewed as offering a trade-off between

the two conflicting requirements of eliminating ISI and not enhancing noise, and the linear MMSE design

is the most widely used receiver design in practice. My journal papers [45],[46] showed that the MMSE

equalisation solution does not necessarily achieve the MBER performance and is therefore sub-optimal. The

MBER equalisation solution designed for binary signalling, namely for binary phase shift keying (BPSK),

is derived in [45], and the extension to minimum symbol error rate (MSER) equalisation is given in [46] for

the general multilevel modulation scheme.

5.1.1 Asymptotic Minimum Bit Error Rate Equaliser

Unlike for the MMSE design, there exists no closed-form solution for the MBER equalisation and hence

nonlinear iterative optimisation is required to obtain a numerical MBER solution in general. This is par-
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ticularly inconvenient in theoretical analysis of the MBER design and in performance comparison of the

MMSE and MBER equalisers. This lack of theoretical results is also partly to blame for the slow adop-

tion of the MBER approach within the communications research community. One way of overcoming this

difficulty is to study the properties of the MBER solution under the asymptotic condition of large signal

to noise ratio (SNR), which may provide some theoretical insights into the MBER solution. The work re-

ported in [47] analysed the asymptotic MBER solution for large SNRs and discovered that asymptotically

the linear support vector machine (SVM) classification solution is the MBER equalisation solution for the

BPSK modulation scheme. The significance of this result is that the linear SVM equaliser solution is much

easier to obtain, involving only simple quadratic optimisation, and this provides an efficient means of obtain-

ing an approximate MBER equalisation design without involving costly nonlinear optimisation. Moreover,

geometric interpretation of the maximum margin property of the SVM solution enabled the work in [47]

to provide insights into why the MMSE and MBER equalisers behave very differently in the asymptotic

case. Thus, for the first time, it shows in a simple and easy-to-understand geometric interpretation, why the

MMSE solution is in general sub-optimal. The publication [48] further generalises the results to the case

of multilevel modulation schemes and provides a simple and efficient means of realising the generic linear

MSER equaliser.

5.1.2 Stochastic Least Bit Error Rate Equaliser

In practice, equalisers must operate adaptively under the most harsh real-time computational constraints.

An important reason for the popularity of the MMSE design is that it facilitates the use of standard adaptive

filtering techniques, such as the least mean square (LMS) algorithm. At each sampling instant, the LMS

algorithm adapts the filter parameters along the direction of the negative stochastic gradient of the squared

instantaneous error between the filter desired output and actual output. Thus, the LMS algorithm has a very

low computational complexity that meets real-time operational constraints of communication systems. It is

well-known from adaptive filtering theory that the simple stochastic learning strategy of the LMS algorithm

is guaranteed to converge to the MMSE solution with an appropriate choice of the learning step size. Without

developing similar low-complexity adaptive algorithms for realising or implementing the MBER solution,

it is unlikely that the MBER equaliser design will find its way into practical communication systems. The

journal paper [49] derived a novel adaptive MBER equaliser, which has a similarly low complexity as

the adaptive LMS equaliser. The novelty of the work in [49] is the recognition that the key to realising

an adaptive MBER equaliser is the estimation of the probability density function (PDF) of the equaliser

output. Given this PDF, the BER of the equaliser becomes known. By definition, the MBER solution is

the equaliser tap vector that minimises this BER. The PDF of the equaliser output is generally unknown.

However, it can be approximated very accurately using a block of training data based on Parzen window

or kernel density estimation. This leads to a block-data adaptive MBER solution. By considering a single-

sample PDF “estimate”, conceptually, an instantaneous “BER” is obtained. Minimising this instantaneous

error probability naturally leads to the stochastic gradient adaptive MBER equaliser. This new stochastic

learning strategy based on the MBER principle was first developed in [49] and later has been referred to as

the least bit error rate (LBER) algorithm.

My journal paper [50] developed this concept of adaptive MBER equalisation further into the general

theory of adaptive MBER filtering for communication systems. It points out that the MMSE approach is
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optimal only if the filter output is Gaussian distributed. Since the filter output of a communication re-

ceiver is generally a mixed sum of Gaussian distributions and therefore non-Gaussian, the MMSE solution

is inherently non-optimal. By contrast, the adaptive MBER filtering effectively exploits the non-Gaussian

distribution of the filter output and, consequently, it can provide significant performance gains in terms of a

smaller BER in comparison to the MMSE approach. The work [50] also highlights an interesting analogy

between the traditional adaptive filtering approach based on the MMSE criterion and the proposed novel

adaptive MBER filtering approach. The second-order statistics required to find the MMSE solution can

be estimated using a block of samples and, by considering a single-sample estimate, a stochastic gradi-

ent MMSE algorithm, namely the LMS algorithm, is derived. The PDF required to determine the MBER

solution can be approximated with a kernel density estimate based on a block of samples and, by consid-

ering a single-sample density estimate, a stochastic gradient adaptive MBER algorithm, namely the LBER

algorithm, is formulated.

The journal paper [51] extended the result of adaptive MBER equalisation designed for BPSK modula-

tion and developed an approach based on direct minimisation of the symbol error rate (SER) for communi-

cation systems employing a multilevel pulse-amplitude modulation scheme. The Parzen window technique

is again adopted for approximating the PDF of the equaliser’s output, and this naturally leads to a block-

data based adaptive minimum SER (MSER) algorithm, which iteratively minimises the estimated SER of

the equaliser by adjusting the equaliser’s weights using the conjugate gradient optimisation method. It is

shown that this block-data based adaptive MSER algorithm converges rapidly and the length of the data

block required for achieving an accurate approximation of the MSER solution is reasonably small. Sample-

by-sample adaptive implementation of the MSER equalisation solution is then considered and a stochastic

gradient adaptive MSER algorithm, referred to as the least symbol error rate (LSER), is derived. This LSER

algorithm has a low computational complexity, comparable to that of the simple LMS algorithm. Simulation

results suggest that the LSER algorithm converges reasonably fast with appropriate initialisations.

5.2 Minimum Bit Error Rate CDMA Multiuser Detection

Code-division multiple-access (CDMA) constitutes an attractive multiuser scheme that allows users to trans-

mit at the same carrier frequency in an uncoordinated manner. However, this creates multiuser interference

(MUI) which, if not controlled, can seriously degrade the quality of reception. Mutually orthogonal spread-

ing codes for different users can provide an inherent immunity to MUI in the case of synchronous systems.

Unfortunately, multipath interference is often encountered in CDMA systems and will reduce this inherent

immunity to MUI by destroying the orthogonality of the spreading codes. A multiuser detector (MUD)

is required at the receiver to combat the MUI in order to achieve an adequate performance. In a CDMA

system, the objective of the receiver is to detect the transmitted information bits of one (at mobile-end) or

many (at base station) users. The first case, usually referred to as the downlink, is particular challenging,

as a mobile handset has limited computational power. For such applications, a linear detector structure is

most widely used, and the MMSE design is often regarded as the state-of-the-art technique for CDMA mul-

tiuser detection. This popularity is again due to the fact that the MMSE multiuser detector can readily be

implemented efficiently using standard adaptive filtering techniques. The ultimate performance criterion of

a MUD is its BER, just as in the case of single-user channel equalisation, and the MMSE MUD is generally

sub-optimal in this context.
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The publications [52]-[54] developed a novel adaptive MBER multiuser detector for downlink appli-

cations. The proposed MBER approach can effectively exploit the non-Gaussian nature of the MUI. The

adaptive MBER MUD derived in [52]-[54] has been shown to be much more robust to the near-far effect than

the MMSE based MUD, and is particularly effective in combating the adverse communication conditions,

where interfering users have a high power. This is because, in the situation where a few strong interfering

users exist, the non-Gaussian distribution is evident, and the MMSE solution can become considerably in-

ferior in comparison to the MBER solution. Technically, the key to the development of this MBER MUD

is again that of deriving the probability distribution of a linear detector’s output. The PDF of the linear

detector’s output is non-Gaussian, consisting of a mixed sum of Gaussian distributions, although the num-

ber of Gaussian components is much larger compared to the single-user channel equalisation, owing to the

channel-induced intersymbol interference (ISI) as well as the MUI. By accurately approximating this PDF

of the linear detector’s output based on Parzen window estimation, a block-data adaptive MBER CDMA

detector is readily formulated. This further leads to an adaptive LBER CDMA detector that has a similarly

low complexity as the LMS based CDMA detector. The publications [52],[54] concentrate on adaptive

MBER multiuser detection for CDMA systems employing BPSK signalling, while the work in [53] extends

the results to CDMA systems using quadrature phase shift keying (QPSK) modulation. These works have

clearly demonstrated the efficiency of the MBER filtering technique in interference-limited communication

systems.

5.3 Multiantenna Aided Minimum Bit Error Rate Multiuser Detection

In an effort to further increase the achievable system capacity, antenna arrays can be employed for support-

ing multiple users in a space division multiple access (SDMA) communications scenario. To gain insight

into the multiuser-supporting capability of an SDMA system, it is useful to draw some comparisons with

CDMA multiuser systems. In a CDMA system, each user is separated by a unique user-specific spreading

code. In contrast, an SDMA system differentiates each user by the associated unique user-specific channel

impulse response (CIR) encountered at the receiver antennas. In a simplistic but conceptually appealing

interpretation, one could argue that the unique user-specific CIR plays the role of a user-specific CDMA

signature. In this analogy the CIR-signatures are not orthogonal to each other, but this is not a serious

limitation, because even orthogonal spreading codes become non-orthogonal upon convolution by the CIR.

However, owing to the non-orthogonal nature of the CIRs, an effective multiuser receiver is required for

separating the users in an SDMA system. We consider the multiple receiver-antenna aided receiver struc-

ture based on the temporal reference approach, i.e. having training. The most popular design is constituted

by the MMSE solution. However, as demonstrated in the previous section for CDMA systems, minimising

the mean square error does not guarantee that the BER of the system is also minimised. The publications

[50],[55],[56] have developed an adaptive multiantenna aided MBER multiuser detection technique.

The journal paper [50] considered a multiantenna system where the antennas have close spacing, typi-

cally half the wavelength, and hence the CIRs encountered at the receiver antennas are correlated. Adaptive

MBER beamforming is developed in [50] as an example of the general adaptive MBER filtering technique

for interference-limited communication systems. It is demonstrated that MBER beamforming has signifi-

cant advantages over MMSE beamforming in a so-called overloaded system, where the number of the users

supported is more than the number of the receiver antennas. For an overloaded system, the BER performance

30



of the MMSE design may break down, owing to the lack of sufficient degrees of freedom to “null” all the

interfering users. The MBER design in contrast is often capable of achieving the desired linearly separable

property and therefore guaranteeing an adequate BER performance. The publication [55] derived an MBER

multiuser detector designed for SDMA aided orthogonal frequency division multiplexing (OFDM) systems.

Coupled with an adaptive estimation of the frequency domain channel transfer function (FDCHTF) ma-

trix, this novel MBER multiuser detector constitutes a state-of-the-art adaptive technique for SDMA aided

OFDM communication systems. The work in [56] investigated genetic algorithm (GA) assisted error prob-

ability optimisation for adaptive beamforming. The motivation of this work is that the BER cost function

is generally highly complex, and gradient-based optimisation often requires careful initialisation and tun-

ing of the algorithmic parameters in order to ensure the convergence to a global minimum. To circumvent

these implementation challenges, the GA offers an attractive means for the block-data based direct minimi-

sation of the BER of the beamformer. One of my recent major research efforts has been focused on the

development of novel adaptive receiver structures for SDMA communication systems, including space-time

equalisation techniques for interference-limited systems. At the time of writing this submission, significant

advances have been made and the results have been submitted for journal publications2.

6 Symbol-Decision Based Nonlinear Receivers for Communication Systems

In Chapter 5, linear receiver structures were considered. A linear receiver benefits from a low computa-

tional complexity but also exhibits an inherently limited capability. Specifically, a linear receiver employs a

linear classifier and hence can only form a linear decision (classification) boundary. Thus, linear receivers

only perform adequately, when the different classes of the underlying noise-free signal states can be sepa-

rated by a linear decision boundary. This is referred to as a linearly separable scenario. The output phasor

constellation of a severely dispersive and interference limited communication system may not always be

linearly separable. Even for linearly separable phasor constellations, the optimal decision boundary is in

general nonlinear. Hence, a nonlinear receiver structure may offer significant performance gains over a

linear one, although usually at the cost of an increased complexity. There are two basic strategies for non-

linear receiver structures, namely sequence detection that estimates the entire transmitted symbol sequence

as a whole and symbol based detection that makes decisions on a symbol-by-symbol basis. The optimal

sequence estimation technique is the maximum a posteriori probability sequence estimation method, which

provides the truly optimal performance. In practice, maximum likelihood sequence estimation (MLSE) pro-

vides a performance almost indistinguishable from that of the optimal maximum a posteriori probability

sequence estimation. The high implementation complexity and deferring decisions associated with the se-

quence estimation strategy are however often unacceptable in many practical communication systems. An

alternative detection strategy is to make symbol-by-symbol decisions based on the information provided

by a finite-memory receiver. We note that the linear receiver discussed in the previous chapter is based on

this finite-memory symbol-decision based structure. A symbol-decision based nonlinear receiver can thus

be viewed as a nonlinear classifier subject to real-time detection constraints. The optimal symbol-decision

2S. Chen, N.N. Ahmad and L. Hanzo, “Adaptive minimum bit error rate beamforming,” IEEE Trans. Wireless Communications,
to appear, 2005.

S. Chen and L. Hanzo, “Space-time decision feedback equalization assisted multiuser detection for multiple antenna aided SDMA
systems,” submitted to IEEE Trans. Wireless Communications, 2005.
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based method is known to be the Bayesian symbol-decision solution. My research in the field of nonlinear

receivers is mainly concentrated on the symbol-decision based structure for practical purposes.

The publications [57]-[76] in the submission cover various issues in nonlinear receiver design, ranging

from novel receiver structures, adaptive algorithms and establishing their connection with neural network

based classifiers to efficient performance evaluation and implementations. My novel contributions in this

important research area can be summarised as follows:

1. Interpret the optimal Bayesian symbol-decision solution in the context of channel equalisation and

derive the optimal Bayesian decision feedback equaliser (DFE). Explain the linkage between the

Bayesian equaliser and the radial basis function (RBF) neural network, as well as develop a range of

efficient adaptive algorithms for the adaptive implementation of the Bayesian equalisation solution.

2. Conduct a comprehensive simulation study involving realistic mobile fading communication environ-

ments to evaluate the adaptive Bayesian symbol-decision DFE, and conclusively demonstrate that it

has the ability to outperform the adaptive MLSE. This is particularly interesting because the Bayesian

DFE is known to be inferior to the optimal MLSE for transmission over time-invariant channels.

3. Develop efficient importance sampling simulation techniques for evaluating the symbol error rate

(SER) of the optimal Bayesian DFE, and derive a novel method for the reduced-complexity imple-

mentation of the Bayesian equalisation solution.

4. Extend the concept of Bayesian symbol-decision based nonlinear equalisation into the generic Bayesian

symbol-decision multiuser receiver for interference limited communication systems, including CDMA

and multiantenna aided SDMA systems.

My detailed research works in nonlinear receiver design are given below with reference to the publica-

tions [57]-[76].

6.1 Single-User Nonlinear Channel Equalisation

By viewing channel equalisation as a nonlinear classification problem, the journal paper [57] derived the

optimal symbol-decision equalisation solution for binary phase shift keying (BPSK) modulation and defined

the terminology Bayesian equaliser. My work [57] also points out that the Bayesian equaliser and the RBF

network have an identical structure and therefore establishes the inherent linkage with the research involving

neural network based equalisers. Two strategies were proposed for the adaptive implementation of the

Bayesian equaliser. The first technique, known as the indirect method, identifies the channel first and then

calculates the equaliser parameters, namely the RBF centres or channel state vectors, based on the estimated

channel impulse response (CIR). The second method directly estimates the RBF centres using a supervised

clustering algorithm. The journal paper [58] extended the work of [57] to the general multilevel modulation

scheme and proposed a novel adaptive Bayesian DFE. A drawback of the nonlinear Bayesian solution is

its high computational complexity due to the large number of channel states associated with the underlying

conditional probability distributions, particularly in the context of multilevel signalling. The work [58] has

shown that the decision feedback can significantly reduce the number of states associated with the Bayesian
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solution and therefore substantially reduces the computational complexity. Moreover, it is demonstrated that

the decision feedback makes the underlying classification problem much simpler. This clearly explains why

the Bayesian DFE outperforms the Bayesian equaliser using no decision feedback.

In general, communication systems are modelled by considering complex-valued channels in conjunc-

tion with complex-valued modulation schemes, such as quadrature phase shift keying (QPSK) or quadra-

ture amplitude modulation (QAM). The journal paper [59] proposed a novel complex-valued RBF network

architecture and developed two learning algorithms for finding the RBF centres. The complex-valued or-

thogonal least squares (OLS) algorithm, an extension of the conventional real-valued one, is a batch-based

learning algorithm capable of constructing an adequate network structure, while a complex-valued version

of the hybrid clustering and least squares algorithm offers the benefits of real-time adaptation capability.

The proposed complex-valued RBF network has a single-hidden-layer based architecture. The inputs and

outputs of the RBF network are both complex-valued. Each node in the hidden layer has a real radially

symmetric response spread around the complex-valued node centre vector. The output layer contains a set

of complex-valued linear combiners associated with complex-valued connection weights. This RBF net-

work can be viewed as a nonlinear mapping from the complex-valued multi-dimensional input space onto

the complex-valued multi-dimensional output space, and it provides a powerful tool for nonlinear signal

processing involving complex-valued signals. In many applications, the real-valued response of a hidden

node in this complex-valued RBF network has an intrinsic physical interpretation – it actually realises some

conditional density function of the underlying data generating mechanism, and this is further exploited in

the companion journal paper [60], which developed both the Bayesian equaliser using no decision feedback

and the Bayesian DFE for complex-valued channel equalisation involving QPSK modulation. The work

[60] has shown that the optimal Bayesian equaliser designed for complex-valued channels and modulation

schemes is structurally equivalent to the complex-valued RBF network introduced in [59] and exploited this

intimate connection to develop fast training algorithms for implementing the Bayesian equaliser based on

the complex-valued RBF network. A novel strategy of utilising decision feedback was employed to improve

the equaliser performance as well as to reduce its computational complexity.

In real-life mobile communication systems, typically fast frequency-selective fading environments are

encountered, and it is critical that an equaliser is able to adapt its taps rapidly to changing channel con-

ditions. The main objective of my journal paper [61] is to carefully investigate the performance of the

adaptive Bayesian DFE under time-dispersive mobile fading channel environments. For stationary chan-

nels, it is well-known that the performance of the adaptive Bayesian DFE is inferior to that of the adaptive

MLSE. This often leads to the question of why “inventing” the Bayesian symbol-decision equalisers. The

work [61] also aims to address this issue by comparing both the adaptive Bayesian DFE and the adaptive

MLSE under the same dispersive fading conditions commonly found in real-life mobile communication

systems. A computer simulator was created to provide realistic dispersive and fast fading channel condi-

tions3, and an extensive simulation study was carried out to evaluate the adaptive Bayesian DFE, with the

conventional (linear) adaptive DFE and the adaptive MLSE used as two benchmarkers. The conclusions of

this simulation study are as follows. In terms of implementation and computational complexity, the adap-

tive Bayesian DFE is slightly more complex than the conventional DFE, but is of lower complexity than

the adaptive MLSE. In terms of its symbol detection error rate, the adaptive Bayesian DFE dramatically

34-QAM was used and the system design parameters were comparable to the GSM specifications
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outperforms the conventional DFE. Moreover, for severely fading multipath channels, the adaptive MLSE

exhibits a significant degradation in comparison to the optimal performance and becomes inferior to the

adaptive Bayesian DFE. This observation is not entirely surprising. For time-varying channels, the MLSE

accumulates tracking errors in its channel estimate, owing to its sequence detection nature, and this causes a

serious performance degradation. Moreover, employing decision-directed adaptation during the actual data

transmission is essential for transmission over rapid time-varying channels. But the long decision delay

associated with the MLSE makes decision-directed adaptation ineffective. By contrast, the Bayesian DFE

makes decision on a symbol-by-symbol basis and therefore does not accumulate tacking errors in its chan-

nel estimation. Furthermore, due to its short fixed decision delay, the Bayesian DFE suffers less from the

time delay in channel estimation and hence can exploit decision-directed adaptation more effectively. In

summary, the Bayesian DFE has both implementation and performance advantages over the theoretically

optimal MLSE for transmission over frequency-selective fast fading mobile channels.

The publication [62] is a survey of linear and nonlinear channel equalisation techniques. It unifies var-

ious previous works using neural networks under the framework of the Bayesian equalisation solution. By

adopting a Bayesian approach, it is explained why the nonlinear classification capability of neural networks

is desired for the equalisation process. Furthermore, this geometric interpretation of the equalisation process

allows us to choose the most appropriate network structure for equalisation applications. The RBF network

is shown to realise precisely the Bayesian equalisation solution. A further advantage of the Bayesian ap-

proach is that decision feedback can be utilised to reduce the associated processing complexity. The adaptive

Bayesian equaliser based on the RBF network offers significant performance improvements over the tradi-

tional adaptive linear scheme at the cost of a small increase in computational complexity. Typically, several

dB signal to noise ratio improvements can be obtained by the former at the error probability of 10−4. More-

over, the required training time of the adaptive Bayesian equaliser is comparable to that of the adaptive

linear scheme. Although the MLSE achieves the best theoretical performance when the channel is known,

it suffers from a serious performance degradation in a highly nonstationary propagation environment. In

contrast, the adaptive Bayesian equaliser is robust and may outperform the adaptive MLSE in this practical

situation. My more recent journal paper [63] exploits the phasor classification based nature of the equal-

isation process and points out that the recent advances in the state-of-the-art sparse kernel classification

algorithms adopted from machine learning offer viable design alternatives for implementing batch-based

adaptive Bayesian equalisers.

6.2 Nonlinear Receivers in the Presence of Co-channel Interference

In frequency division multiple access/time division multiple access (FDMA/TDMA) cellular mobile sys-

tems, co-channel interference is the dominant limiting factor influencing the system’s design and perfor-

mance. The journal papers [64],[65] investigated adaptive equalisation in the presence of both intersymbol

interference (ISI) as well as co-channel interference (CCI). In the work [64], the RBF network was designed

to realise a sophisticated nonlinear adaptive equaliser capable of operating under poor signal to interfer-

ence ratio (SIR) and signal to noise ratio (SNR) conditions. A two-stage learning strategy was derived by

exploiting the nature of the data structure and this enabled the RBF network to adaptively implement the

optimal Bayesian symbol-decision based equaliser. At the first stage of the learning, a supervised clustering

algorithm was employed to model the effects of the channel ISI. This learning stage is extremely simple and
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robust, and it is capable of producing a good approximation to the optimal Bayesian solution. At the second

stage of the learning, the network structure was expanded and an unsupervised clustering algorithm was

incorporated into the learning procedure so that the network became capable of modelling the effects of the

CCI, closely approximating the full optimal symbol-decision equalisation solution. The number of kernels

used by the full Bayesian equaliser in the presence of both the channel ISI and CCI was equal to the product

of the numbers of channel and co-channel states. This may become excessive for certain practical sys-

tems. The study [64] has shown that even by using the first-stage learning only, which considers modelling

the channel states only, the RBF equaliser can effectively exploit the difference between a non-Gaussian

interference signal and the Gaussian noise to the benefit of the achievable equalisation performance.

The high computational complexity associated with the full Bayesian solution in the presence of both

ISI and CCI can be significantly reduced by utilising decision feedback. Moreover, the Bayesian DFE often

considerably outperforms the Bayesian equaliser. The journal paper [65] derived an adaptive Bayesian DFE

which incorporates CCI compensation. By exploiting the structure of the CCI, this adaptive Bayesian DFE

is able to distinguish an interfering signal from white noise and utilises this information to improve its

performance. The adaptive implementation of this scheme includes identifying the channel model using

the least mean square algorithm and estimating the co-channel states. It is shown that only dominant or

significant co-channel states have to be estimated, and this further reduces the associated computational

complexity. Moreover, to speed up the learning, a novel scheme was proposed which estimates the scalar co-

channel states and then maps them into the vector states required by the Bayesian DFE. Further interesting

results have been obtained in comparing the performance of the adaptive Bayesian DFE and the adaptive

MLSE in the presence of strong CCI. The adaptive Bayesian DFE employing the proposed simple scheme

to compensate for the CCI was shown to outperform the adaptive MLSE that treats the CCI as an additional

coloured noise source.

6.3 CDMA Nonlinear Multiuser Detection

For interference limited communication systems, such as CDMA systems, the underlying channel output

phasor constellation may become linearly inseparable. A linear multiuser detector (MUD) cannot achieve

adequate performance and hence a nonlinear MUD is preferred in such a situation. The optimal symbol-

decision based MUD is the Bayesian MUD, which is computationally expensive to realise as it requires the

knowledge of both the desired user’s states as well as the interfering users’ states. One way of adaptively

implementing the Bayesian MUD is to estimate the desired user’s channel impulse response (CIR) as well as

the interfering users’ CIRs. In the downlink case, however, the receiver only has access to the desired user’s

training sequence and hence it is difficult to estimate the interfering users’ CIRs unless for example the

blind subspace based eigenvalue decomposition aided solutions are employed. The employment of decision

feedback, although normally very effective in terms of complexity reduction, has little use in reducing the

computational load associated with downlink detection applications. A possible strategy is to estimate the

interfering users’ states using unsupervised clustering. Such an unsupervised clustering process is typically

complex and has a limited multiuser resolution, particularly when the number of interfering users is large.

Alternatively, a RBF MUD can be constructed by using only the desired user’s states, with some degradation

with respect to the optimal Bayesian performance.
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To circumvent the difficulties in the adaptive implementation of the Bayesian MUD in the context of

downlink applications, the journal paper [66] proposed a batch-based RBF MUD, which can be constructed

by the support vector machine (SVM) algorithm based only on a block of the received signals and corre-

sponding desired user’s training symbols. The SVM classification is a general machine learning approach

that is capable of constructing a sparse RBF or kernel classifier from a large training data set, while having

an excellent generalisation capability. The simulation results provided in [66] demonstrated that the SVM

MUD can closely approximate the Bayesian single-user performance. My experience with the SVM MUD

indicates however that the size of the detector may not be always small enough for practical purposes. Other

kernel classification algorithms, such as the relevance vector machine (RVM), can alternatively be used to

construct a sparser RBF MUD centre set with similarly good generalisation performance to that of the SVM

method. In particular, the orthogonal forward selection (OFS) algorithm based on the so-called Fisher ra-

tio class separability measure, which was described in Section 3.2, offers further computational advantages

in constructing a sparse RBF MUD centre set. This will be demonstrated in the next section, where the

employment of multiuser detection is considered for multiantenna aided SDMA communication systems.

6.4 Multiantenna Aided Space-Time Nonlinear Receivers

Nonlinear multiuser detection was considered in [41],[42] in the context of multiple-receive-antenna assisted

SDMA communication systems. A beamforming structure was employed in these studies, namely, antenna

elements having a typical spacing of half a wavelength. In the context of SDMA, the spatial separation

in terms of the angle of arrival between the desired signal and the closest interfering signal dominates the

achievable system performance and hence the system’s user capacity. When this angular separation is below

a certain threshold, linear beamforming ultimately fails, since the signals transmitted by the individual users

become linearly inseparable. In conjunction with nonlinear spatial processing the achievable system capac-

ity can be significantly increased, since an adequate performance can be maintained even in case of a low

angular separation, compared to linear beamforming. The journal papers [41],[42] investigated an adaptive

implementation of the beamforming based Bayesian MUD using the RBF network structure. The OFS al-

gorithm based on the Fisher ratio class separability measure was employed to construct a parsimonious RBF

detector from a block of training data, which can closely approximate the optimal Bayesian performance.

This novel block-data based construction algorithm has the same excellent generalisation capability as other

state-of-the-art kernel modelling methods, such as the SVM and RVM, but additionally offers considerable

computational advantages over the SVM and RVM techniques.

The publication [67] considered the generic SDMA communication system using multiple receive anten-

nas, where each user and each receiver antenna is characterised by a user-antenna specific channel impulse

response (CIR), and developed a RBF network assisted space-time equalisation scheme for dispersive fading

channels. The uplink scenario was investigated and, therefore, decision feedback was employed to improve

the MUD’s performance as well as to reduce the complexity of the Bayesian MUD. By estimating the CIRs

associated with every user, the optimal Bayesian space-time decision feedback equaliser (ST-DFE) was con-

structed. Simulation was carried out in conjunction with dispersive CIRs faded at the normalised Doppler

frequency of 0.0005. A Kalman filter was employed for channel estimation, which predicts the CIR coeffi-

cients needed in the feedforward section and estimates the channel for the feedback section. The simulation

results obtained clearly demonstrated that the RBF network assisted ST-DFE receiver structure outperforms
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the conventional linear ST-DFE receiver structure and it is less sensitive to both error propagation and chan-

nel estimation errors.

6.5 Importance Sampling Simulation for Performance Evaluation

For the class of equalisers based on a symbol-by-symbol decision with decision feedback, the maximum a

posteriori probability equaliser with decision feedback or the Bayesian DFE is known to provide the best

performance. The complexity of this optimal Bayesian solution, however, increases exponentially with the

CIR length and with the size of the modulated symbol constellation. Furthermore, due to its complicated

structure, the performance analysis of the Bayesian DFE is usually based on conventional Monte Carlo

simulation, which is computationally costly even for high-BER, low signal to noise ratio (SNR) conditions.

To obtain a reliable BER estimate, at least 100 errors should occur during a simulation in order to maintain

a sufficiently low estimation error variance. Thus, for a BER level of 10−6, at least 108 data samples

are needed. Investigating the Bayesian DFE, when a BER performance better than 10−6 is required, is

computationally very demanding using a conventional Monte Carlo simulation.

Importance sampling (IS) refers to a simulation technique, which aims to reduce the variance of the error

rate estimator. By reducing the variance of the error rate estimator, IS can achieve a given precision from

shorter simulation runs, compared with a conventional Monte Carlo simulation. The basic idea behind IS is

that certain values of the input random variables in a simulation have more impact on the error probability

being estimated than others. If these “important” values are emphasized by sampling more frequently, the

estimator variance can be reduced. The fundamental issue in IS simulation is then the choice of the biased

distribution, which encourages the exploration of the important regions of the input variables. One of the

most effective IS techniques is the mean translation approach, where the distribution is moved toward the

erroneous decision region. This usually corresponds to shifting the density to a decision boundary. It is

highly desired that a chosen IS technique is asymptotically efficient (AE). Loosely speaking, an AE esti-

mator requires a number of simulation trials, which grows lower than exponentially, as the error ratio tends

to zero. Thus, when AE estimators are available, it is realistic to attempt extremely low error probability

simulations.

The application of a mean-translation based IS technique to practical simulation systems is by no means

a straightforward and easy task. Iltis developed a randomized bias technique for the IS simulation of

Bayesian equalisers operating without a decision feedback in:

R.A. Iltis, “A randomized bias technique for the importance sampling simulation of Bayesian equalizers,”

IEEE Trans. Communications, Vol.43, No.2/3/4, pp.1107–1115, 1995.

This IS simulation method however can only guarantee asymptotic efficiency for certain channels. The

novel contribution of my journal papers [72],[73] is the derivation of a mean-translation based IS technique

for the performance evaluation of the Bayesian DFE, which achieves asymptotic efficiency. The publica-

tion [72] considered the IS simulation of the Bayesian DFE using binary signalling. By viewing decision

feedback as a geometric translation of the channel output constellation space into a reduced dimensional

space by removing the ambiguity associated with the symbols that were already decided upon, the Bayesian
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DFE is “converted” to the Bayesian equaliser having no feedback in the translated space. Hence, we can

achieve the desired property that the two subsets associated with the opposite-class channel output states

are always linearly separable. A design procedure was developed, which determines the set of hyperplanes

that form the asymptotic Bayesian decision boundary and constructs the convex regions associated with

individual states by intersecting hyperplanes that are reachable from the states concerned4. This provides

the appropriate bias vectors for the simulation density to ensure asymptotic efficiency of the IS simulation.

The journal paper [73] further extended these results to general multi-level modulation schemes. Based on

a geometric translation of the multiple subsets of noise-free channel output states, the asymptotic Bayesian

decision boundary separating any two neighbouring signal classes can be deduced. Furthermore, by ex-

ploiting the symmetric nature of the distribution within each subset of channel states, the symbol error rate

of the Bayesian DFE applied to generic multi-level constellation was shown to be a scaled function of the

equivalent “binary” Bayesian DFE’s BER evaluated for any two neighbouring signal subsets. These two

properties enable the extension of the IS simulation technique originally derived for the binary Bayesian

DFE to the general multi-level constellation case.

6.6 Efficient Reduced-Complexity Implementation of Optimal Nonlinear Receivers

The optimal maximum a posteriori probability symbol-decision solution for the generic nonlinear receiver

structure offers significant performance gains over the simple linear receiver structure, although this is

achieved at the cost of a considerable increase in computational complexity. In single-user channel equal-

isation applications, for example, the complexity of the Bayesian solution increases exponentially with

the channel impulse response (CIR) length and the number of bits/symbol. For interference limited com-

munication systems, the computational requirements associated with the optimal Bayesian solution may

become prohibitive. The significance of my publications [74]-[76] is that they derived an efficient reduced-

complexity implementation of the optimal Bayesian equalisation solution, which has a computational com-

plexity equal to the sum of a few linear equalisers’ complexity. Geometrically, the linear equaliser or conven-

tional DFE partitions the observation space with the aid of a hyperplane using a linear discriminant function,

which requires only a few multiplications and additions. The root of the high complexity associated with

the Bayesian equaliser or DFE lies in the fact that the Bayesian solution partitions the observation space us-

ing a hypersurface and the optimal nonlinear discriminant function required to determine this hypersurface

is expensive to compute. It can be shown that asymptotically, as the SNR tends to infinity, the Bayesian

decision hypersurface becomes piecewise linear and is made up of a set of hyperplanes. In practice, at large

rather than infinite SNRs, the performance difference between using the Bayesian decision boundary and a

piecewise-linear approximation becomes negligible. This asymptotic property was exploited for example in

the derivation of an importance sampling simulation technique developed for the performance evaluation of

the Bayesian solution, presented in the previous section. It also motivated my research on using multiple

hyperplanes to partition the signal space [74]-[76].

My journal paper [74] considered the case of the Bayesian DFE in conjunction with binary signalling.

The design procedure is simple yet effective. It was shown that each component hyperplane, which forms

part of the asymptotic Bayesian decision boundary, is determined by a single pair of the closest opposite-

4A hyperplane is reachable from a state if a bias vector can be constructed which shifts the state to the hyperplane, see [72]
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class channel output states, which were hence termed a dominant state pair. The number of the dominant

state pairs or component hyperplanes is determined purely by the CIR. Thus, the design procedure involves

automatically finding the set of these dominant state pairs and constructing a separating hyperplane for

each pair. The resultant equaliser consists of a set of linear discriminant functions and a Boolean logic

function. This simple equaliser structure asymptotically realises the optimal Bayesian solution. In practice,

for small to moderate SNRs, the performance degradation in comparison to using the full Bayesian solution

is often negligible. The attainable complexity reduction capability can be demonstrated by the numerical

example given in [74], where the CIR consists of 4 taps and a binary signalling scheme is employed. The

full Bayesian DFE detector requires 80 multiplications, 127 additions and 16 exp(•) function evaluations to

make a symbol decision. By contrast, the multiple-hyperplane design procedure identifies seven hyperplanes

that form the asymptotic Bayesian decision boundary for this example. The resultant multiple-hyperplane-

based detector requires 28 multiplications and 28 additions to make a symbol decision, which is seven times

of the complexity required by the conventional (linear) DFE but substantially lower than that of the full

Bayesian design.

The journal paper [75] extended the design to the Bayesian DFE contrived for the general multi-level

modulation scheme. Two properties, the shifting property and symmetric property, facilitate the extension

of the design procedure from the binary Bayesian DFE to the generic case. First of all, decision feedback

ensures that the underlying equalisation problem is linearly separable. The shifting property manifests the

following fact. Any two neighbouring subsets of channel states, corresponding to the two neighbouring sym-

bol points in the symbol constellation, are connected in the observation space by the “reverse” channel tap

vector5. The symmetric property implies that the phasors of each subclass of channel states are distributed

symmetrically around the subclass centre. Thus, the design procedure can be based on any two neighbour-

ing subclasses. Furthermore, the reduction in detector complexity achieved with the aid of this signal space

partitioning approach is more significant for high-order multi-level modulation schemes, compared to the

binary one. In [75], a numerical example is used to demonstrate this complexity reduction capability, where

the channel has 3 taps and a 4-ary modulation scheme is employed. For this particular example, the design

procedure constructs a five-hyperplane based detector. The full Bayesian DFE requires 380 additions, 256

multiplications and 64 exp(•) evaluations to detect a symbol. The multiple-hyperplane detector, however,

needs only 25 additions and 15 multiplications to make a decision, which is less than 6% of the complexity

required by the full Bayesian DFE.

7 Blind Equalisation

To cope with unknown and time-varying channel conditions, often a supervised learning strategy is adopted.

During the training period, a predefined training symbol sequence is sent by the transmitter. A (synchro-

nised) receiver generates this training sequence locally and uses it as the reference to estimate the CIR and/or

adapt the receiver equaliser. Training “wastes” the precious system bandwidth and is to be avoided if pos-

sible in order to improve the effective system throughput. Furthermore, in some communication systems,

such as multi-point communication networks, using regular training is impossible. In such situations, an un-

supervised learning strategy, commonly known as blind equalisation, must be adopted. In blind adaptation

5Let the tap vector be a = [a0 a1 · · · an−1]
T . Then, the reverse tap vector is defined by arev = [an−1 · · · a1 a0]

T
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the receiver must estimate the CIR and/or adapt the equaliser purely based on the received signal samples,

with the aid of some knowledge of statistics regarding the transmitted data symbols. A blind equaliser must

rely on some form of higher-order statistics, since the second-order statistics cannot resolve the ambiguity of

the channel phase response. Blind equalisation techniques can be conveniently divided into three families.

The first family of blind adaptive algorithms constructs a transversal or finite-duration impulse response

(FIR) filter, i.e. a linear equaliser, which aims for removing the effects of the CIR. These blind equalisers,

commonly referred to as Bussgang algorithms, typically adjust the equaliser coefficients recursively by op-

timising some nonconvex criterion using a stochastic gradient algorithm. A Bussgang-type blind equaliser

typically has a low computational complexity, but suffers from the drawback of slow convergence. The

second family of blind equalisation algorithms identifies a channel model using techniques based on higher

order cumulants or the equivalent higher order spectra. Once the CIR has been obtained, it can be employed

to design an equaliser. Because the process of channel estimation is separated from channel equalisation, a

variety of existing equalisation schemes can be utilised. This second class of blind equalisers, although very

general and powerful, requires a large number of received data samples and extensive computations to esti-

mate the higher order cumulants. The third family of blind equalisation schemes adopts the principle of joint

maximum likelihood channel estimation and data detection. This class of blind equalisers is thus capable of

offering optimal performance, but it is computationally expensive if not prohibitive. A major advantage of

this third family is that relatively few signal samples are required to achieve adequate equalisation.

The publications [77]-[82] represent my research in this important field of blind equalisation, and my

contributions have spread across the whole spectrum of blind equalisation problems. Specifically, the journal

papers [77]-[79] provide my novel contributions to the Bussgang class of blind equalisers, while the journal

paper [80] summarises my work in the higher-order cumulant based family of blind equalisation schemes.

Finally, the publications [81],[82] offer my generic results focussed on the third class of blind equalisation

techniques using the joint maximum likelihood estimation of the CIR and data. These contributions are

given below in more detail.

7.1 Low-Complexity Blind Equalisation

Blind equalisation improves the system’s effective bandwidth efficiency by avoiding the use of a training se-

quence. Furthermore, using regular training for multi-point communication systems is infeasible and blind

equalisers provide a practical means of combating the detrimental effects of the channel intersymbol inter-

ference (ISI) in such systems. For communication systems employing high bandwidth-efficiency quadrature

amplitude modulation (QAM) signalling, the constant modulus algorithm (CMA) based FIR equaliser is by

far the most popular blind equalisation scheme. It imposes modest computational requirements and hence

readily meets real-time computational constraints. The CMA is also robust to imperfect carrier recovery.

A particular problem of the CMA, however, is that it only achieves a moderate level of mean square error

(MSE) after convergence, which may not be sufficiently low for the system to obtain an adequate BER per-

formance. A possible solution is to switch to a decision directed (DD) adaptation, which should be able to

minimise the residual CMA steady state MSE. However, in order for such a reconfiguration to be successful,

the CMA’s steady state MSE should be sufficiently low. In practice, such a low level of MSE may not always

be achievable by the CMA. The convergence speed of the CMA is also typically slow.
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My journal paper [77] proposed a novel low-complexity blind adaptive scheme for high-order M -QAM

communication systems. The proposed blind algorithm is based on the idea of maximising the “a posteri-

ori” probability density function (PDF) of the equaliser output as a function of the equaliser weights. To

accomplish a fast as well as reliable convergence and to keep the complexity to a minimum, a multi-stage

procedure is adopted. At the first stage, a 4-cluster PDF model is adopted as though the data constellation

is an equivalent 4-QAM one. The aim of this stage is to classify the equaliser outputs correctly into one

of the four quadrants in the complex plane with a high probability. At the second stage, a 16-cluster PDF

model is used and it is divided into 4 sub-sets, one for each quadrant. If the equaliser output appears in a

particular quadrant, the corresponding 4-cluster sub-model is used to adapt the equaliser weights. After the

stage two, the complex plane is divided into 16 square regions, each containing a 4-cluster sub-model. The

procedure is continuing until after the log2

√
M -th stage, when the correct data constellation is restored.

The computational complexity of this multi-stage blind equaliser, quantified in terms of the number of mul-

tiplications and additions per weight update, is only slightly more than that of the simple CMA-based blind

equaliser. Simulation results presented in [77] show that this blind equaliser has a much faster convergence

speed and better steady-state equalisation performance than the CMA. However, a drawback of this blind

equaliser is that its adaptive process requires log2

√
M switching operations and each stage of adaptation

needs a different set of algorithmic parameters.

In an effort to circumvent the difficulties in deciding whether the CMA equaliser can be switched to and

when it can be switched to a DD adaptation, De Castro and co-workers proposed an interesting solution in:

F.C.C. De Castro, M.C.F. De Castro and D.S. Arantes, “Concurrent blind deconvolution for channel equal-

ization,” in Proc. ICC’2001 (Helsinki, Finland), June 11-15, 2001, Vol.2, pp.366–371.

Rather than switching to a DD adaptation after the CMA has converged, De Castro and co-workers proposed

to operate a DD equaliser concurrently with a CMA equaliser. The weight adaptation of the DD equaliser

follows that of the CMA equaliser, and the DD adjustment only takes place if the CMA is seen to achieve

a successful adjustment with a high probability. At a cost of slightly more than doubling the complexity

of the simple CMA, this concurrent CMA and DD equaliser is shown to obtain a dramatic improvement

in equalisation performance over the CMA. My journal paper [78] provided a comparative study of this

combined CMA and DD equaliser and my multi-stage blind equaliser discussed in the previous paragraph,

in the fractionally-spaced (i.e. sampling faster than symbol rate) equalisation context. The conclusions

obtained in this comparative study are as follows. The multi-stage blind equaliser is computationally simpler,

has a faster convergence rate and achieves better steady-state equalisation performance than the combined

CMA and DD blind equaliser. An advantage of the combined CMA and DD blind equaliser is that it has a

fewer number of algorithmic parameters and is much easier to tune than the multi-stage blind equaliser.

My journal paper [79] proposed a novel combined CMA and soft decision directed (SDD) blind equaliser,

which offers a state-of-the-art technique for low-complexity blind equalisation of high-order QAM schemes.

In the SDD sub-equaliser, a local 4-cluster PDF model is used to approximate the PDF of the equaliser out-

put. The operations of the CMA and SDD sub-equalisers occur in a truly concurrent manner, and there is no

need to compute an intermediate output after the CMA adaptation, as the combined CMA and DD scheme

does, to decide whether weight-adaptation of the DD equaliser can take place. Rather than being committed

to a single hard decision as the DD scheme does, alternative decisions are also considered in a local region
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that includes this hard decision, and each tentative decision is weighted by an exponential term, which is

a function of the distance between the equaliser’s soft output and the associated tentative decision. This

soft decision nature enables a simultaneous update of both the constituent equalisers without serious error

propagation, while simplifying the scheme’s operation. This also has an effect of improving the achievable

convergence speed. This SDD scheme in fact corresponds to the last stage of the multi-stage blind equaliser

discussed previously. This combined CMA and SDD scheme is computationally simpler than the concurrent

CMA and DD one, and just like the latter, the combined CMA and SDD blind equaliser is easy to tune. Ex-

tensive simulation results have shown that both the blind equalisers have the same steady-state equalisation

performance but the combined CMA and SDD equaliser has a faster convergence than the latter.

7.2 Optimal Blind Channel Identification with Higher-Order Cumulant Fitting

For the family of blind equalisers based on higher-order cumulant fitting techniques, usually a two-stage

strategy is adopted, which first identifies a channel model using higher-order cumulant (HOC) fitting algo-

rithms and then employs the estimated channel model to design an equaliser. The key stage of this approach

is its ability to obtain an accurate channel estimate. Once the CIR is available, a variety of existing equaliser

design methods can be employed, ranging from a simple linear inverse filter to a sophisticated maximum

likelihood sequence estimator, depending on the required balance tradeoff between the achievable perfor-

mance and the complexity imposed. The typical cost functions of HOC fitting are, however, multimodal,

and conventional gradient optimisation techniques may converge to locally optimal solutions, unless a good

initial value of the channel parameters is provided, which is not always possible. The journal paper [80] in

the submission is one of the first papers in the literature to propose the use of a genetic algorithm (GA) for

optimal blind channel identification in conjunction with HOC fitting. More specifically, in the work [80], a

computationally efficient micro GA implementation is adopted to optimise the fourth-order cumulant-based

cost function.

Some observations can readily be drawn from the study of [80]. In the simulation, the proposed micro

GA-based scheme always approaches the globally optimal channel estimate and the optimisation process

converges rapidly. Compared to other existing methods of HOC fitting, the proposed technique appears

to be more accurate and robust. This is demonstrated by the associated very small standard deviations of

the estimated CIR taps over different runs with randomly chosen channel populations and for a wide range

of channel conditions. For other existing methods of HOC fitting, it is a common phenomenon that the

estimation accuracy reduces and the estimation variance increases, as the SNR decreases. For our GA-based

method, the simulation results suggest that, at least for the channel conditions simulated, the SNR has little

effect on the achievable convergence rate and estimation accuracy. The number of cost function evaluations

required for the GA scheme to converge to a globally optimal solution was found to be typically a few

thousand in our simulations. This compares favourably to other existing schemes. If some of the CIR taps

have zero values, our method is capable of identifying them as the non-existing channel taps by providing

their estimated values at least an order smaller in magnitude than the dominant CIR taps. This is particularly

important in practice, when an over-length channel model is used in order to avoid time-consuming and

difficult model-order selection process.
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7.3 Blind Joint Maximum Likelihood Channel Estimation and Data Detection

In blind equalisation, both the CIR and the transmitted data sequence are unknown. In theory, their optimal

estimates can be obtained via the joint maximum likelihood (ML) optimisation over the CIR and the data.

The computational requirement of such a joint optimisation procedure is, however, often prohibitively large.

In practice, often suboptimal strategies or approximations are adopted. In conjunction with a known CIR, an

optimal ML solution for data detection is the maximum likelihood sequence estimation (MLSE), which can

be carried out using the Viterbi algorithm (VA). Given the data sequence, an optimal ML solution applicable

to channel estimation is constituted by the classic least squares channel estimate. A straightforward way of

carrying out joint estimation when both the CIR and the data sequence are unknown is to employ a batch

iterative process between data decoding and CIR estimation. The blind trellis search technique designed for

joint channel and data estimation may be viewed as a recursive process, where an “enlarged” VA retains

several surviving sequences and associated CIR estimates for each state of the trellis. Another interesting

batch processing technique designed for joint ML estimation is the quantised channel algorithm. It maintains

a family of candidate CIR estimates with discrete (quantised) parameters. Each CIR model is used by the VA

to tentatively decode the data, and the algorithm selects the most likely quantised CIR and data combination.

My journal paper [81] proposed a novel scheme for joint ML channel and data estimation using a GA. This

paper is one of the first research papers, which deal with the application of GA-based optimisation to joint

ML detection problems. The significance of the work [81] is that it demonstrates the effectiveness of the

GA in obtaining the optimal or near optimal solution for a joint ML estimation problem, which otherwise

would be computationally prohibitive for a conventional optimisation technique to solve.

The proposed GA-based scheme designed for blind joint ML channel and data estimation is remarkably

simple. The algorithm developed in [81] adopts a two-layer strategy for the joint optimisation over the CIR

and the data by combining the GA with the VA. At the top layer, an efficient version of the GA known as

the micro GA searches through the CIR parameter space to optimise the ML criterion. The bottom layer

consists of a number of VA units, one for each member of the CIR population. Each VA unit decodes the

data based on the given CIR model and feeds back the corresponding likelihood metric value to the GA. The

GA evolves the CIR population to find the globally optimal solution. The conclusions drawn from the study

of [81] are as follows. The proposed GA-based scheme converges consistently to a globally optimal solution

with a small estimation variance. Compared to other existing batch-type methods used for joint ML channel

and data estimation, the GA-based scheme is more robust and accurate as well as computationally more

efficient in terms of the total number of required VA evaluations. A significant advantage of this GA-based

scheme is that it requires a small number of received data samples, ranging from a few dozens to hundred,

to achieve accurate blind equalisation. The algorithm is particularly effective in combating the curse of

dimensionality associated with high-order modulation constellations.

Among the three families of blind equalisation methods, the third family based on the principle of joint

ML CIR estimation and data sequence detection is the computationally most expensive one. The scheme

presented in the publication [82] has a “low complexity” in comparison to other blind algorithms of the third

class. To achieve low complexity, this algorithm performs a joint channel estimation and symbol detection,

rather than an optimal data sequence detection. At each symbol instant, each of the possible feedforward

symbol sequences is used to produce a least mean square CIR estimate. Each of these “conditional” channel
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estimates is then employed to design a Bayesian DFE for symbol detection, and each Bayesian DFE provides

a tentative symbol decision. The final symbol decision is chosen from the set of tentative symbol decisions

as the one that is the most likely. This final detected symbol is fed back to the equaliser feedback section and

is used to update an “unconditional” channel estimate. This blind equaliser is fast, as it is computationally

much simpler than other blind algorithms based on joint channel and data estimation. The drawback of this

scheme is that it does not offer the optimal joint ML solution for blind equalisation.

8 Optimising Controller Integrity for Finite-Precision Implementations

The current controller design methodology often assumes that the controller is implemented exactly, even

though in reality a control law can only be realised in finite precision. The justification of this assumption

is usually on the ground that the plant uncertainty is the most significant source of uncertainty in the control

system. Increasingly, however, researchers have realised that the controller uncertainty has significant influ-

ence on the performance of the control system. A stable control system may achieve a lower than predicted

performance or may even become unstable, when the control law is implemented with a finite-precision de-

vice due to the finite word length (FWL) effects. This is highlighted in the context of the so-called fragility

puzzles, where some high-performance robust optimal controllers are seen to become fragile if the controller

design does not take into account the finite precision related implementation uncertainty. Ironically, these

controllers have been designed to tolerate uncertainty in the plant, and yet small perturbations of the con-

troller parameters may render the designed closed-loop system unstable. The fragility issues are strongly

related to and interconnected with the FWL controller implementation issues. Although the number of

controller implementations using high-precision floating-point processors is increasing due to their reduced

price and increasing availability, for reasons of cost, simplicity, speed, memory space and power consump-

tion, the use of fixed-point processors is still more desirable for many industrial and consumer applications,

particularly for mass market applications in the automotive and consumer electronics sectors. Furthermore,

due to their reliability and well-understood properties, predominantly fixed-point processors are used in

safety-critical systems. In conjunction with a fixed-point processor, however, the detrimental FWL effects

are markedly increased due to a reduced precision. The problem can become serious when a high sampling

rate and a high-order controller are used.

Therefore, a major concern when applying advanced control design methods to practical systems is the

reliability and achievability of the designed controller performance. Care must be exercised in implementing

robust optimal control laws, as an inappropriate realisation may result in degraded performance of the con-

trol system. This may even lead to doubts about the effectiveness of the designed control strategy and about

the benefits of advanced control techniques in general. Although there is an increasing awareness about the

detrimental FWL effects, traditionally these have rarely been accounted for in the design or implementation

of advanced control strategies. The publications [83]-[98] in the submission represent my contributions to

the research of integrated controller design under both plant and controller uncertainties. More specifically,

the contributions presented in [83]-[98] are significant because they:

1. Provide a comprehensive understanding of the FWL effects on the achievable closed-loop stability and

performance, and develop a universal approach to optimising the robustness of closed-loop stability
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and controller performance in a finite-precision implementation.

2. Develop a unified methodology for combining optimal FWL implementation requirements as well

as robust optimal controller designs, and derive an integrated design procedure for optimising the

controller’s integrity under both model uncertainty and controller implementation uncertainty.

Generally speaking, there are two types of FWL errors in the digital controller. The first one is the

perturbation of controller parameters implemented with FWL precision and the second one is the rounding

errors that occur in arithmetic operations. Typically, the effects of these two types of errors are investigated

separately for reasons of mathematical tractability. The effects of the first type of FWL errors are typically

investigated with the aid of some closed-loop stability robustness related measures. The second type of

FWL errors is usually quantified in terms of the roundoff noise gain. My research in finite-precision dig-

ital controller design covers both of these two critical aspects of FWL implementations. Below my novel

contributions are detailed with reference to the corresponding journal papers.

8.1 Closed-Loop Stability Margin Maximisation for Fixed-Point Implementation

A designed controller must first of all ensure closed-loop stability. In a finite-precision implementation,

however, the actually implemented controller parameters will differ from the designed values, due to the

associated FWL effects. If this controller parameter perturbation moves some of the closed-loop eigenvalues

across the stability boundary, the closed loop becomes unstable. The problem is particularly serious in fixed-

point implementations having short word lengths. However, losing closed-loop stability must be prevented,

which constitutes the most crucial issue in finite-precision controller design. It is known that the FWL

effects inflicted on the closed-loop stability depend on the controller realisation structure. This property can

be utilised to select an appropriate controller realisation in order to improve the robustness of closed-loop

stability under controller parameter perturbations. The journal papers [83]-[93] concentrate on solving the

generic problem of optimal controller realisation with maximum closed-loop stability margin for fixed-point

implementation.

In practice, it is vital to know when the FWL error will cause closed-loop instability. In other words,

given a specific controller realisation, we would like to know how robust the closed-loop stability will be

with respect to the controller’s parameter perturbation. This ultimately means that we would like to know the

largest open “hypersphere” in the controller perturbation space, within which closed-loop remains stable.

The size or radius of this “hypersphere” provides a true measure of the closed-loop stability robustness.

From this measure, the minimum word length required to ensure closed-loop stability for the given controller

realisation can be estimated. The optimal controller realisation in theory is defined as the one that maximises

this measure. However, how to calculate the value of this true closed-loop stability measure is still an open

problem. To circumvent this difficulty, a practical approach is to adopt approximation and derive some

computationally tractable “lower bound” of this true measure. In the classical work by Gevers and Li:

M. Gevers and G. Li, Parametrisation in Control, Estimation and Filtering Problems: Accuracy Aspects.

Springer Verlag: London, 1993
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an l2-norm FWL stability measure was formulated based on the closed-loop pole sensitivity analysis. This

l2-norm FWL stability measure is computationally tractable and can be regarded as a lower bound of the

true stability measure in some sense. In the work by Gevers and Li, a practical design framework for the

optimal controller realisation problem has been developed based on this stability robustness measure.

8.1.1 Optimal Finite-Precision Controller Design Based on l1-Norm Stability Measure

The main contribution of the works [83]-[87] is to formulate an l1-norm stability measure and to develop a

generic optimal FWL controller design using this pole-sensitivity based l1-norm stability measure. This l1-

norm stability measure is computationally tractable and can be shown to be a more “accurate” approximation

to the true stability measure than the l2-norm based measure. Thus, it provides a better criterion for optimis-

ing the closed-loop stability bound than the classical l2-norm measure. Based on this new l1-norm stability

measure, optimal FWL controller realisation problems have been solved for various controller structures,

including the PID controller and output feedback controller [83]-[85], the state-estimate feedback controller

[86], and the reduced-order observer-based controller [87]. My further specific contributions are:

1. An efficient global optimisation procedure was developed based on the adaptive simulated annealing

algorithm to solve the generic optimal FWL controller realisation problem [83]-[86]. The cost func-

tion of a generic optimal FWL controller realisation problem is non-smooth as well as non-convex,

and hence traditional optimisation methods, such as the simplex search algorithm, can only find a

locally optimal solution. By adopting an efficient global optimisation strategy, “global” optimal con-

troller realisations can be obtained, which have a better FWL closed-loop stability margin.

2. The effects of sampling rate on the FWL closed-loop stability margin was extensively investigated,

and it has been shown that canonical controller forms, such as the controllable canonical realisation,

may have a poor FWL closed-loop stability margin and would require a prohibitively large word

length to guarantee stability, particularly in the fast sampling case [83],[85]. This reinforces the need

to search for an optimal controller realisation for FWL fixed-point implementations.

8.1.2 An Improved l1-Norm Stability Measure for FWL Controller Design

In all the works based on pole sensitivity analysis prior to my publication [88], the closed-loop eigenvalue

sensitivity was considered. However, it is well-known that the stability of a linear system depends only

on the moduli of its eigenvalues. An eigenvalue is specified by its modulus and argument. Thus all the

previously proposed stability measures include the unnecessary eigenvalue arguments, and this redundancy

is the main source that imposes an unnecessarily conservative constraint on estimating the true stability

bound. By considering the sensitivity of the closed-loop eigenvalue moduli, the journal paper [88] proposed

a new improved l1-norm stability measure. This new stability measure is computationally tractable and

provides a more accurate approximation of the unknown true stability measure, i.e. it is a lower bound

closer to this true stability measure, than other existing measures based on the pole-sensitivity approach.

This improved stability measure yields a more accurate estimate of the minimum word length required to

guarantee closed-loop stability for a fixed-point controller realisation, than any other existing pole-sensitivity
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measure. Based on this improved measure, the optimal controller realisation problem was formulated and

solved in [88] for the generic controller structure that includes the output-feedback controller, the full-order

observer-based controller and the reduced-order observer-based controller.

My journal paper [89] compared the two alternative approaches based on the pole sensitivity and com-

plex stability radius measures, which were both designed for optimising the closed-loop stability robustness

of fixed-point digital controllers. It was claimed by some researchers that the complex stability radius mea-

sure was better (less conservative) than the measures based on pole sensitivity analysis. The work [89]

showed that this claim is no longer valid for the pole sensitivity approach that adopts the improved l1-norm

stability measure. The conclusions of the comparative study [89] are as follows.

• Both the pole sensitivity and complex stability radius approaches involve some approximations in esti-

mating the true stability measure. Therefore, they are both conservative measures. As the assumptions

stipulated for these two different lower bounds of the intractable true stability measure are different,

it is difficult to say which measure is less conservative in estimating the true minimum word length.

It is generally dependent on the specific scenario. In particular, the corresponding optimal controller

realisations obtained by solving the two related optimisation problems are generally different. For the

output-feedback controller structure, experience shows that the two approaches are often compatible

in that the two optimal controller realisations usually have similarly good FWL characteristics in the

context of fixed-point implementations.

• An important advantage of the complex stability radius measure is that the corresponding optimisa-

tion problem can be formulated as a linear matrix inequality (LMI) problem, and this LMI problem is

easier to solve than the nonlinear optimisation problem associated with the pole sensitivity approach.

The latter can have many solutions. The pole sensitivity approach however is applicable to the general

controller structure that includes output-feedback and observer-based controllers and that is parame-

terised either by shift or delta operators. The approach based on the complex stability radius measure

in its present form can only be applied to output-feedback controllers, and it is not apparent how to

generalise to observer-based controllers or controllers in the delta operator domain.

8.1.3 Optimal Finite-Precision Controller Realisations in Delta-Operator Domain

A digital controller structure is typically described and realised with the shift operator. However, a controller

can alternatively be described and realised with the delta operator. Two major advantages are claimed

for the use of the delta-operator realisation: a theoretically unified formulation of both continuous-time

and discrete-time systems, and better numerical properties in FWL implementations, particularly at high

sampling rates. However, for fixed-point implementations having a short word length, the advantages of the

delta form are limited due to the low dynamic range of the fixed-point arithmetic. Previous research was

mainly concentrated on improving the efficiency of delta-operator parameterisation by modifying the delta

operator form. My works [90]-[92] adopted a more fundamental approach to optimising the closed-loop

stability robustness of digital controllers parameterised in the delta operator with respect to FWL errors.

By finding optimal delta-operator controller realisations for fixed-point implementations, all the potential

advantages of delta-operator parameterisation can be achieved. It turns out that the pole-sensitivity approach
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used for analysing FWL digital controllers in the shift operator domain, which was reported in the previous

two subsections, can be extended to the study of delta-operator based controller realisations.

The journal paper [90] derived an l1-norm stability measure applicable to delta-operator based controller

realisations for the output-feedback controller structure. The optimal controller realisation problem in the

delta operator domain was formulated based on this stability measure. Because the optimisation criterion

for this optimal realisation problem is non-smooth as well as non-convex, an efficient non-gradient based

global optimisation method based on the adaptive simulated annealing was employed in [90] to search for

an optimal controller realisation. The results obtained in the study of [90] confirm that the optimal FWL

realisations of the delta-operator based controller have better closed-loop stability margins than those of the

shift-operator based controller, especially under fast sampling conditions. The work [91] further extended

the delta-operator parameterisation to the general controller structure that includes both output-feedback and

observer-based controllers. A unified formulation was adopted to include both the shift and delta operator

parameterisations and to analyse the underlying relationship between these two controller parameterisations.

Under this unified formulation with the l1-norm stability measure as the optimisation criterion, the generic

optimal controller realisation problem was derived and solved in [91], and the results derived in this study

demonstrate that one can always obtain an optimal delta controller realisation, which has a better closed-loop

stability margin than the optimal shift realisation in FWL fixed-point implementation.

8.1.4 Sparse Realisations Based on the Improved l1-Norm Stability Measure

Determining the best controller structure for a fixed-point implementation is far from trivial. The main

difficulties lie in the nonlinear and non-smooth nature of the problem, as well as in the multi-objective

requirements. Current research has focused on assessing optimal controller realisations in terms of their

closed-loop stability. This is natural, as the closed-loop stability is the most critical issue. However, other

closed-loop controller performance measures can also be important and should be taken into account. More-

over, in real-time applications where maintaining computational efficiency is crucial, a sparse controller

structure is highly desired. A controller is said to have a sparse structure if it contains many trivial elements

of 0, 1 or -1. Apart from computational advantages, these trivial controller coefficients do not cause any

error in a fixed-point implementation. Having a sparse structure is particularly important in the context of

real-time applications of high-order controllers. Canonical controller forms are usually very sparse but may

have poor closed-loop stability margins. The optimal controller realisation obtained by maximising some

stability measure is on the other hand generally non-sparse. Finding sparse controller realisations with good

closed-loop stability characteristics in FWL implementations poses a complex multi-objective problem.

Previous work has derived the design procedure for obtaining sparse controller realisations based on the

l2-norm stability measure. The original contribution of my journal paper [93] is that of proposing a new

practical design procedure for obtaining sparse suboptimal controller realisations based on the improved

l1-norm stability measure. In the study [93], a new improved FWL closed-loop stability measure was pro-

posed, which takes into account the number of trivial elements in a controller realisation. The true optimal

realisation that maximises this measure will possess an optimal trade-off between robustness to FWL errors

and a sparse structure. This new stability measure is computationally tractable but it is not a continuous

function of the controller parameters. Thus, the true optimal sparse realisation that maximises this new sta-
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bility measure is difficult to obtain. However, the improved l1-norm stability measure is a close lower bound

of this new measure, and we know how to optimise the former. This leads to a practical iterative design

procedure to search for a suboptimal solution with a sparse structure. Specifically, the controller realisation

that maximises the improved l1-norm stability measure is first obtained, but the resultant “optimal” realisa-

tion is non-sparse. A stepwise algorithm is then applied to make this controller realisation sparse without

overly sacrificing the achievable FWL stability robustness. The proposed method has some advantages over

the existing methods used for obtaining sparse solutions: it is more accurate in estimating the robustness of

the FWL closed-loop stability, while the computational complexity is considerably reduced.

8.2 Optimal Controller Realisations for Floating-Point Implementation

With decreasing in price and increasing in availability, the use of floating-point processors in controller im-

plementations has increased dramatically. Optimising controller integrity for floating-point implementations

has become an important practical topic. Floating-point representations have quite different characteristics

from fixed-point representations. The dynamic range of a floating-point representation is determined by

its exponent part. Overflow or underflow occurs when the number of bits for the exponent part is insuffi-

cient. Under the condition that the number of exponent bits is sufficient, the achievable accuracy or preci-

sion is determined by the mantissa part. Note that the perturbation resulting from using a finite-precision

floating-point arithmetic is multiplicative, unlike the additive perturbation resulting from a finite-precision

fixed-point arithmetic. The characteristics of the floating-point representation are highly complex and more

difficult to analyse than those of a fixed-point format. The publications [94],[95] represent my research

in the field of optimal finite-precision controller design used for floating-point implementations. The most

significant contribution of my journal paper [94] is:

• Pointing out for the first time that optimal FWL floating-point controller designs have to consider both

the mantissa and exponent parts of the representation format.

All the previous research works prior to my publication [94] only considered the stability robustness with

respect to the mantissa part, as the robustness of closed-loop stability depends only on the mantissa part.

This would however imply an unlimited exponent word length. Maximising some stability measure will

result in a minimum mantissa word length that can still guarantee closed-loop stability. However, in doing

so, the dynamic range of the controller realisation might have been increased, leading to an increase in the

required exponent word length. In practice, the total word length is finite and fixed, and sufficient number

of bits must first be allocated to the exponent part of the representation, while the remaining bits are then

used for the mantissa part. Therefore, a better approach is to maximise the robustness of closed-loop stability

with respect to both the mantissa and exponent parts, i.e. minimising the total word length required to ensure

closed-loop stability. Note that the discussion here equally applies to fixed-point representations.

Specifically, in the work [94], a novel exponent measure was first derived to quantify the dynamic range

of a floating-point controller realisation. This exponent measure defines the minimum exponent word length

required for the controller realisation. A closed-loop stability measure was then developed to quantify

the robustness of closed-loop stability with respect to the precision of floating-point representation. This

mantissa measure was derived by considering the sensitivities of the closed-loop eigenvalue moduli, in a
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way similar to the derivation of the improved l1-norm stability measure for fixed-point implementation.

The FWL properties of a floating-point controller realisation can be characterised by a composite measure

consisting of both the exponent and mantissa measures. Based on this novel composite stability measure, the

optimal FWL controller realisation problem was formulated and solved in [94], where it was demonstrated

that the proposed design procedure yields computationally efficient controller realisations with enhanced

FWL closed-loop stability performance. In particular, the total word length required to guarantee closed-

loop stability is minimised.

An additional contribution of [94] is to provide a comparison between two alternative approaches to

FWL controller design. Most works dedicated to FWL controller design adopt an indirect strategy, which

relies on the following property. A control law can be implemented with different realisations, and these

different realisations are all equivalent if they are implemented at an infinite precision. However, different

controller realisations possess different degrees of robustness to FWL errors. The control law is assumed to

be given by some controller design methods, which may not take into account any FWL considerations, and

the FWL design has to select optimal realisations for the given control law by optimising some FWL criteria.

Most of my works belong to the category of this indirect approach. An alternative but better approach is to

explicitly incorporate the FWL effects into the controller design process. This direct strategy should be a

preferred approach, since it does not impose specific assumptions on the controller. However, except for a

few special cases, applying the direct approach to various controller design methods is still an open problem.

But this difficulty does not exist in the context of the indirect strategy where the controller synthesis and

controller realisation constitute two separate steps. Various existing controller design methods can be used

to attain a transfer function or an initial realisation of the controller, which can then be optimised to satisfy

the FWL implementation requirements.

8.3 Unified Framework for Finite-Precision Controller Design

In practice, a controller is realised by a digital processor of finite bit length in a particular representation

format, namely, fixed-point, floating-point or block-floating-point format. My journal paper [96] developed

a unified framework for finite-precision controller design in different representation schemes. In a generic

arithmetic scheme, the total word length is divided into a sign bit, a word length characterising the dynamic

range, and another word length representing the resolution or precision. Specifically, in a fixed-point repre-

sentation, the dynamic range is defined by the integer part of the representation and the precision by its frac-

tional part. For a floating-point format, the exponent part specifies the dynamic range of the representation

and its mantissa part defines the accuracy, while in a block-floating-point format, the block exponent and the

block mantissa define the dynamic range and precision of the representation, respectively. It is also known

that the perturbation imposed by the FWL fixed-point representation is additive, while it is multiplicative for

the FWL floating-point representation, and neither multiplicative nor additive for the block-floating-point

representation. By unifying the three FWL controller designs obeying the above-mentioned three different

formats within a common framework, the contributions of my publication [96] are summarised as follows.

A unified FWL closed-loop stability measure was derived which is applicable to all the three above-

mentioned arithmetic schemes. Unlike most of the existing works which only take into account the precision

of a representation scheme under the assumption of an unlimited dynamic range, both the dynamic range and
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the precision of an arithmetic scheme are considered in this new unified measure. To facilitate the design

of optimal finite-precision controller realisations, a computationally tractable FWL closed-loop stability

measure was then introduced and the method of computing the value of this measure for a given controller

realisation was given. For each arithmetic scheme, the optimal controller realisation is defined as the solution

that maximises the corresponding stability measure, and a numerical optimisation approach is adopted to

solve the resultant optimal realisation problem. Simulation results have confirmed that the optimal floating-

point controller realisation implemented in floating-point format is the best in terms of robustness to FWL

errors. The results have also shown that with the aid of dividing the controller coefficients into blocks, block-

floating-point realisations can have better robustness to FWL errors than fixed-point ones but choosing an

appropriate division of blocks is difficult in practice. These results agree with the common understanding

of the number representation formats. It is well known that the fixed-point format is the best in terms

of hardware cost, arithmetic operation simplicity and execution speed, while the floating-point format is

the worst in terms of these aspects. The proposed design procedure provides the designer with useful

quantitative information regarding finite precision computational properties, namely robustness to FWL

errors and the estimated minimum word length required for guaranteeing closed-loop stability. This allows

the designer to choose an optimal controller realisation in an appropriate representation scheme to achieve

the best possible computational efficiency and closed-loop controller performance.

8.4 Roundoff Noise Minimisation for Fixed-Point Implementation

The rounding errors in arithmetic operations will cause the true closed-loop performance to deviate from the

designed performance. In the journal paper [97], the effect of roundoff noise in a digital controller was anal-

ysed in the context of the generic sampled-data system and the optimal digital controller structure problem

was formulated and solved for the shift-operator parameterised controller with roundoff noise consideration.

The contribution of the paper [97] are threefold. The first one is to give a thorough analysis of the effect

of roundoff noise in the digital controller on the output of the sampled-data system. Based on this analysis,

a new measure, called the averaged roundoff noise gain, was proposed. This novel measure, unlike the

existing ones, was derived for the generic hybrid system rather than its discrete-time counterpart and hence

can take the inter-sample behaviour into account. The second contribution is to derive an efficient method of

evaluating this measure by fast sampling plant, which can avoid the numerical problems involved in direct

computation of the newly defined measure. The exact expression for the covariance matrix of the controller

state vector was also derived in order to scale the realisations with the l2 norm and hence to prevent the

signals in the controller from overflow. It was shown that the proposed new measure is controller realisation

dependent, and the third contribution of this paper is to present an analytical solution to the optimal con-

troller structure problem, which identifies those controller realisations that minimise the averaged roundoff

noise gain subject to the l2-scaling constraint. Both theoretical analysis and simulation results show that the

optimal controller realisations obtained with the aid of the proposed approach are superior to those obtained

using the traditional roundoff-noise analysis based on a digital control system.

The optimal shift-operator based controller realisation that minimises the averaged roundoff noise gain

subject to the l2-scaling constraint is fully parameterised. In practice, a sparse controller realisation is

preferred. It is also highly desired to analyse the effect of roundoff noise in a delta-operator parameterised

controller. The significance of my journal paper [98] is to propose a generic framework of designing sparse
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controller realisations with small roundoff noise based on a polynomial-operator parameterisation of the

controller. This polynomial-operator realisation is a generalisation of the direct forms in the shift and delta

operators. Specifically, in [98], a new implementation model of a state-space controller realisation was

proposed, where each coefficient matrix of the realisation is separated into a trivial part, which only contains

elements from {−1, 0, 1} and hence causes no rounding error, as well as a non-trivial part. Secondly, based

on this proposed model, we analysed the output deviation of the closed-loop system due to the roundoff

noise in the digital controller. An analytical expression was obtained for the roundoff noise gain. The

problem of identifying the optimal realisations in the shift operator was already solved in [97]. The third

contribution, which is the most interesting one, was to derive a new sparse controller realisation based on

the polynomial-operator parameterisation. This polynomial-operator parameterisation provides the designer

with more degrees of freedom to reduce the roundoff noise than the shift or delta operator parameterisation.

The problem of finding optimal polynomial operators can be solved with the aid of a simple exhaustive

search. In the design example given in [98], the roundoff noise gain produced by the proposed sparse

realisation in conjunction with the optimal polynomial operators is much smaller than that of the optimal

fully parameterised realisation in the shift operator. Moreover, the proposed sparse realization yields a

roundoff noise which is only half of that produced by the l2-scaled sparse canonical controller realisation in

the delta operator. It also has a simpler implementation than this delta-operator based realisation.

9 Evolutionary Computation and Optimisation

Many nonlinear machine learning applications involve nonlinear optimisation problems with non-smooth

and/or non-convex optimisation criteria. It is therefore not surprising that evolutionary computation and

optimisation methods have found wide applications in nonlinear learning. This chapter collects several

my applications of using evolutionary computation and optimisation methods to solve complex nonlinear

learning problems [80],[81],[83]-[85],[99]-[103]. More specifically, the family of global optimisation algo-

rithms, such as genetic algorithms (GAs) and adaptive simulated annealing (ASA), have been adopted to

optimise nonlinear learning machines in a variety of applications. The GA and ASA belong to a class of

so-called guided random search methods. The underlying mechanisms used for guiding the optimisation

search process are, however, very different for the two methods. The class of GAs is population based, and

evolves a solution population according to the principles of the evolution of species in nature. It is by far

the best known and most widely applied global optimisation scheme in machine learning and engineering

applications. The ASA by contrast evolves a single solution in the parameter space with the aid of certain

guiding principles that imitate the random behaviour of molecules during the annealing process. Unlike the

conventional simulated annealing, the ASA adopts an important mechanism called the reannealing scheme,

which not only speeds up the search process but also makes the optimisation process robust to the require-

ment of different problems. One of my significant contributions [100]-[103] was to help popularising the

ASA by demonstrating that it offers a viable alternative to the GA in various applications.

9.1 Establish Efficient Walking Gaits for Legged Robots Using Genetic Algorithms

Legged robots present significant advantages over wheeled or tracked mechanisms due to their ability to

move in very rough and unstructured terrains and to step over obstacles. However, without efficient walking
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strategies these advantages cannot be realised. Robots that stumble and bump into obstacles are classic ex-

amples of robots with inefficient walking strategies – with each terrain contact there is a loss of energy and

accelerated wear and tear on the vehicle, resulting in a reduction of the expected lifespan. In the design and

development of a legged robot, many factors have to be considered. As a consequence, creating a legged

robot that can efficiently and autonomously negotiate a wide range of terrains is a challenging task. When

designing a legged robot it is often useful to consider biological walking systems, which tend to be much

more versatile and seem to be more effective and elegant, in order to emulate these or similar mechanisms

in the design. Indeed, many researchers working in the area of legged robotics have traditionally looked

towards the natural world for inspiration and solutions, reasoning that these evolutionary solutions are ap-

propriate and effective because they have passed the hard tests for survival over time and generations. The

journal paper [99] reported the research conducted in using a method of “natural evolution emulation” to

improve the mechanisms used for controlling the stepping sequence of a legged robot.

Figure 2: Robug IV. A fully extended robot leg has an approximate length of 1 m.

In [99], it was shown that by employing GA-based optimisation within the walking system of a legged

robot, favourable gait behaviour can be achieved. By analysing these GA-derived solutions it is then possible

to learn ideal behaviour patterns and gain valuable knowledge for updating the control mechanisms or,

alternatively, for improving future robot designs. The research work was conducted on an 8-legged robot

called Robug IV. A picture of Robug IV is shown in Figure 2. Two sets of experimental results reported

in [99] are worth mentioning. The first test was for the robot walking over flat terrain in normal operating

conditions, that is, walking with a laterally (sideways) directed body velocity. The second test was identical

to the first test except that one leg was made inoperative to simulate a mechanical breakage, thus rendering

the leg useless. In the first test, the walking gait derived by the GA for the fully operational robot has the

characteristics of the walking behaviour of the ghost crab over flat terrain. It is thus interesting to see that

the GA can “emulate” natural evolution to arrive at a similar solution. A more practical application of the

GA-based design tool is to a situation in which there is no simple way of copying nature, and this was the

purpose of the second test. Research data concerning the walking behaviour of crabs with a leg removed

is very limited and thus in this situation there is no comprehensive data of a “natural solution” as such.

In the second test, it was observed that the GA’s evolution successfully adopted the walking gait to avoid

potentially very hazardous states of unstable or critical-stability situations.
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9.2 Evolutionary Computation for Global Optimisation Applications

The optimisation criteria associated with many nonlinear machine learning problems are typically multi-

modal and/or non-smooth. Conventional gradient-based algorithms are ineffective in these applications due

to the problem of potentially encountering local minima or the difficulty in calculating the associated gradi-

ents. Optimisation methods that require no gradient calculation and can achieve a globally optimal solution

offer considerable advantages in solving these difficult optimisation problems. The GA and ASA, which

solve an optimisation problem by relying only on the cost function value, are known to be capable of finding

globally optimal solutions. In my research on nonlinear learning machines, I have frequently used the GA

and ASA to solve difficult multimodal and/or non-smooth optimisation problems. Four typical examples

are summarised here. The GA is of course well-known to researchers and practicians. In my publications

[100],[101], I presented the ASA in a form that is easy to understand and to program. A contribution of

my works is therefore to make this potentially powerful global optimisation technique accessible to a wide

audience in the engineering community.

9.2.1 Optimising Higher-Order Cumulant Criterion for Blind Channel Identification

An important class of blind identification techniques designed for non-minimum phase channels is based

on the higher order cumulant (HOC) fitting method. HOC cost functions are, however, multimodal, and

conventional gradient methods may converge to locally optimal or “wrong” solutions. To overcome the

problem of local minima, global optimisation methods are highly advantageous. In my journal paper [80],

the family of GAs was applied for optimal blind channel identification with HOC fitting. In the publication

[100], the ASA was adopted to optimise an HOC fitting cost function used for blind channel identification.

The results reported in [100] show that the ASA is capable of finding a globally optimal solution for blind

channel identification with the aid of HOC fitting. The purpose of the work [100] was to demonstrate to

the research community that, unlike the conventional simulated annealing, the ASA achieves much faster

convergence in the HOC fitting process. It was observed that the ASA achieved a similar convergence speed

as the GA during the HOC fitting process. Thus, it offers a viable alternative to GAs in this class of important

multimodal optimisation problems.

9.2.2 Optimising Joint Maximum Likelihood Criterion for Blind Equalisation

The joint maximum likelihood (ML) channel estimation and data detection, discussed in Section 7.3, is a

highly complex nonlinear optimisation problem. Simply performing an iteration between the least squares

estimate for the channel impulse response (CIR) assuming a certain data sequence and the maximum likeli-

hood sequence estimate for the data sequence while assuming a specific CIR will generally be suboptimal.

Moreover, the success or failure of such a strategy heavily depends on the initial conditions. The power of

the GA in solving this highly complex joint optimisation problem was demonstrated in my journal paper

[81]. The GA as a global optimiser is capable of efficiently and accurately searching through a fraction of

the channel parameter space and yet approaching the ML solution. In the extensive simulation performed

in [81], the combined GA used for optimal channel estimate and the Viterbi algorithm (VA) employed for

ML data detection always converged to the true joint ML solution found for blind equalisation. My journal
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paper [101] further investigated an alternative global optimiser, called the ASA, again in the context of this

novel blind equalisation application. The results of [101] show that the combined ASA used for optimal

channel estimate and the VA employed for ML data detection achieves a similar convergence speed as the

GA based scheme. The ASA based scheme was shown to be slightly more accurate than the GA aided one.

This can be explained by the quantisation effects of the binary encoding scheme used by the GA. In this

type of optimisation applications, the ASA has an added advantage as it requires less effort to program,

compared to the GA. A motivation of [101] was to introduce the ASA algorithm to the signal processing

community, which was less familiar with this global optimizer. In [101], the mechanisms of the ASA as

well as its detailed implementation issues were presented in a clear and easy-to-understand manner.

9.2.3 Digital IIR Filter Design

Adaptive infinite-impulse-response (IIR) filtering has been an active area of research for many years, and

many properties of IIR filters are well known. A major concern in IIR filtering applications is that the cost

function of IIR filters is generally multi-modal with respect to the filter coefficients, and the usual gradient-

based algorithm can easily be trapped at local minima. In order to arrive at a global minimum solution,

global optimisation techniques are needed. Global optimisation methods, however, require extensive com-

putations and are usually batch-type algorithms, as the cost function employed must be evaluated for a block

of data. In contrast, gradient-based learning can be recursively implemented to update the filter coefficients

as each new data sample is acquired. Despite of these drawbacks, applying global optimisation methods

to IIR filter design is attractive, since in many practical applications a global optimal solution can be much

better than local optimal ones. When considering global optimisation methods contrived for digital IIR fil-

ter design, the GA seems to have attracted considerable attention, and most of the publications in this area

are concerned with the applications of the GA. My journal papers [101],[102] are the first publications in

the literature to apply the ASA algorithm for digital IIR filter design. The results reported in [101],[102]

demonstrate that the efficiency of the ASA appears to be similar to that of the GA when used for digital IIR

filter design, expressed in terms of the total number of cost function evaluations required to achieve a global

optimal solution. This suggests that the ASA offers a viable alternative to digital IIR filter design. Adopting

a moving window strategy, a batch-recursive version of the ASA was proposed for adaptive applications in

[102]. This constitutes a major contribution to the research and application of the ASA algorithm.

9.2.4 Optimising Stability Bounds for Finite-Precision Controller Realisations

In order to optimise controller integrity for finite word length (FWL) fixed-point implementations, a partic-

ular approach discussed in Section 8.1 was based on closed-loop pole sensitivity analysis [103]. In this pole

sensitivity analysis approach, optimal controller realisations were chosen by maximising various measures

of the closed-loop stability margin. The closed-loop stability margin maximisation problem is evidently

non-smooth [83]-[93], since the derivatives of its associated optimisation criteria may have discontinuities.

Thus, the optimisation must be based on a direct search using cost function values without the aid of cost

function derivatives. Conventional optimisation techniques, such as the Rosenbrock and simplex algorithms,

solve an optimisation problem by relying exclusively on cost function values and, therefore, can be adopted

for solving optimal FWL controller realisation problems. These conventional optimisation methods are
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however only local optimisers. The cost function associated with an optimal FWL controller realisation

problem can be severely non-convex. Thus, the results obtained by using a conventional optimisation algo-

rithm heavily depend on the initial conditions. It has been observed that the optimisation process sometimes

converges to unsatisfactory local solutions. In my research of finite-precision digital controller designs, I

have opted for using the ASA algorithm to solve the highly non-convex and non-smooth optimisation prob-

lems associated with closed-loop stability margin maximisation [84]-[86],[88],[90]-[92],[103]. The ASA is

a global optimiser that uses the cost function value only in performing optimisation search. It is efficient

in terms of its convergence speed and is easy to program. Thus, the ASA algorithm is ideal for solving

the optimal FWL controller realisation problem. Experience has confirmed that the ASA is able to provide

significantly better results than those typically obtained by conventional optimisation techniques.

10 Conclusions and Future Research

In this DSc submission my research conducted at the University of Southampton during the past six years

plus some of my significant contributions before 1999 were summarised. The theme of the submission

is intelligent nonlinear learning machines. From the more than 200 research papers that I co-authored

during my 18-year career I have opted for using 103 journal papers and book contributions [1]-[103], which

were best aligned with the main theme of the submission. Over half of the 103 research papers cited in the

submission were published after I joined the University of Southampton. My full list of publications is also

attached.

As mentioned in Chapter 1, the eight topics, covered in Chapters 2 to 9 of the submission, can be

grouped into four broad subjects. The related conclusions and some future research directions are now

briefly summarised for each of these four subjects.

10.1 Computational Intelligence and Machine Learning

The learning algorithms presented in Chapters 2 to 4 are significant because they represents state-of-the-

art techniques for modelling from data. These nonlinear learning machines are intelligent, because they

are capable of constructing sparse representations with excellent generalisation ability in a computationally

efficient way. An interesting future research objective that may be used for further improving these non-

linear learning machines is to develop a generic “kernel hunting” technique. More specifically, rather than

employing a fixed common kernel variance for every kernel regressor and positioning the kernel regressors

on the training input data points, as most of the kernel modelling methods do, kernel hunting aims to po-

sition kernel regressors at the most appropriate positions and to shape each kernel regressor by adjusting

its individual kernel covariance matrix. Such an approach can be expected to produce sparser models with

improved modelling capability and generalisation performance. To maintain computational efficiency, the

well tested forward selection strategy coupled with orthogonalisation can be incorporated into this kernel

hunting approach. During the writing of this submission, work has already begun along this direction, and

some interesting initial results have been obtained, which have been submitted for publication:

S. Chen, X.X. Wang and D.J. Brown, “Sparse incremental regression modelling using correlation criterion
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with boosting search,” IEEE Signal Processing Letters, to appear, 2005.

S. Chen, X.X. Wang, X. Hong and C.J. Harris, “Kernel classifier construction using orthogonal forward

selection and boosting with Fisher ratio class separability measure,”submitted to IEEE Trans. Neural

Networks, 2004.

10.2 Adaptive Receiver Design For Future Communications Systems

During the past five years, the minimum bit error rate (MBER) principle has evolved from merely an alter-

native to the standard minimum mean square error (MMSE) design for single-input single-output (SISO)

channel equalisation to become a universal adaptive linear receiver design method for various advanced

communication systems, such as multiuser detection in code-division multiple-access (CDMA) and multi-

ple antenna aided space-division multiple-access (SDMA) systems. My research results reported in Chap-

ter 5 of the submission clearly demonstrate that the MBER design offers significant system performance

gains over the MMSE benchmarker in generic applications. It has also been shown that the adaptive MBER

receiver is robust to adverse channel conditions. Moreover, the concept of MBER design is having an im-

pact on our understanding of the fundamental system capacity. For example, for SDMA systems a practical

rule-of-thumb is that to support N users one needs at least N receive antennas. My research however has

demonstrated that the MBER receiver is capable of supporting more users than the number of antennas.

Further research will couple the adaptive MBER receiver with channel coding to form a powerful iterative

or turbo receiver scheme. Another possible future research direction is to unify our adaptive MBER receiver

with the MBER transmitter design currently pursued by other researchers.

My research on adaptive nonlinear receiver design, reported in Chapter 6 of the submission, has clearly

demonstrated that such an adaptive nonlinear receiver is capable of meeting the stringent requirements of the

third generation and future communication systems. The key in practical adaptive nonlinear receiver design

is the computational affordability. Simply “expanding” an optimal nonlinear receiver design to multiuser

detection can easily become computationally intractable as the number of users increases. An interesting

solution, which is currently researched in the Communications Research Group at Southampton, is to apply

iterative or turbo space-time nonlinear equalisation principle to form affordable and (near) optimal adaptive

nonlinear multiuser detection for the generic SDMA system. The front end of the receiver consists of a set of

parallel interference cancellers (PICs). Each PIC is followed by a single-user adaptive radial basis function

(RBF) detector equipped with a single-user channel estimator. The detected user bits after channel decoding

are re-modulated and fed back to both the RBF detectors and PICs.

10.3 Finite-Precision Digital Controller Design

My significant contribution to finite-precision digital controller design has been to present a unified frame-

work for optimising controller integrity in finite word length (FWL) implementations. Currently, a generic

optimal FWL controller realisation is obtained through numerical optimisation. For practical purpose, it is

highly desired that a solution can be obtained via a closed-form design rather than a numerical one. In fact,

an engineer probably would favour a suboptimal closed-form solution to an optimal solution that has to be

solved via some difficult numerical optimisation. Future research will focus on deriving easy-to-compute,
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preferably closed-form designs for optimal FWL implementation. During the writing of this submission,

some interesting initial results have been obtained. For fixed-point implementation and for the pole sensi-

tivity analysis based on the l2-norm stability measure, we have derived the optimal closed-form controller

realisation set, and the results have been submitted for publication:

• J. Wu, S. Chen, G. Li and J. Chu, “A search algorithm for a class of optimal finite-precision controller

realization problems with saddle points,” submitted to SIAM J. Control and Optimization, 2004.

Since the optimal controller realisations that maximise the given stability measure form a closed-form set,

the redundancy in this set can be exploited to further minimise the dynamic range of the controller reali-

sation, to design sparse realisations and to minimise the roundoff noise gain of the controller realisation,

without reducing the closed-loop stability robustness.

10.4 Evolutionary Computation and Global Optimisation

In my research on nonlinear learning machines, I have found that evolutionary computation methods con-

stitute valuable tool kits. Specifically, I have used genetic algorithms (GAs) in generic learning machine

designs, and applied the global optimisation methods, such as the GA and adaptive simulated annealing

(ASA), in optimising key learning parameters as well as in solving the optimisation problems associated

with some machine learning applications. Using evolutionary computation methods in machine learning

will remain a focus of my research. I have always been fascinated by the topic of optimisation in engineer-

ing. During the writing of this DSc submission, I have developed a simple yet very efficient guided random

search algorithm for global optimisation applications, and the results have been submitted for publication:

• S. Chen, X.X. Wang and C.J. Harris, “Experiments with repeating weighted boosting search for op-

timization in signal processing applications,” IEEE Trans. Systems, Man and Cybernetics, Part B, to

appear, 2005.
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