
1202 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 5, MAY 2010

�

������
�

��
�

��� � ����
���

���
�
��
�
��
�

�
������

�

��
�

�

���
�
��
�
��
�

�� � ����
����

�
������

�

��
�

��
�

�

����
�
��
�
�
���
�

�� � ����
��� ����� � ����

��� � 	��

�
����	���
	�������

�� � ����
���


������ 
 �� �
����

�

��
�

�

������
�

	���

	���
����� �

�

��
�

��
�

��
��

� � ��������

� �
����
��



���
��

�� � � �
�����

�

��
�

��
�

�

���
�
��
�
��
�

���

� �� � ����
������ � ����

��

� ����


������ 
 ������� �
�

������
����

�

��
�

��
�

��� �
	���

	���
����

��

�� �
�

�

� ����
�

��
��

� �

�
������

�

��
�

�

���
��

��
�
�
���
��

��
�
��
�

� �
�����

�

��
�

��
�

�

���
�
��
�
��
�

����

� ���� � ����
��� � 	� �� � ����

�

��
���

and ��� 
 �� � 
�� � 
��, �� 
 �� � ��� � ���, ���� ���� �� � �� �

 �� 
 �� �� 	�� �� � 
.

In simulations, we choose ����� 
 
�� ��� � whose physical unit is
���, parameters �� 
 ��

�, �� 
 ���
�, �� 
 ��
�, �� 
 
�

�,
�� 
 �, ��� 
 
�	, ��� 
 ���, �� 
 �, �� 
 �, �� 
 
��, �� 

�
, �� 
 �

, �� 
 
��, ��� 
 
��, ��� 
 
��, ��� 
 
��, and
the initial values ���
� 
 ��
� 
 
��, ���
� 
 
��, ���
� 
 
,
���
� 
 
�� whose units are ���, �����, �, ���. Fig. 2 demonstrates
the effectiveness of the control scheme, where the unit of � axis for the
tracking error �� is ���, the unit of � axis for the control input � is � .

V. CONCLUSIONS

This note considers the output tracking of high-order stochastic non-
linear systems without imposing any restriction on the high-order and
the drift and diffusion terms, and apply the control scheme to stochastic
benchmark mechanical system.

There are two remaining problems to be investigated: 1) an issue
is whether there exists a smooth or continuous feedback controller to
guarantee that the equilibrium at the origin of the closed-loop system
is globally asymptotically stable in probability without assumptions
H1) and/or H2) and 2) how to design the controller for this prac-
tical example in which � and �� are dealt with as stochastic noise
simultaneously.
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Stability of Networked Control Systems With
Polytopic Uncertainty and Buffer Constraint

Dongxiao Wu, Jun Wu, Associate Member, IEEE,
Sheng Chen, Fellow, IEEE, and Jian Chu

Abstract—We consider the stability of the discrete-time networked con-
trol systems (NCSs) with polytopic uncertainty, where a smart controller
is updated with the buffered sensor information at stochastic intervals and
the amount of the buffered data received by the controller under the buffer
capacity constraint is also random. We establish sufficient conditions for
guaranteeing the exponential stability of generic switched NCSs and the
exponential mean square stability of Markov-chain driven NCSs, respec-
tively. An illustrative example is given to demonstrate the effectiveness of
our results.

Index Terms—Buffer constraint, networked control systems (NCSs),
polytopic uncertainty, stochastic systems.

I. INTRODUCTION

Networked control systems (NCSs) have received much attention re-
cently [1]–[3]. An NCS is a control system in which a control loop
is closed via a shared communication network. The use of a shared
network in the feedback path offers the advantages of low installation
cost, reducing system wiring, simple system diagnosis and easy main-
tenance. However, the NCS also has some inherent shortcomings, such
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as bandwidth constraints, packet delays and packet dropouts, which
will degrade system performance or even cause closed-loop instability.
Hence, guaranteeing closed-loop stability is an upmost requirement for
any NCS. Stability analysis of NCSs is investigated in [4]–[6], and
stabilizing controllers are designed in [7]–[12]. Stochastic approaches
based on the mean-square stability [13], [14] are typically adopted to
deal with network delay and packet dropout. Under such a stochastic
approach, the network is modelled as a Markov process and the system
is a discrete-time Markovian jump linear system [9].

A feature of modern network protocols is that data is sent in large
packets. This opens up the possibility to conceive control schemes
in which a large amount of data, consisting of the current and his-
torical values, are sent through the network at the transmission in-
stant. The works [15] and [16] adopt packetized predictive controllers,
which pre-compute control data valid on a given time horizon and
then transmit the data in a single packet to the actuator at the next
network access, in order to maintain the performance of the NCS with
a parsimonious access of the network. The controller in [17], which
has a two-way communication with a wireless sensor node, sends to
the sensor a sequence of state predictions at every suitable instant to
reduce the sensor transmission load. For the NCS with the network
separating the sensor and controller, the work [18] shows that sending
a linear combination of the past and present two measurements with
appropriate weightings is better than sending the most recent observa-
tion only. In the study [7], a buffer is used to store sensor measure-
ments on the plant at instants between two consecutive accesses to
the network. The buffered data are transmitted to the observer-based
controller at each access instant. The results of [7] show that the sta-
bility of a uncertainty-free NCS can always be achieved, provided
that the length of each packet is no less than the plant observability
index, and the interval between two consecutive successful transmis-
sions is bounded. Thus, the technique of [7] cannot be applied to the
NCS where the sensor buffer capacity is smaller than the plant observ-
ability index or the NCS with uncertainty. In practice, a small buffer
capacity is preferred, owing to the cost of sensor devices and/or the
limited power consumption in wireless sensor networks.

To the best of our knowledge, no work to date addresses this
practical problem of buffer capacity constraint. The novelty of this
contribution is that we analyse the stability of the NCS with poly-
topic uncertainty under this limited buffer capacity. In our NCS, the
communication channel between the sensor/buffer and the controller
is subject to random access delays and packet dropouts, while the
channel between the controller and the actuator has a guaranteed
bandwidth which is equivalent to a dedicated link. Note that such
a network configuration is practical, since modern communication
protocols are extremely flexible and are capable of offering different
quality of services. Our model is not the generic NCS model but
nevertheless it represents an important class of NCSs. Many impor-
tant NCSs, such as the work of [7], are developed based on this
model. Since the controller receives data at random intervals and the
amount of data received each time is also random, the NCS is driven
by an underlying discrete-time stochastic process. Moreover, we do
not assume a uncertainty-free NCS and our model is subject to poly-
topic uncertainty. We establish sufficient conditions for ensuring the
exponential stability of generic switched NCSs and the exponential
mean square stability of Markov-chain driven NCSs, respectively.

The following notational conventions are adopted. stands for
real numbers and for nonnegative integers. For vector � � �,
��� �

�
�
� �. � � � indicates that � is a positive-definite matrix,

while � and � represent the identity and zero matrices of appropriate
dimension, respectively. Finally ������� defines the expectation of
����.

Fig. 1. Networked control system �� .

II. DESCRIPTION OF NCSS

The NCS ��� of Fig. 1 contains a discrete-time plant �� and a dis-
crete-time controller �� with the control loop closed via a shared com-
munication network. The plant �� is described by

���� �� � ����� ������

���� � 	�����
� � (1)

where ���� � �, ���� � � and ���� � � are the state, input, and
output vectors of the plant, respectively, while� � ���,� � ���

and 	 � ��� are the true matrices of the plant state-space equation.
The channel between the sensor and the controller is subject to random
access delay and packet dropout, while the controller/actuator channel
is equivalent to a dedicated link. �� and �� are time-driven and syn-
chronized. At each � � , the sensor takes the measurement of the
plant output ���� and stores it in the buffer. If the buffer reaches its
maximum capacity� , the oldest data in the buffer is discarded to give
room for the new data. We denote all the plant outputs stored in the
buffer at � � as �����. At each � � , the buffer seeks for the access
to transmit ����� to �� through the network. If the access is granted,
transmission takes place and after the transmission, ����� is discarded
by the buffer. If no access is granted, ����� is kept in the buffer. Since
the waiting time at the buffer node is stochastic, the length of ����� at
transmission time is also random.

There are two alternative outcomes of each transmission: one is that
the transmission succeeds and �� receives ����� at �; the other is that
the transmission fails due to a packet dropout and �� misses �����. The
packet transmission delay through the network for a successful trans-
mission is assumed to be negligible. Hence, we only consider the packet
dropout and the network access delay at the buffer node. Those instants
at which transmissions succeed are denoted as �� , � � , in ascending
order, and �� � �� is assumed without the loss of generality. As ��
receives the new information ������ at �� , �� is referred to as the update
instant. Define the update interval

	�
�
� ���� � ��� � � (2)

which can take values from a finite integer set 	� � � �
� ��� 	 	 	 � 
�

with the maximal update interval 
 determined by the busy status of
the network. Since the buffer will not be uncleared longer than
 steps,
the length of data stored in the buffer is never larger than
 . Therefore,
we assume� � 
 . Denote the number of plant output measurements
stored in the buffer as �� . Then �������� is expressed at ���� as

�������� � ��������������� � ��� 	 	 	 ������� � �� � ��� � (3)

Obviously, �� � 
 �
� ��� 	 	 	 ��� and �� � 	� . A large 	� and a

small �� indicate that at ���� the controller receives a small amount
of update information after a long delay. By contrast, a small 	� and
a large �� show that the controller receives a large amount of update
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Fig. 2. Time diagram of NCS with buffer data, assuming � � �, � � �
and � � �. Data ��� � ��, ��� � 	� and ��� � �� are discarded
due to the buffer reaching its maximum capacity at � �
, � ��, and � ,
respectively. ���� ����� � ������ � 	�� are successfully transmitted at �
and hence � � �. At � � � the transmission fails due to packet dropout.
���� ����� � ��� are successfully transmitted at � and hence � �
	.

information quickly. Hence the pair ���� ��� is a measure of the up-
date quality. Various scenarios of the NCS with buffer are illustrated
in Fig. 2.

It can be seen that for � �� ���� the feedback loop is broken and ���
is in the mode of open loop, while for � � ���� ��� is in the mode of
closed loop. A smart control mechanism �� , similar to the one in [7],
is adopted as

���� �������� � � (4)

����� �� � ������� ������� � �� ���� (5)

����� �� � � ��� ��������� � � ��

�

���

���

� ��� ���� �����������������

� � ����� � � �� (6)

where ����� � � is the estimator state, � � ��� and � � ���

are the state feedback and estimator gain matrices, respectively, while
�� � ��� is the estimate of the plant dynamics matrix � which is
unavailable. Thus, the uncertainty is associated with�, while the plant
matrices � and � are assumed to be known. For � �� ����, the esti-
mator is based on the plant model (5). The controller output ���� and
the estimator state �����, generated during this open-loop period, are
stored in the controller. At � � ����, the estimator receives ��������,
which includes the �� consecutive plant outputs as shown in (3). The
newly received �������� as well as the controller’s historical informa-
tion ������� � �� � �� and ��������������� � ��� � � � ������� �
�� � ��� are used to estimate ������� � �� by the observer structure
(6). After the estimation, the historical information are discarded.

For the given � and 	 , define the set ��	

�
� ���� ���� �

	 � � � 
� � � ��. The number of elements in the set ��	
 is
�
 � ���������	���	 . Next define the set��


�
� ��� �� � � � � �
�

and the mapping � from ��	
 to ��



 � ���� ��

�

�
�
���� �� � �� � �	

�
�
	�	 � �� �	���	� � �� � 
 	 .

(7)

It is easy to show that � is a one to one mapping. Define its inverse
mapping ���

��� �� � ����
� � ����
�� ���
�� (8)

which can be realized by the following iteration algorithm:

• Step 1: If 
 � �����	�	 � ��, go to Step 2; otherwise, go
to Step 3.

• Step 2: Find � � 	 to satisfy �������� � �� � 
 �
��������� ��. Then � � 
 � ��������� ��. End.

• Step 3: Find � � 	 to satisfy �����	����	 � �� � 
 �
�����	����	 � ��. Then � � 
 � �����	����	 � ��.
End.

Therefore, the sequence 	��� ��
 can be mapped as 	
�
 by � and

� can also be viewed as a measure of update quality. Define the set

�


�
� �	
�� 
�� � � �
�
� � ��
 � �� � � and the state of the NCS

as

	���
�
� � ��� �� ��� � (9)

Definition 1: The NCS ��� is exponentially stable (ES) if there exist
constants � � � � � and � 
 � such that �	
�
 � 
�
 , �	��� �
�� and �� � , �	����� � ����	�����.
For the above definition, 	
�
 is a generic sequence and the NCS

is a switched system. Next consider the case where 
� is a stochastic
process with a specific probability distribution.

Assumption 1: The stochastic process 
� is driven by a Markov
chain and takes values in��
 with a given transition probability ma-
trix ���

�
� ��
�� �

����� , where �
� � 
����
��� � ��
� � ��
which are subject to the restrictions �
� � � and ��

��� �
� � �,
��� � � ��
 .

Definition 2: (See [14]): The NCS ��� under Assumption 1 is ex-
ponentially mean square stable (EMSS) if there exist constants � �
� � � and � 
 � such that �	��� � ��, �
� � ��
 and �� � ,
�	�	������

���		� 
 � ����	�����.
We considers the case that � � ��� is subject to the polytopic

uncertainty, namely, � � � and

� � ��� �

�

���

���� �

�

���

�� � �� �� � � (10)

where �� �
��� with � � ��� � � � � �� are the � constant matrices

that determine the convex polytope. In the next section, we derive the
ES and EMSS criteria, respectively, for ��� under the polytopic uncer-
tainty of � � �.

III. STABILITY CONDITIONS

At � � ����, ��� is in the mode of closed loop. In order to demon-
strate clearly how the estimate ������� � �� of (6) is generated, let us
define a virtual observer state ����� and the following virtual iterative
procedure for the observation period � � ����� � �� � �� � � � � �����.
At the beginning of each observation period, the initial virtual observer
state is ������� � �� � �� � ������� � �� � ��. The virtual states are
produced by a standard observation law

����� �� � ������� ������ � � �������� �����

� � ������ �������� � � ��� ��������

� � ����� � �� � �� � � � � ������ (11)

At the end of this observation period, the estimator state ����� is given
by ������� � �� � ������� ���, namely, (6). Motivated by the above
virtual recursive process, we construct the augmented system ��� for
���

�	��� �� � ������	���� � � (12)

where �	��� � ��	� ����	� ����	
 ���� , �	���� � �, �	���� � �, �	
��� �
�, and

����� �

����� � � ��� � �� � � � � ���� � ���

� �

����� � � ����� � �� � �� � � � � ���� � ��

� �

����� � � ����� � �

(13)
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���� �

� �� �

� ����� �

� ����� �

(14)

���� �

� �� �

� ����� �

��� �� ��� ��

(15)

���� �

� �� �

��� �� ��� ��

��� �� ��� ��

� (16)

Remark 1: Although (12) appears as a system of nonminimal order
when � � ��� � �� � � � � ���� � ���, the formulation (12) with a con-
stant-size ����� offers the description simplicity and the ease of math-
ematical reasoning. Of course, in the simulation of ��� , we can utilize
a formulation of minimal order to reduce computational cost.

From (1), (4) to (6), and (11) to (16), we can obtain the relationship
between ��� and ��� under the condition that they both are driven by
the same sequence 	��
 � ��� . Given ���� � ������ and ����� �
������ � ������, we have ���� � ������ and ����� � ������, �� � .
Specifically, we have ���� � �� � ������ � �� and ����� � �� �
������ � �� � ������ � ��.

Proposition 1: ��� is ES if and only if ��� is ES.
Proof: (If). ������ � �� and �	��
 � ��� , we have ������ �

�� � ������ � �� due to the expression of ���� in (16). Set ���� �
��������� and ����� � ��������� � ���������. Let the sequence that
drives ��� be 	��� ��� � � �
. Then �� � , ����������� � ����������
and �������� � �� � �������� � �� � ������� � ���. Because ���
is ES, ������� 	 
��

��������, �� � , where � 	 � 	 � and

� � � are constants independent of ����� and 	��
. Since 
� 	 � ,


� � � independent of ����� and 	��
 such that �� � and ��� �
��� � � � � 
��,

������ � � � ����
� 	 
��

� ������ � ���� �

Consequently, ��������� 	 
��
� �������� and

�������� � � � ������
� 	
��

� �������� � ����

	 �
��
� ������� � ����

�

	 �
�
��
� �� �� �������

	 �
�
��
� �� �� ������ � ����

	 �
��
��
� �� �� ��������

which indicate that �� � , �������� 	 �
��
��
���������. Hence, ���

is ES.
(Only If). ����� � �� and �	��
 � ��� , set ������ � ����,

������ � ����� and ������ � ����� as well as let ��� be driven by the
same sequence 	��
 of update quality as ��� . Then ���� � ������ and
����� � ������, �� � . Because ��� is ES, we have

������� 	 �������� 	 
�� �������� 	 �
�� ������� � �� � �

where � 	 � 	 � and 
 � � are constants independent of ���� and
	��
. Thus, ��� is ES.

By a similar procedure, it is easy to prove the following proposition.
Proposition 2: Under Assumption 1, ��� is EMSS if and only if ���

is EMSS.
Let us consider the auxiliary system ���	 of ��� , which is con-

structed as

��� � �� � ��������� � � (17)

where ���� � �������

 ��
� ���

� �

� . From (12), it is easy to see the

following relationships between ���	 and ��� . Given �� � �� and
���� � ����� � ��, then

���� � ����� � ��� �� � � (18)

This result implies that if �������� 	 
����������, � 	 � 	 � and

 � �, then

������� 	
�� �� �������� � 


���

���

�� ��������

	
�� ������� �

On the other hand, as 
� is bounded by � , 
� � � independent of
� and �� such that �� � , ������ � � � ����

� 	 ������� � ����

for any �� � ��� � � � � 
� � ��. The relationship (18) implies that
if ������� 	 
��������� then for � � ��� � �� � � � � �����
with � 	 ��� � ��, we have �������� 	 ������� � ���� 	

�
��������� 	��
������
��
�
��������. Thus, we have the

following.
Proposition 3: ��� is ES if and only if ���	 is ES.
By a similar procedure, we can also derive the following proposition.
Proposition 4: Under Assumption 1, ��� is EMSS if and only if

���	 is EMSS.
We are now ready to study the stability conditions for ��� with� �

�. For 
 � � and � given in (10), first define


�
�
�
� 	 �

�

���

�� �� � ��� �� � � � � 
�� �� � ��� �� � � � � ��

(19)
and then �� � ��� �� � � � � 
�, define a truncation mapping 


� from

�
� to ���




��	�
�
� 


�

�

���

�� �

�

���

�� � 
 � � � �


� � � �.
(20)

Furthermore, for � � �
��� ���� � �, a mapping �� from 
�
� to

can be established as

���	� � ��

�

���

�� �

�

���

�� � (21)

For example, consider the case where 
 � � and � is determined
by �� and ��. The matrix set (19) is given by


�
� � �
�
���

�
��������������

�
�����

�
��

��������
�
�����

�
� �

For the mapping (20) of � � �, we have for instance




��������� �


� ���
�
� � ����




� �
�
��� �


� �

�
� � �

�
��

Given� � ����������� � �, we can check that the mapping (21)
satisfies ���������� � ����������� � ����� and �����

���� �
���� � ��� � �����.

By the definition of the inverse mapping ��� given in (8), ���� in
(17) can be expressed as

���� � �������
� �� 	��
� ���

� �� 	�� �� 	
�

�
� ������ ����
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This together with (14) to (16) yields1

������ ���

�
�

���

���

�
������������ �

���

�����

������������� ������� �������

���

�����

������������� ������� �������

(22)

for � � ��� , where � � �����, � � �����, ������� � ��� �� �
����, ������� � �� �� � ������

������� �
�� � � �

� ��� ����� � � �,

������� �

���

���

�������������	

���

��������
�������� 	� �� ��

����
��� ��� � � �
���

���

�����

���

��������
�������� 	� �� �� ���������

� � �

���
��� �� �

���

���

� ��� ������� �����������

� � ��� ����� ���������

������� �

���

���

� ��� ������� �����������	

Furthermore, �� � ��� and �� � ��������, we denote




��� �� �

�

���

���

�������������� �� �� �

���

�����

������� �� ��������� 


���� �� �������

���

�����

������� �� ��������� 


���� �� �������

(23)

with � � �����, � � �����, and




���� ���

���

���

�������������	

���

���������������������	�����

����
��� ��� � � �
���

���

�����

���

���������������������	�����

��������� � � �	

Proposition 5: �� � � and �� � ��� ,

������ �� �
����� �			



���


��� �� (24)

with
����� �			 

��� � �, 

��� � �, �� � ��������.

Proof: It is easy to see that �� � ��� 	 	 	 � �����
,

�
� �

�

���

����

� �

���

���

� �		��

�
����� �			



���������� (25)

1This note prescribes � � �.

����� �			



��� �

�

���

��

� �		

� �	 (26)

Then (24) follows from (22), (23), (25), and (26). Finally, 

��� �
� �		
��� �
 � � due to �� � � for any � � ��� 	 	 	 � 

.
The proof of Proposition 5 can be illustrated with an simple example

of � � 	 and � � �	
�� � �	��� � �. For this example, (25) and
(26) become

�
� ���	
�� � �	����

�

��	����
� � �		����� � �		����� � �	����

�

� 

 �
�
� �

�
� � 

����������

� 

���������� � 

 �
�
� �

�
�

� ���	
�� � �	������	
 � �	��

� �	���� � �		��� � �		��� � �	����

� 

 �
�
� ���� �

�
� � 

����������������

� 

���������������� � 

 �
�
� ���� �

�
�

� � ��	
 � �	��� � 

 �
�
� � 

������

� 

������ � 

 �
�
� 	

These three equations together with (22) and (23) lead to

������ �� � 

 �
�
� 


 �

�
�� � � 

������


������ ��

�

������


������ �� � 

 �
�
� 


 �

�
�� �

which confirms the relationship (24).
Proposition 5 shows that for any � � �, ������ �� is included in

the convex polytope determined by


��� �� with � � ��������. Thus,
we can treat an unknown������ �� through treating the known


��� ��,
and this forms the basis for Theorem 1. First, the following lemma links
������ �� to exponential stability.

Lemma 1: (See [19]): ���� is ES if �	 � � such that
��� ��� ��	������ �� �	 � �, �� � ��� .

Theorem 1: ��� is ES for any � � � if �	 � � such that




 ��� ��	


��� ���	 � �� �� � � ������� � �� � ��� 	 (27)

Proof: According to Schur complement [9], (27) is equivalent to

�	 


 ��� ��	

	


��� �� �	
� �	 (28)

Multiplying (28) by 

��� and summing the resulting inequality over
all � � �������� lead to

�
�



���	
�



���


 ��� ��	

�



���	


��� �� �
�



���	
� �	

This together with Proposition 5 establishes that, �� � ���

�	 ��� ��� ��	

	������ �� �	
� �

is equivalent to

��� ��� ��	������ ���	 � �	
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According to Propositions 1 and 3 as well as Lemma 1, therefore, ���
is ES.

Lemma 2: (see [14]) ���� under Assumption 1
is EMSS if ������ � � � � � ���� such that
��� ��� �� ��

���
������������� ������� � �, �� � ��� .

Similar to the proof of Theorem 1, using Propositions 2, 4, and 5 as
well as Lemma 2, we can derive Theorem 2.

Theorem 2: ��� under Assumption 1 is EMSS for any � � � if
������ � � � � � ���� such that

��� ��� ��

��

���

������������� ������� � ��

�� � 	 �	����� � �� � ��� 
 (29)

Note that, for a given pair of �����, the linear matrix inequalities
(LMIs) in Theorems 1 and 2 may be infeasible. If this situation arises,
we can rearrange some conditions of the NCS, for example, decreasing
� , increasing � or even redesigning �����, so that these LMIs are
met.

IV. A NUMERICAL EXAMPLE

We considered the system where the matrices of the plant model
were given by

�� �

�
	 �

 �

�

��
� 


 �

�

 �
� ��
�

� � �

�
�

�





� ���
�� � 
 �
���


The vertices of � were given by �� � �� � 
����� � � �
� �� ��, with
a scalar � 
 
 � and

���� �

��
� ��
� �



��
� �
	 �
	

�

 ��
� ��
�

���� �

�
� �

 �
�

�
� ��
� �



�
	 �
� �
�

���� �

�
� �
	 ��
�

�
� �
� �



��
� �

 �
�




The state feedback gain and estimator gain matrices were given, re-
spectively, by

� ����
	� �
�� �

��

� ����
	� �
�� �

�� 


The values of � and � were set to � � � and � � �, which yielded
�� � �. The aim was to make 
 as large as possible without the loss of
exponential stability of ��� for any � � �.

For a given value of 
, the sufficient stability condition (27) in The-
orem 1 actually consists of �� � �� � �� � �� � �� � �� LMIs.
Hence, with a combination of LMI technique and bisection search, we
convinced that ��� maintains the exponential stability for any � � �
when 
 
 
� � �
�
�	. We furthermore considered this ��� under
Assumption 1 with

��� �

�
� �
� �
� �

 �

�
� �
� �
� �

 �

�

 �
� �
� �
� �

� �

 �
� �
� �
�

� �

 �
� �
� �
�




By Theorem 2 and bisection search, we convinced that ��� under As-
sumption 1 maintains the exponential mean square stability for any
� � � when 
 
 
� � �
����. The observation of 
� � 
� is
in accordance with the fact that (27) is a sufficient condition of (29).

V. CONCLUSIONS

Stability properties have been analyzed for discrete-time NCSs with
polytopic uncertainty under buffer capacity constraint, where a con-
troller is updated with the buffered sensor data at random intervals
and the amount of the buffered data received by the controller is also
random. We have established the sufficient conditions for guaranteeing
the exponential stability of generic switched NCSs and the exponential
mean square stability of Markov-chain driven NCSs, respectively. An
example has been given to illustrate our method.

The discrete-time plant can in fact be obtained by a discretization
of the corresponding continuous-time plant, with a zero-holder and a
sampler of the fixed sampling period. The works [5], [6], [8], [10],
[12], and [20] also employ discrete-time approaches for continuous-
time NCSs or continuous-time closed-loop systems with delayed con-
trol. Although the state feedback employed in these works is simpler
than our observer-based state feedback, these studies consider varying
communication delay, a network separating the controller and actuator,
and/or varying sampling period, which are more practical and compli-
cated than our assumptions of the “collocated” controller and actuator
and the update interval being a multiple of the sampling period. Exten-
sion of our results to more general NCSs is currently under investiga-
tion. In addition, since a full-order observer-based controller is utilised,
our method is applicable to the single link case. How to develop an
ingenious structure of observer-based controller accommodating mul-
tiple links is an interesting open problem.
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Joint Estimation and Gossip Averaging
for Sensor Network Applications

Nicolas Maréchal, Member, IEEE, Jean-Marie Gorce, Member, IEEE,
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Abstract—This note presents an efficient distributed approach for com-
puting a spatial average of parameters estimated by sensors in a wireless
network. The most intuitive approach would rely on a two-step procedure.
First, the nodes would estimate the local quantities, and second a dis-
tributed process would average these estimates over the network. Instead,
the proposed algorithm combines both processes to foster the convergence
while fulfilling the usual wireless sensor network requirements: simplicity,
low memory/CPU usage, and asynchronicity.

Index Terms—Average consensus, averaging, distributed algorithms, epi-
demic algorithms, estimation, gossip algorithms, sensor networks, space-
time diffusion.

I. INTRODUCTION

Wireless sensor networks (WSN) consist of a great amount of small
entities, called nodes, equipped with low cost hardware in order to
contain the total network cost. They are commonly used for tracking
purposes and environmental monitoring, such as landslides or fires
detection [1]. The direct drawbacks of using low cost hardware are
numerous: severe energy constraints (battery lifetime), poor CPU and
storage abilities, low transmission rates and small communication
ranges. Due to these constraints, distributed algorithms often outper-
form centralized approaches. However, the most important challenge
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for designing a distributed algorithm relies on ensuring a good perfor-
mance (convergence, speed, accuracy� � �) at a low energetic cost. Many
problems in WSN, such as synchronization or average estimation,
rely on reaching a consensus over the network. Further, many other
complex problems may be described as a consensus problem [2]. For
these problems, the particular class of distributed consensus algo-
rithms is of great interest: they provide a robust way for homogenizing
parameters among network nodes [3]. More specifically, average
consensus algorithms are required when the stability and the quality
of the consensus point is a critical issue, and extend to a wide panel
of data fusion tools such as estimators for statistical moments, linear
regression and polynomial map fitting ([4], [5]). However, a restriction
occurs when data to be averaged are subject to time fluctuations. This
is the case, for instance, when a statistical parameter is estimated from
time series of noisy data samples. The local estimation is obtained
thanks to a temporal regularization process, performed independently
by each sensor from its own measures. For an additive zero-mean
stationary noise process, the accuracy and the stability of this estima-
tion increase with the number of measures and, as a corollary, with
time. When a given accuracy is achieved, the second process can start
performing a spatial regularization over the network. This approach
turns out to be inefficient in terms of energy and processing time, and
further, the perfect convergence cannot be asymptotically achieved.
Therefore, it seems more challenging to regularize with respect to
time and space simultaneously. For this purpose, we propose to run
the gossip averaging algorithm while the estimation is still in progress.
We further introduce correction mechanisms to ensure an accurate
asymptotic convergence. This double process is clearly a distributed
space-time regularization scheme: each node performs individually a
local regularization of measured data series, while a spatial regulariza-
tion (averaging) is performed in order to extract a global characteristic.
This issue was firstly addressed in [5]. In this note, we put forward
a new algorithm which covers a more wide range of estimators and
allows a full asynchrony in/between packet exchanges and estimation
processes. This feature better complies with the constraints of WSNs.
The proposed algorithm turns out to be applicable in many contexts:
as an example, a clock carrier synchronization application for WSN
is described in [6]. This note is organized as follows: Section II
provides a short overview of gossip-based consensus algorithms, their
principles and some known results. Section III describes the newly
proposed algorithm, named the Joint Estimation and Gossip Averaging
Algorithm (JEGA), which describes an asynchronous distributed
algorithm for averaging a parameter over the network simultaneously
with its local estimation. The convergence proof is provided. After
these theoretical considerations, simulation results are provided in
Section IV to illustrate the behavior of JEGA.

II. DISTRIBUTED CONSENSUS ALGORITHMS

Distributed consensus algorithms/protocols aim at agreeing all
network nodes with a common value or a decision in a decentralized
fashion. From a signal processing context, this can be understood as a
spatial regularization process. In [7], this class of algorithms is used to
extract a large variety of aggregated and statistical quantities like aver-
ages/variances, max/min values\ldots When data exchanges consist of
local, asynchronous and simple interactions between neighbor nodes,
such algorithms referred to as gossip-based. The particular subclass
of gossip-based average consensus algorithms ([7], [8] …) aims at
computing a global average of local values and has practical applica-
tions such as LMS-based fitting of a linear parametric model ([2], [4],
[5]) or carrier frequency homogenization ([6]). These conceptual and
applicative characteristics make gossip-based consensus algorithms

0018-9286/$26.00 © 2010 IEEE
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