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Abstract— A popular technique of designing multiple-input
multiple-output (MIMO) communication systems relies on opti-
mizing the positive semidefinite covariance matrix at the source.
In this paper, a unified MIMO optimization framework based
on the Karush-Kuhn-Tucker (KKT) conditions is proposed.
In this framework, with the aid of matrix optimization theory,
Theorem 1 presents a generic optimal transmit covariance matrix
for MIMO systems with diverse objective functions subject to
various power constraints and different levels of channel state
information (CSI). Specifically, Theorem 1 fundamentally reveals
that for a diverse family of MIMO systems, the optimal transmit
covariance matrices associated with different objective functions
under various power constraints can be derived in a unified
generic water-filling-like form. When applying Theorem 1 to the
case of multiple general power constraints, we firstly equivalently
transform multiple power constraints into a single counterpart
by introducing multiple weighting factors based on Pareto
optimization theory. The optimal weighting factors can be found
by the proposed modified subgradient method. On the other
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hand, for the imperfect MIMO system with statistical CSI errors,
we firstly address the non-convexity of the robust optimization
problem by following the idea of alternating optimization. Finally,
our numerical results verify the optimal solution structure in
Theorem 1 and the global optimality of the proposed modified
subgradient method, as well as demonstrate the performance
advantages of the proposed alternating optimization algorithm.

Index Terms— Convex optimization, MIMO communications,
positive semi-definite matrix optimization, Karush-Kuhn-Tucker
conditions.

I. INTRODUCTION

W IRELESS technologies are rapidly developing relying
on the novel concepts of cloud computing, green com-

munications and so on in support of smart cities [1]–[4], [7].
In order to make these concepts come true, powerful physical
layer techniques characterized by high spectrum and energy
efficiencies are expected. Multiple-input multiple-output
(MIMO) techniques have been widely regarded as one of the
most important ingredients for a variety of wireless systems,
which have also been investigated for a wide range of wire-
less applications [1]–[4], [7]–[14]. Without loss of generality,
many design problems for MIMO communication systems
aim to derive the optimal transceiver architectures [11]–[13].
Interestingly, despite considering different performance met-
rics or different power constraints, the optimal MIMO trans-
mit precoding matrices usually have water-filling structures
[2]–[4], [7]–[15]. Such optimal water-filling structures have
the potential of greatly simplifying optimization problems and
reducing the dimension of optimization variables. Futhermore,
numerous variants of optimal water-filling structures have been
discovered, such as general water-filling [16], polite water-
filling [13], cluster water-filling [17], matrix-field water-filling
[12], and cave water-filling [18]. Throughout this evolution,
a large volume of elegant results have been derived for various
MIMO scenarios, including point-to-point MIMO systems [3],
multiuser MIMO systems [19], distributed MIMO networks
[8], [20], and multi-hop amplify-and-forward MIMO relaying
networks [21], [23]. It has been shown that the water-filling
structures are also available even for some transceiver opti-
mization problems in face of channel state information (CSI)
errors [23]–[25].

Given a large body of MIMO literature, a natural ques-
tion that arises is how these different water-filling structures
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are derived. Generally speaking, there are three categories
of methods. The first category is the Karush-Kuhn-Tucker
(KKT)-condition-based method [2], [24], [25]. Based on the
fact that the KKT conditions constitute necessary conditions
for optimal solutions [6], the common properties derived from
KKT conditions are also the properties of optimal solutions.
The second category is to apply matrix inequalities [9], [10]
or majorization theory [3], [23], to reveal the inequalities
between the diagonal elements and eigenvalues of a matrix
[26]. Using majorization theory, when the design objectives
are Schur-convex or Schur-concave functions of the diago-
nal elements of the mean-squared-error (MSE) matrix, the
optimal matrix variables subject to the total power constraint
can be derived in closed form [3], [23]. Unfortunately, this
method usually suffers from strict limitations in the prac-
tical applications [23]. For example, if the optimization
objective is neither Schur-convex nor Schur-concave or is
subject to the multiple power constraints, the majorization
theory may be inapplicable. The third category is termed
as matrix-monotonic optimization, which exploits the prop-
erties of positive semi-definite matrices [21], [27]. Similarly,
the matrix-monotonic optimization framework also has strict
restrictions on the objective functions and constraints of
optimization problems [21]. For example, when consider-
ing imperfect system CSI, the matrix-monotonic property of
MIMO capacity with respect to the transmit covariance matrix
may not hold due to the existence of CSI error [24]. Moreover,
for the case of multiple conflicting power constraints, the
matrix-monotonic optimization theory is not directly applica-
ble, implying its limited application scope compared to the
KKT-condition-based method.Generally speaking, the second
and third kinds of methods are mostly adopted for the MIMO
precoding matrix optimization with perfect CSI. From the
information theory perspective, a MIMO precoding matrix in
nature determines the covariance matrix of the transmitted
signal. When we concentrate our attention on the transmit
covariance matrix optimization, some hidden convexity will
be revealed. Moreover, many elegant mathematical properties
in the positive semi-definite cone can be used. Generally,
we apply complex matrix derivatives to firstly derive the KKT
conditions for the positive semi-definite matrix, from which
the structures of the optimal solutions can be obtained. This
kind of KKT-condition-based method has been widely adopted
in [2], [11], [15], [24], [25].

Despite that the above three kinds of methods have been
widely applied to derive the optimal transmit covariance
(precoding) matrix in various MIMO systems, the unified
KKT-condition-based framework is still essential due to the
following two reasons. Firstly, it is known that the KKT
conditions are necessary conditions for the optimal solution
of any optimization problem, and even sufficient conditions
for convex problems. Therefore, the KKT conditions are
able to provide some insights for the optimal transceiver
designs under diverse MIMO system setups. Secondly, most
current studies aiming to derive the optimal MIMO transmit
covariance (precoding) matrix using KKT conditions seem
to be largely diverse in the optimization objective and the
derivation of optimal solution [2], [24], [29]. For example,

in [2], the weighted mean square error (MSE) minimization
problem subject to the total transmit power constraint was
studied, to which the optimal transmit precoder obtained from
KKT conditions is able to diagonalize the MIMO channel into
eigen subchannels. The authors of [24] extended the above
work to the case of imperfect CSI at both communication
ends. In this case, due to the existence of statistical CSI errors,
the KKT-condition-based optimal transceiver design cannot
realize the MIMO channel diagonalization. In contrast to [2],
[24], the authors of [29] studied the capacity maximization
problem with per-antenna constraints in the SDP framework
and then analyzed its KKT optimality conditions.Generally,
the theories and technologies for physical layer designs have
common underlying fundamentals, hence, we believe that
the above works having seemingly different mathematical
derivations can be unified into a framework by revealing the
underlying fundamental induced by their KKT-condition-based
commonality.

It is known that most of existing MIMO system focus on the
sum power constraint or per-antenna power constraints, both of
which are suitable for centralized MIMO systems [2], [3], [25].
For further improving MIMO communication quality, there
has been an upsurge of interest in distributed MIMO systems,
where multiple multi-antenna users form a virtual antenna
array to communicate with the multi-antenna base station [5],
[12]. Since each user is powered by its own battery, multiple
sum power constraints are more appropriate in this scenario.
Furthermore, due to the distributed nature and varying circuit
characteristics, it is also practical to assign different power
weights to multiple antennas. In order to be compatible with
these scenarios, our framework developes a general power
constraint model.

In this paper, we investigate the widely used KKT-condition-
based method for the transmit covariance matrix optimiza-
tion of MIMO systems, and propose a unified framework
for derivations of water-filling-like structured optimal solu-
tions. Different from prior similar frameworks [3], [7], where
specific Schur-concave and Schur-convex utility functions
are considered under the assumption of perfect CSI, our
framework not only proposes the general formulation for
the MIMO transmit covariance matrices optimization with
diverse utility functions, general power constraints and even
different CSI levels, but also explores analytical solutions
for MIMO system optimization subject to general power
constraints by using Pareto optimization theory and Lagrange
duality. Furthermore, armed with the classical successive
convex approximation (SCA) technique, our framework also
provides new ideas to tackle nonconvex MIMO optimization
problems subject to multiple power constraints with low
complexity. In particular, we include Table I for demonstra-
tively and intuitively clarifying the generality of our work.
The main contributions of our work are then summarized as
follows.

• Firstly, compared to [2], [24], [25], the proposed frame-
work of KKT conditions based positive semi-definite
matrix optimization has a much simpler mathematical
formula, which clearly reveals the relationships among
various optimal solutions of the positive semi-definite
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TABLE I

COMPARISONS BETWEEN OUR WORK AND MOST EXISTING RESEARCHES ON MIMO SYSTEM OPTIMIZATION

matrix optimization with largely different mathematical
formulas.

• Secondly, the proposed framework has a wide range
of applications. It is applicable to many positive
semi-definite optimization problems in MIMO systems
relying on different optimization objectives, such as
capacity maximization and MSE minimization, under
both single and multiple power constraints. Moreover,
different levels of CSI are considered.

• Thirdly, in view of the difficulty of simultaneously satis-
fying multiple power constraints considered in this frame-
work, To tackle this issue, +30.2 we jointly apply Pareto
optimization theory and Lagrange duality to integrate
multiple power constraints into a single one associated
with multiple weighting factors whose optimal values can
be found by the modified subgradient method.

• Finally, due to the non-convexity of robust optimiza-
tion problems under general transmit and receive spatial
correlations, the globally optimal solution cannot be
analytically derived. As such, we propose utilizing the
SCA technique or the variable substitution to make this
framework applicable, based on which the iterative opti-
mization algorithms are proposed for finding the locally
optimal solutions. In particular, when considering only
transmit or receive spatial correlation, the robust analyt-
ical solutions under multiple weighted power constraints
are firstly revealed.

Notation: Throughout this paper, (·)∗, (·)T and (·)H stand
for the conjugate, transpose and Hermitian transpose oper-
ators, respectively, while Tr(Z) and |Z| are the trace and
determinant of the matrix Z, respectively. [Z]:,1:N denotes
the first N columns of Z, while the sub-matrix [Z]1:N,1:N

consists of the first N rows and the first N columns of Z.
[Z]i,i denotes the ith diagonal element of Z. Z

1
2 is the

Hermitian square root of the positive semi-definite matrix Z.
λi(Z) is the ith largest eigenvalue of Z, while σi(Z) is the
ith largest singular value of Z. For two matrices Z and A,
Z � A means that Z − A is positive semidefinite. E{·}
denotes the expectation operation and (a)+ = max{0, a}.
To clarify the order of the eigenvalues or singular values,
we use Λ ↘ to represent a rectangular diagonal matrix with
the diagonal elements arranged in decreasing order. The words
“with respect to”, “independent and identically distributed”
and “circularly symmetric complex Gaussian” are abbreviated
as “w.r.t.”, “i.i.d.” and “CSCG”, respectively.

II. FUNDAMENTAL RESULTS ON MATRIX OPTIMIZATION

For a convex optimization problem, the KKT conditions
are both necessary and sufficient for the optimal solution.
When the studied problem is nonconvex, the KKT conditions
are only necessary but not sufficient for the optimal solution.
However, even in this case, the KKT conditions can still be
very useful. This is because if the solution structure is derived
from the KKT conditions, then all solutions satisfying the
KKT conditions have this structure. Our proposed framework
aims to provide a fundamental result for the generic MIMO
transmit covariance matrix optimization problem, whose KKT
conditions are given by1{
HHΠ− 1

2
(
I+Π− 1

2 HQHHΠ− 1
2
)−K

Π− 1
2 H =μΦ−Ψ,

Tr(ΨQ) = 0 or Q
1
2 ΨQ

1
2 = 0

(1)

where K can be any positive integer. H and μ are the
arbitraty matrix and the positive scalar, respectively. The
matrices {Q,Ψ,Π} are positive semidefinite, while the matrix
Φ is positive definite. Note that by illustrating the physical
meanings of all matrices involved in (1) and choosing an
appropriate value of K , the KKT conditions in (1) are specified
as those for the capacity maximization problem or for the
MSE minimization problem. Specifically, we consider that
Q ∈ CNt×Nt is the positive semidefinite transmit covariance
matrix to be optimized and H ∈ C

Nr×Nt is the MIMO
channel matrix. Φ ∈ CNt×Nt is the power weighting matrix
and Π ∈ CNr×Nr is the interference-plus-noise covariance
matrix. The matrix Ψ ∈ C

Nr×Nr denotes the Lagrange
multiplier associated with Q � 0. Under this setup, the
KKT conditions of the capacity maximization problem and
the MSE minimization problem can be obtained from (1) by
setting K = 1 and K = 2, respectively. Further, based on
the formulation (1) and Lemma 1, we present a fundamental
result in the following theorem, which is useful for deriving the
optimal solution to the generic MIMO optimization problem.

Lemma 1: If all the solutions satisfying the KKT conditions
have the same structure, this structure is definitely satisfied by
the optimal solutions of the associated optimization problem.

Theorem 1: Using the singular value decomposition (SVD),
i.e. Π− 1

2 HΦ− 1
2 = UHΛHV H

H with ΛH ↘, the optimal

1Since both Q and Ψ are positive semidefinite, we readily have
Q

1
2 ΨQ

1
2 � 0. It then directly follows from Tr(ΨQ) = Tr(Q

1
2 ΨQ

1
2 ) =

0 that Q
1
2 ΨQ

1
2 =0, and vice verse.
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Q satisfying both equations in (1) has the following
water-filling structure

Q = Φ− 1
2
[
V H

]
:,1:N

(
μ− 1

K

[
ΛH

] 2
K −2

1:N,1:N

−[
ΛH

]−2

1:N,1:N

)+[
V H

]H

:,1:N
Φ− 1

2 , (2)

where N = Rank(H) and (B)+ denotes the operation (·)+
to every element of B.

Proof: Upon multiplying both sides of the first equation
in (1) by Q

1
2 and referring to the second equation in (1),

we arrive at the following equation.

Q
1
2 HHΠ− 1

2
(
I + Π− 1

2 HQHHΠ− 1
2
)−K

Π− 1
2 HQ

1
2

= μQ
1
2 ΦQ

1
2 . (3)

Let us define the new matrix A = Φ
1
2 Q

1
2 , then equation (3)

can be rewritten as

AHΦ− 1
2 HHΠ− 1

2
(
I+Π− 1

2 HΦ− 1
2 AAHΦ− 1

2 HHΠ− 1
2
)−K

×Π− 1
2 HΦ− 1

2 A = μAHA. (4)

According to the SVDs of A and Π− 1
2 HΦ− 1

2 A, the equa-
tion (4) implies that A and Π− 1

2 HΦ− 1
2 A have the same

right SVD unitary matrix. Based on this fact, it can be
concluded that the positive semi-definite matrices AHA

and AHΦ− 1
2 HHΠ−1HΦ− 1

2 A have the same eigenmatrix.
Therefore, the left singular vectors of A corresponding to its
nonzero singular values are also the right singular vectors of
Π− 1

2 HΦ− 1
2 . It is worth noting that for zero singular values

of A, the corresponding right singular vectors can be arbitrary
as long as they are orthogonal to each other and orthogonal
to the ones corresponding to the nonzero singular values.
Furthermore, we assume the following property without loss
of optimality.

Property 1: The left singular matrix of A is the right
singular matrix of Π− 1

2 HΦ− 1
2 .

Based on the definition of A, the first equation in (1) is
equivalent to the following one

Φ− 1
2 HHΠ− 1

2
(
I + Π− 1

2 HΦ− 1
2 AAHΦ− 1

2 HHΠ− 1
2
)−K

×Π− 1
2 HΦ− 1

2 = μI − Φ− 1
2 ΨΦ− 1

2 . (5)

Armed with Property 1, it is seen that the right singular
matrix of Π− 1

2 HΦ− 1
2 is the eigenmatrix associated with the

eigenvalue decomposition (EVD) of the left hand side of (5).
Based on (5), the eigenmatrix of the left hand side of (5) is
exactly the eigenmatrix of the right hand side of (5). In other
words, the following property holds.

Property 2: The right singular matrix of Π− 1
2 HΦ− 1

2 is
the eigenmatrix of Φ− 1

2 ΨΦ− 1
2 .

Let us now define ai = σi(A), hi = σi

(
Π− 1

2 HΦ− 1
2
)

and ψi = λi

(
Φ− 1

2 ΨΦ− 1
2
)
. Then by exploiting Properties 1

and 2, the equation (5) becomes h2
i /

(
1 + a2

i h
2
i

)K = μ−ψi,
based on which the parameters a2

i ’s can be expressed as

a2
i = (h

2
K

i /h2
i )

(
1/(μ− ψi)

1
K − 1/h

2
K

i

)
. Moreover, because

of Q
1
2 ΨQ

1
2 = 0 and together with the definition A =

Φ
1
2 Q

1
2 , we may conclude that AHΦ− 1

2 ΨΦ− 1
2 A = 0, which

further implies a2
iψi = 0 by exploiting Properties 1 and 2.

Therefore, ψi can be removed from the expression of a2
i .

The reason is as follows. Combining the inequalities μ > 0,
ψi ≥ 0 with a2

iψi = 0, it may be inferred that ψi = 0
when a2

i > 0, or ψi > 0 when a2
i = 0, based on which we

have a2
i = h

2
K
i

h2
i

(
1

μ
1
K

− 1

h
2
K
i

)+

. Upon recalling the definitions

of {ai, hi, ψi}, we finally obtain the optimal water-filling
structured Q as in (2). �

Remark: It is worth emphasizing that Theorem 1 is very
general and independent of the specific MIMO system setups,
including the objective functions, power constraints, signal
models, and channel assumptions. Moreover, in Theorem 1,
the matrices Π and Φ are not restricted to be constant, they
can also be functions of Q.

A. Differences From the Existing Literature

As water-filling structures have been extensively studied,
we would like to discuss the main differences between our
derivations and the existing ones. To the best of our knowl-
edge, the relevant literature may be classified into the follow-
ing two categories.

1) Comparison to the First Category: The first category
of the existing water-filling structure derivations is based
on matrix inequalities, e.g., [1], [3], [28]. However, it is
usually difficult to guarantee that the extreme values of matrix
inequalities are actually achieved due to the variations in
the objectives or constraints of the associated optimization
problems [28]. For example, in Telatar’s paper [1], the matrix
inequality log

∣∣I+HQHH
∣∣ ≤ ∑

i log
(
1+λi(HHH)λi(Q)

)
is applied to derive the water-filling structure of the opti-
mal solution. If the sum power constraint Tr(Q) ≤ P is
replaced by [Q]i,i ≤ Pi, the equality cannot be achieved [28].
In Section III, we will show that this issue can be overcome
by Theorem 1, because Π and Φ in Theorem 1 can both
be functions of Q. Therefore, compared to [1], [3], [28], our
conclusions are more general.

2) Comparison to the Second Category: The second cat-
egory is purely based on the classic KKT conditions and
usually consists of two phases. In the first phase, most KKT
conditions based studies have argued that when the product
of two matrices, i.e. Λ1Λ2, is a Hermitian matrix and Λ1

is a diagonal matrix, then the matrix Λ2 is also diagonal
[2], [24], [29]. However, if some diagonal elements of Λ1

are zeros, this claim does not hold. To avoid this issue, these
studies also assume that H is of full rank. By contrast, we
do not impose the full rank condition on H in Theorem 1.
In the second phase, some matrix manipulations are applied
for reducing the KKT conditions to some equations that only
involve diagonal matrices, and then the optimal covariance
matrix can be derived from these equations. Since the diag-
onal elements must be nonnegative, the operation (a)+ =
max{a, 0} is introduced. In Theorem 1, this operation appears
in the solution via rigorous mathematical derivation, which has
clear physical interpretation in practical applications, namely
that the transmit power of each eigenchannel is non-negative.
By contrast, some existing KKT conditions based derivations
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directly apply (a)+ = max{a, 0} to the eigenvalues of the
positive semi-definite matrix Q, which may be incorrect in
some applications [2], [24], [29]. To see this, let us consider
the following inequality

Φ− 1
2
[
V H

]
:,1:N

(
μ−

1
K

[
ΛH

] 2
K −2

1:N,1:N
−[

ΛH
]−2

1:N,1:N

)+

× [
V H

]H

:,1:N
× Φ− 1

2

�=
(
Φ− 1

2
[
V H

]
:,1:N

(
μ− 1

K

[
ΛH

] 2
K −2

1:N,1:N

− [
ΛH

]−2

1:N,1:N

)[
V H

]H

:,1:N
Φ− 1

2

)+

, (6)

where the equality holds only when Φ ∝ I . In particular,
in some existing treatises, Q is instead replaced by FF H,
where F is a tall matrix implying Q is rank-deficient. Then
we have the following KKT condition

HHΠ− 1
2
(
I+Π− 1

2 HFF HHHΠ− 1
2
)−1

Π− 1
2 HF =μΦF .

(7)

In this case, the optimal water-filling structured F can-
not be achieved due to the turning-off effect [28] which
assumes that any eigenchannel can be turned off (allocated
zero power). In this case, although (7) can still be sat-
isfied, it is not equivalent to the equation HHΠ−1

2
(
I +

Π−1
2 HFF HHHΠ− 1

2
)−1

Π− 1
2 H = μΦ, since the right

inverse of F may not exist. As such, (7) can be readily
seen to be inconsistent with (1), which makes Theorem 1 not
workable.

3) Summary of Our Derivation: Based on the KKT condi-
tions which are necessary conditions for finding the optimal
solution to the corresponding optimization problem, Theo-
rem 1 reveals that all solutions of Q satisfying both equations
in (1) have the structure given by (2). The fundamental con-
clusion in Theorem 1 has the following properties: 1) It does
not require the studied optimization problem to be convex;
2) It is applicable even when the involved parameters are
either constants or functions of optimization variables; 3) It
provides a common structure of the solutions satisfying KKT
conditions.

In the following two sections, we use Theorem 1 to derive
the water-filling structures of the optimal MIMO transmit
covariance matrices considering different objective functions,
power constraints, and CSI assumptions. Specifically, for
MIMO systems with perfect CSI, we investigate the capacity
maximization and MSE minimization problems subject to mul-
tiple weighted power constraints. Additionally, the above work
is extended to the scenario of realistic MIMO systems with
non-negligible CSI errors. Based on Theorem 1, the optimal
structures of the robust transmit covariance matrices can also
be derived.

III. TRANSMIT COVARIANCE MATRIX OPTIMIZATION

UNDER PERFECT CSI

For point-to-point MIMO systems where both the source
and destination are equipped with multiple antennas,
the received signal vector y is given by

y = Hs + n, (8)

where s is the transmitted signal vector whose covariance
matrix is Q = E

{
ssH

}
, and H is the channel matrix. n is

the additive noise vector at the destination with the covariance
matrix Rn = E

{
nnH

}
. We intend to apply Theorem 1

to the transmit covariance matrix design relying on perfect
CSI, where both single weighted sum power constraint and
multiple weighted power constraints are considered. More-
over, two types of widely used design objectives are studied,
namely capacity maximization and MSE minimization. We
reinvestigate the well-addressed transmit covariance matrix
optimization under a single power constraint mainly because
the optimal solutions of the relevant problems can be used to
validate our derivations in Theorem 1.

A. Single Weighted Sum Power Constraint
When the channel statistics of different antennas in a MIMO

system are similar, the sum power constraint is indeed quite
practical for transceiver optimization, which is also a special
case of the weighted sum power constraint considering differ-
ent characteristics of realistic transmit RF chains connected to
different antennas [12]. We model the weighted sum power
constraint as Tr(WQ) ≤ P , where P is the maximum
transmit power and W is a positive definite weighting matrix.
Note that if W has a zero eigenvalue, no power constraint
is imposed on the corresponding eigenchannel, which is
impractical.

1) Capacity Maximization: The capacity maximization
problem under the weighted sum power constraint is formu-
lated as

P1 : min
Q

− log
∣∣∣I + R−1

n HQHH
∣∣∣

s.t. Tr(WQ) ≤ P, Q � 0. (9)

The full KKT conditions for P1 are given by⎧⎪⎨⎪⎩
HHR

− 1
2

n

(
I+R

− 1
2

n HQHHR
− 1

2
n

)−1
R

− 1
2

n H =μW−Ψ,
μ ≥ 0, μ

(
Tr(WQ) − P

)
= 0, Tr(QΨ) = 0,

Ψ � 0, Tr(WQ) ≤ P, Q � 0,
(10)

where μ and Ψ are the dual variables associated with the
constraints Tr(WQ) ≤ P and Q � 0, respectively. Based on
Theorem 1 together with Π = Rn and Φ = W , we have the
following conclusion.

Conclusion 1: The optimal Q for P1 has the following
water-filling structure

Q = W− 1
2
[
V H

]
:,1:N

(
μ−1I − [

ΛH
]−2

1:N,1:N

)+

× [
V H

]H

:,1:N
W− 1

2 , (11)

where the unitary matrix V H is defined by the SVD

R
− 1

2
n HW− 1

2 = UHΛHV H
H with ΛH ↘ . (12)

Computation of μ: Clearly, the optimal μ in Conclusion 1
should satisfy Tr(W Q) = Tr

(
(μ−1I − [ΛH]−2

1:N,1:N)+
)

=
P , and thus can be uniquely determined by a standard
water-filling procedure. In fact, upon assuming descending
eigenvalues in ΛH, the optimal μ is readily derived in closed
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form as μ = Lmax

P+
�Lmax

l=1 [ΛH]−2
l,l

, where Lmax denotes the

maximum integer satisfying μ−1 − [ΛH]−2
Lmax,Lmax

≥ 0.
2) MSE Minimization: From the perspective of fully

exploiting the spatial multiplexing gain of MIMO systems,
we assume the number of transmitted data streams to be d =
rank(H). Then the MSE minimization problem is formulated
as

P2 : min
Q

Tr
((

I + R−1
n HQHH

)−1
)

s.t. Tr(W Q) ≤ P, Q � 0. (13)

The full KKT conditions of P2 are given by⎧⎪⎨⎪⎩
HHR

− 1
2

n

(
I+R

− 1
2

n HQHHR
− 1

2
n

)−2
R

− 1
2

n H =μW −Ψ,
μ ≥ 0, μ(Tr(WQ) − P ) = 0, Tr(QΨ) = 0,
Ψ � 0, Tr(W Q) ≤ P, Q � 0.

(14)

Again, based on Theorem 1 together with Π = Rn and
Φ=W , the following conclusion holds.

Conclusion 2: The optimal Q for P2 has the following
water-filling structure

Q = W− 1
2
[
V H

]
:,1:N

(
μ− 1

2
[
ΛH

]−1

1:N,1:N
− [

ΛH
]−2

1:N,1:N

)+

×[
V H

]H

:,1:N
W− 1

2 . (15)
Computation of μ: Similar to Section III-A.1, the optimal μ in
Conclusion 2 satisfying Tr(W Q) = Tr

(
(μ− 1

2
[
ΛH

]−1

1:N,1:N
−[

ΛH
]−2

1:N,1:N
)+

)
= P can also be numerically computed

using the classic water-filling procedure, and its closed-form

solution is given by μ =
( �Lmax

l=1 [ΛH]−1
l,l

P+
�Lmax

l=1 [ΛH]−2
l,l

)2
, where Lmax

denotes the maximum integer satisfying μ− 1
2
[
ΛH

]−1

Lmax,Lmax
−[

ΛH
]−2

Lmax,Lmax
≥ 0.

B. Multiple Weighted Power Constraints

As each antenna in an antenna array has its own amplifier,
the individual per-antenna power constraints are more practical
than the sum power constraint. We next consider the general
multiple weighted power constraints including the case of
individual power constraints as a special case. The general
multiple power constraints take the following form

Tr(ΩiQ) ≤ Pi, 1 ≤ i ≤ I, (16)

where the weighting matrices Ωi’s are positive semidefinite
and Pi’s denote the corresponding maximum transmit power.
In particular, when Ωi = bib

H
i holds with bi being the vector

whose ith element is one and all other elements are zero,
the power constraint of the ith antenna is obtained. Recall
Section III-A, it is clear that the positive scalar μ in Theorem 1
corresponds to the weighted sum power constraint Tr(WQ) ≤
P . In order to extend Theorem 1 to the case of multiple
power constraints, we consider integrating all these power
constraints into a single counterpart under some additional
requirements, as shown in the following Proposition. Using
this operation, Theorem 1 becomes directly applicable to

both capacity maximization and MSE minimization problems
subject to general multiple power constraints.

Proposition 1: For a matrix-monotone decreasing convex
function f(Q), the following optimization problem2

min
Q

f(Q), s.t. Tr(ΩiQ) ≤ Pi, Q � 0, 1 ≤ i ≤ I, (17)

can be equivalently simplified to

min
Q

f(Q),

s.t. Tr(ΩQ) ≤ P, Q � 0 with P =
∑I

i=1
Pi and

Ω =
∑I

i=1
μiΩi, (18)

where μi = (λiP )/(
∑I

i=1 λiPi), 1 ≤ i ≤ I . The optimal dual
variables λi’s associated with the general power constraints
of problem (17) satisfy λi(Tr(ΩiQ)−Pi)=0, 1 ≤ i ≤ I . Note
that Ω 	 0 must hold for guaranteeing the bounded objective
value f(Q).

Proof: Firstly, by referring to [5, Th. 1], the equivalence
between problems (17) and (18) has been established for
the general matrix-monotone decreasing function f(Q) by
using Pareto optimization theory. Specifically, it is observed
from Appendix of [5] that the optimal Q to problem (17) is
actually a Pareto optimal solution of a convex vector opti-
mization problem, where multiple transmit power objectives,
i.e. Tr(ΩiQ), 1 ≤ i ≤ I , are simultaneously minimized.
According to [6, Ch. 4.7.4], the scalarization method can be
applied to solve this vector optimization problem by defining

Ω =
I∑

i=1

μiΩi with nonnegative weighting coefficients μi’s,

based on which there exists a Pareto optimal solution Q
corresponding to a certain set of μi’s that achieves the optimal
objective value f(Q). Note that the corresponding optimal μi’s
are determined according to the following rules

μ
(t+1)
i = [μ(t)

i + a
(t)
i

(
Tr(ΩiQ) − Pi

)
]+,

μ
(t+1)
i (Tr(ΩiQ) − Pi) = 0, 1 ≤ i ≤ I, (19)

where a(t)
i > 0 denotes the tth step size of the ith power con-

straint. Obviously, the weighting coefficients μi’s are updated
in a similar manner to the dual variables λi’s associated with
multiple power constraints. For a special class of convex
functions f(Q), we further apply the Lagrange dual theory
to obtain an accurate mapping between μi and λi for any
1 ≤ i ≤ I , based on which the subgradient method is expected
to have faster convergence rate and guaranteed convergence.
Specifically, the Lagrangian of the convex problem (17) is
given by

L(Q,Z, {λi}) = f(Q)+
∑NS

i=1
λi(Tr(ΩiQ)−Pi)−Tr(ΨQ)

= f(Q)+μ̃
(
Tr(ΩQ

)− P )−Tr(ΨQ). (20)

where μ̃ = (
I∑

i=1

λiPi)/P , P =
I∑

i=1

Pi and Ω =
I∑

i=1

μiΩi.

The one-to-one mapping between μi and λi is given by

2For simplicity, the relevant conclusion in [5] is directly cited in the proof
of this proposition. More details are referred to as our latest IRS related work
titled “Unified IRS-aided MIMO transceiver designs via majorization theory”.
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Algorithm 1 The Modified Subgradient Method for Solving
Problem (17)

Initialize: Random dual variables λ(0)
i ’s; iteration index t =

0; maximum iteration number Tmax; sufficiently small
threshold ε > 0.

1: repeat
2: Calculate μ(t)

i =λ(t)
i P/(

∑I
i=1 λ

(t)
i Pi), 1 ≤ i ≤ I .

3: Given Ω =
∑I

i=1 μ
(t)
i Ωi, solve problem (18) to obtain

Q(t).
4: Set the step size a

(t)
i = a

b·t+c , 1 ≤ i ≤ I , where
{a, b, c} > 0.

5: Update λ(t+1)
i = [λ(t)

i + a
(t)
i (Tr(ΩiQ

(t)) − Pi)]+, 1 ≤
i ≤ I .

6: Update t = t+ 1.
7: until |μ(t)

i (Tr(ΩiQ
(t)) − Pi)| ≤ ε, ∀i, or t = Tmax.

8: return The optimal Q� = Q(t) to problem (17).

μi = λiP/(
I∑

i=1

λiPi), 1 ≤ i ≤ I . Then the corresponding

KKT optimality conditions are expressed as

∇Tf(Q) +
∑NS

i=1
λiΩi = ∇Tf(Q) + μ̃Ω = Ψ, (21a)

λi(Tr(ΩiQ) − Pi) = 0, 1 ≤ i ≤ I, Tr(ΨQ) = 0, Ψ � 0.
(21b)

It is readily proved that μ̃ > 0 at the optimal solution by
contradiction. We then follows from (21b) that Tr(ΩQ)−
P = 0. The equalities (21a) and Tr(ΩQ)−P = 0 are the
KKT optimality conditions of the convex problem (18) by
considering μ̃ to be the dual variable associated with the single
power constraint Tr(ΩQ) ≤ P . As a result, the equivalence
between the two convex problems (17) and (18) holds via dual
theory. This completes the whole proof. �

Motivated by Proposition 1, we further develop a novel
subgradient method to determine the optimal solution to
the original convex problem (17), which is summarized in
Algorithm 1. Since the global convergence of the classical
subgradient method for solving the convex problem (18) has
been well proved in [6], and Proposition 1 establishes the
equivalence of the convex problems (18) and (17) by revealing
the inherent relationship between their optimal dual variables,
it is further concluded that Algorithm 1 is guaranteed to
converge to the globally optimal solution of problem (17).
The worst-case complexity of Algorithm 1 mainly comes
from solving the convex problem (18), which is given by
TmaxO1 with O1 depending on the specific type of problem
(18), as elaborated in Section V. In the sequel, we intend to
apply Algorithm 1 to both capacity maximization and MSE
minimization under multiple weighted power constraints.

1) Capacity Maximization: The capacity maximization of
MIMO systems under multiple weighted power constraints is
formulated as

P3 : min
Q

− log
∣∣I + R−1

n HQHH
∣∣

s.t. Tr(ΩiQ) ≤ Pi, 1 ≤ i ≤ I, Q � 0. (22)

Based on Proposition 1, the corresponding full KKT condi-
tions are formulated as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

HHR
− 1

2
n

(
I + R

− 1
2

n HQHHR
− 1

2
n

)−1
R

− 1
2

n H

= μ̃Ω− Ψ,

μ̃ > 0, Tr(ΩQ) − P = 0, Ω =
∑I

i=1
μiΩi,

μi

(
Tr(ΩiQ) − Pi

)
= 0, Tr(ΩiQ) ≤ Pi,

Tr(QΨ) = 0, Ψ � 0, Q � 0, 1 ≤ i ≤ I.

(23)

Upon recalling Theorem 1 and setting Π = Rn, we have
the following conclusion for P3.

Conclusion 3: The optimal Q for P3 has the following
water-filling structure

Q = Ω− 1
2
[
V H

]
:,1:N

(
μ̃−1I − [

ΛH
]−2

1:N,1:N

)+

× [
V H

]H

:,1:N
Ω− 1

2 , (24)

where the unitary matrix V H is defined by the following SVD

R
− 1

2
n HΩ− 1

2 = UHΛHV H
H with ΛH ↘ . (25)

In particular, the optimal scalars μi’s involved in Ω can be
uniquely found by Algorithm 1.

Computation of μi’s and μ̃: Motivated by Proposi-
tion 1, the optimal μi’s enabling the optimal solution of
the convex problem P3 can be uniquely determined by
Algorithm 1. Futhermore, according to Tr(ΩQ) = P , the opti-
mal closed-form μ̃ in Conclusion 3 can be calculated as
μ̃ = Lmax

P+
�Lmax

l=1 [ΛH]−2
l,l

with Lmax being the maximum integer

satisfying μ̃−1 − [ΛH]−2
Lmax,Lmax

≥ 0.
2) MSE Minimization: The MSE minimization problem

under multiple weighted power constraints on the other hand
is formulated as

P4 : min
Q

Tr
((

I + R−1
n HQHH

)−1
)

s.t. Tr(ΩiQ) ≤ Pi, 1 ≤ i ≤ I, Q � 0. (26)

Similarly, after tedious but straightforward derivations,
the corresponding full KKT conditions can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

HHR
− 1

2
n

(
I + R

− 1
2

n HQHHR
− 1

2
n

)−2
R

− 1
2

n H

= μ̃Ω− Ψ,

μ̃ > 0, Tr(ΩQ)−P = 0, Ω =
∑I

i=1
μiΩi,

μi

(
Tr(ΩiQ) − Pi

)
= 0, Tr(ΩiQ) ≤ Pi,

Tr(QΨ) = 0, Ψ � 0, Q � 0, 1 ≤ i ≤ I,

(27)

By following the same procedure as that conceived for
capacity maximization, the optimal closed-form solution of
P4 can also be derived, as shown in the following conclusion.

Conclusion 4: The optimal Q of P4 has the following
closed form

Q = Ω− 1
2
[
V H

]
:,1:N

(
μ̃−1

[
ΛH

]−1

1:N,1:N
− [

ΛH
]−2

1:N,1:N

)+

× [
V H

]H

:,1:N
Ω− 1

2 , (28)

where V H is defined as shown in (25).
Computation of μi’s and μ̃: Similarly to Section III-B.1,

the optimal μi’s leading to the optimal Q in (28) can also
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be computed by the modified subgradient method, and the
optimal μ̃ satisfying Tr(ΩQ) = P is calculated as μ̃ =�Lmax

l=1 [ΛH]−1
l,l

P+
�Lmax

l=1 [ΛH]−2
l,l

, where Lmax denotes the maximum integer

satisfying μ̃−1
[
ΛH

]−1

Lmax,Lmax
− [

ΛH
]−2

Lmax,Lmax
≥ 0.

In a nutshell, it is revealed by Proposition 1 that multiple
power constraints of a matrix-monotone convex optimization
problem can be integrated into a single one through multi-
ple auxiliary parameters μi’s whose optimal values can be
uniquely determined by the modified subgradient method.
Moreover, this artful use of μi’s can facilitate the derivation
of the optimal closed-form solution under multiple power
constraints, thereby leading to a lower computational complex-
ity compared to the classical interior point method. Overall,
our distinct contributions in terms of solving P3 and P4 are
summarized as follows.

• Firstly, although P3 and P4 have been studied in [16],
[27], our proposed modified subgradient method is com-
putationally simpler and overcomes the turning-off effect.
Furthermore, the channel matrix is not required to have
full-rank column or row.

• Secondly, Proposition 1 reveals that the effect of mul-
tiple weighted constraints are in nature equivalent to a
weighted total power constraint by comparing the optimal
closed-form solutions of P3 and P4 to those of P1
and P2.

IV. TRANSMIT COVARIANCE MATRIX OPTIMIZATION

UNDER IMPERFECT CSI

In practice, it is unrealistic to assume perfect CSI, since CSI
must be estimated via the training process. The limited training
length and the ubiquitous noise together with the time varying
nature of wireless channels result in non-negligible channel
estimation error [21]. By taking the channel estimation errors
into account, the CSI can be modeled as [21], [24]:

H = Ĥ + ΔH with ΔH = R
1
2
RHWR

1
2
T, (29)

where Ĥ denotes the estimated channel and ΔH is CSI error.
RR and RT are the receive and transmit spatial correlation
matrices, respectively. Furthermore, HW is a random matrix
whose elements are i.i.d. distributed as CN (0, γe), where γe

denotes the error variance. Hereafter, we assume that both the
transmitter and receiver only have access to the imperfect CSI.
Under this assumption, the performance metrics of average
capacity and average MSE are considered, both of which are
taken w.r.t. the random matrix HW.3

A. Total Power Constraint With Imperfect CSI

1) Average Capacity Maximization: Using the CSI error
model (29) and assuming white noise, i.e., Rn =
σ2

nI , the (approximate) average capacity maximization

3The interested readers can refer to [30] for the detailed derivation of the
average MSE metric. Moreover, based on the fundamental relation between
the mutual information and MSE, an analytical lower bound of the average
mutual information (capacity) can be derived as P5, which is adopted due to
its good mathematical tractability [25].

problem under the total power constraint is formulated
as [25], [30]

P5 : min
Q

− log
∣∣∣I + K−1

n ĤQĤ
H
∣∣∣

s.t. Tr(Q) ≤ P, Q � 0, (30)

where the equivalent noise covariance matrix Kn is denoted
by

Kn = σ2
nI + Tr(RTQ)RR, (31)

and P is the maximum total transmit power. Furthermore,

using the first-order derivative of log
∣∣I+K−1

n ĤQĤ
H∣∣ w.r.t

Q, which is given by

∂log
∣∣I+K−1

n ĤQĤ
H∣∣

∂Q
=
∂log

∣∣Kn+ĤQĤ
H∣∣

∂Q
− ∂log|Kn|

∂Q

=
(
Ĥ

H (
Kn+ĤQĤ

H)−1

Ĥ
)T−Tr

(
K−1

n RR

)
RT

T

+ Tr
((

Kn +ĤQĤ
H)−1

RR

)
RT

T, (32)

the full KKT conditions of P5 can be expressed as follows⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ĥ

H(
Kn+ĤQĤ

H)−1

Ĥ =μI

+ Tr
((

K−1
n −(

Kn+ĤQĤ
H)−1

)
RR

)
RT−Ψ,

μ ≥ 0, μ (Tr(Q) − P ) = 0, Tr(QΨ) = 0,
Ψ � 0, Tr(Q) ≤ P, Q � 0.

(33)

Using Theorem 1, we have the following conclusion for the
optimal solution of P5.

Conclusion 5: The optimal Q for P5 has the following
water-filling structure:

Q = Φ− 1
2
[
V H

]
:,1:N

(
μ−1I − [

ΛH
]−2

1:N,1:N

)+

× [
V H

]H

:,1:N
Φ− 1

2 , (34)

where Φ = I + 1
μTr

((
K−1

n −(
Kn +ĤQĤ

H)−1)
RR

)
RT

and the unitary matrix V H satisfies K
− 1

2
n ĤΦ− 1

2 =
UHΛHV H

H with ΛH ↘.
As for Conclusion 5, since the optimal Q appears in both

sides of (34), its closed-form structure is usually hard to obtain.
Armed with convex and non-convex optimization techniques,
we next aim for deriving the optimal closed-form solution from
the equation (34) for the following three cases: a) P5.1: both
the transmit and receive antennas have spatial correlation, i.e.
RR �= INR and RT �= INT ; b) P5.2: the transmit antennas
have no spatial correlation, i.e. RT = INT ; c) P5.3: the
receive antennas have no spatial correlation, i.e. RR = INR .

a) P5.1: For RT �= INT and RR �= INR , it is clear that

P5 is non-convex due to the coupled Kn and ĤQĤ
H

in the
objective function. Thus it is much challenging to optimally
solve P5. Fortunately, inspired by the concavity of the log
function, we can apply the SCA technique based on the
first-order Taylor expansion of log det(Kn) around a point
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Q(t) (where t denotes the iteration index) to obtain a convex
upper-bound of the capacity, which is expressed as

log det(Kn) ≤ log det
(
K(t)

n

)
+ 1/(ln 2)

×Tr
(
(K(t)

n )−1RR

)
Tr

(
RT(Q − Q(t))

)
. (35)

Based on (35), an alternative convex upper bound optimiza-
tion of P5 is formulated as

min
Q

1
ln 2

Tr
(
(K(t)

n )−1RR

)
Tr

(
RTQ

)− log
∣∣Kn+ĤQĤ

H∣∣
s.t. Tr(Q) ≤ P, Q � 0, (36)

Following the design philosophy of SCA, we can find a
locally optimal solution of P5 by iteratively optimizing the
convex problem (36). Specifically, the first order derivative
of the Lagrangian of problem (36) w.r.t. Q is expressed as

Ĥ
H(

Kn+ĤQĤ
H)−1

Ĥ =μI + Tr
((

(K(t)
n )−1

− (Kn+ĤQĤ
H
)−1

)
RR

)
RT−Ψ, (37)

which is the first KKT condition in (33) upon replacing K−1
n

by (K(t)
n )−1. However, even with this substitution, the optimal

closed-form Q is still difficult to obtain due to the diverse

forms of Q involved in Kn and ĤQĤ
H

. To address this
issue, we consider introducing an auxillary variable y to
rewrite problem (36) as

min
Q,y

1/(ln 2) Tr
(
(K(t)

n )−1RR

)
y

− log
∣∣σ2

nI + yRR + ĤQĤ
H∣∣

s.t. Tr(Q) ≤ P, y = Tr
(
RTQ

)
, Q � 0. (38)

Then the full KKT conditions of the convex problem (38)
are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĥ
H(
σ2

nI+yRR+ĤQĤ
H)−1

Ĥ =μI−βRT − Ψ,

f(y) = Tr
((

(σ2
nI+yRR+ĤQĤ

H
)−1

− (K(t)
n )−1

)
RR

)
= β,

y − Tr
(
RTQ

)
= 0, μI−βRT 	 0

μ ≥ 0, μ (Tr(Q) − P ) = 0, Tr(QΨ) = 0,
Ψ � 0, Tr(Q) ≤ P, Q � 0.

(39)

Based on (39), the optimal Q of problem (38) is similarly
derived as that in Conclusion 5 by setting Φ=I−(β/μ)RT .
Moreover, we readily find that f(y) is monotonically decreas-
ing w.r.t. y, implying that the optimal y can be uniquely
determined for a given β. As such, we propose iteratively
optimizing Q and y for finding the minimum value of the
Lagrangian of problem (38) for each given pair of {μ, β}.
Due to the convexity of problem (38), this iterative procedure
is guaranteed to converge to the global minimum of the
Lagrangian.

Computation of μ and β: Based on Proposition 1 and
regarding y − Tr

(
RTQ

)
= 0 as a special weighted power

constraint, the optimal dual variables μ and β can be numer-
ically computed using the subgradient method.

b) P5.2: For the case of RT = INT , it follows from (33)
that Φ ∝ INR and Kn = σ2

nI + Tr(Q)RR = σ2
nI + P RR.

Consequently, Conclusion 5 can be simplified as follows.
Conclusion 5.2 When RT = INT , the optimal Q for P5 is

given by

Q =
[
V H

]
:,1:N

(
μ−1I − [

ΛH
]−2

1:N,1:N

)+[
V H

]H
:,1:N

, (40)

where the unitary matrix V H satisfies K
− 1

2
n Ĥ =

UHΛHV H
H with ΛH ↘.

Computation of μ: The dual variable μ can be com-
puted based on the equality Tr(Q) = Tr

(
(μ−1I −[

ΛH
]−2

1:N,1:N
)+

)
= P , and its optimal closed-form solution

is readily obtained as μ = Lmax

P+
�Lmax

l=1 [ΛH]−2
l,l

with Lmax being

the maximum integer satisfying μ−1 − [ΛH]−2
Lmax,Lmax

≥ 0.
c) P5.3: For the case of RR = I , we firstly rewrite

Kn as Kn = knI with kn = σ2
n + Tr(QRT). Using the

fact Tr(Q) = P at the optimal Q yields kn = Tr
(
BQ

)
/P

with B = σ2
nI + PRT. Furthermore, by defining Q̃ =

B
1
2 QB

1
2 /kn with Tr(Q̃) = P , the first KKT condition in

(33) can be rewritten as

Ĥ
H(

I + ĤB− 1
2 Q̃B− 1

2 Ĥ
H)−1

Ĥ = μI

+ Tr
(
Ĥ

H(
I+ĤB− 1

2 Q̃B− 1
2 Ĥ

H)−1
ĤB− 1

2 Q̃B− 1
2

)
×RT− Ψ. (41)

By right multiplying Q̃ and applying the trace operation to
both sides of (41) yields

Tr
(
Ĥ

H(
I+ĤB− 1

2 Q̃B− 1
2 Ĥ

H)−1
ĤB− 1

2 Q̃B− 1
2

)
=

μTr(B− 1
2 Q̃B− 1

2 )

1 − Tr(B− 1
2 RT B− 1

2 Q̃)
=

μTr(Q)
kn − Tr(RTQ)

=
μP

σ2
n

.

(42)

Furthermore, we substitute (42) into (41) to obtain Ĥ
H
(I+

ĤB− 1
2 Q̃B− 1

2 Ĥ
H
)−1Ĥ = μ

σ2
n
B−Ψ. Based on Theorem 1

and Φ = I , the optimal Q̃ is obtained as

Q̃=
[
V H

]
:,1:N

(
μ−1I−[

ΛH
]−2

1:N,1:N

)+[
V H

]H

:,1:N
, (43)

where the unitary matrix V H is defined by the SVD:
ĤΦ− 1

2 = UHΛHV H
H with ΛH ↘ . Based on the

water-filling structure of (43), we arrive at the following
conclusion.

Conclusion 5.3 When RR = I , the optimal Q of P5 can be
simplified to

Q =
P

Tr(B− 1
2 Q̃B− 1

2 )
B− 1

2 Q̃B− 1
2 . (44)

Computation of μ: Note that the optimal Q̃ in (43) has
a similar expression to the optimal Q in (40), hence the
associated optimal scalar μ satisfying Tr(Q̃) = P can be
obtained in the same closed form as that in P5.2.
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2) Average MSE Minimization: Proceeding in a similar
manner to Section III-A, by assuming the number of trans-
mitted data streams to be d = rank(Ĥ), the average MSE
minimization problem can be formulated in the following
form [23], [30].

P6 : min
Q

Tr
((

I + K−1
n ĤQĤ

H)−1
)

s.t. Tr(Q) ≤ P, Q � 0, (45)

where Kn is given in (31). Based on the following matrix
derivative equality

∂Tr
((

INR + K−1
n ĤQĤ

H)−1
)

∂Q

= −
(
Ĥ

H
K

− 1
2

n

(
I + K

− 1
2

n ĤQĤ
H
K

− 1
2

n

)−2

K
− 1

2
n Ĥ

)T

+ Tr
(
K−1

n ĤQ
1
2
(
I+Q

1
2 Ĥ

H
K−1

n ĤQ
1
2
)−2

×Q
1
2 Ĥ

H
K−1

n RR

)
RT

T, (46)

the full KKT conditions of P6 are then given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĥ
H
K

− 1
2

n

(
I+K

− 1
2

n ĤQĤ
H
K

− 1
2

n

)−2
K

− 1
2

n Ĥ =μI−Ψ

+Tr
(
K−1

n ĤQ
1
2
(
I +Q

1
2 Ĥ

H
K−1

n ĤQ
1
2
)−2

×Q
1
2 Ĥ

H
K−1

n RR

)
RT

μ ≥ 0, μ(Tr(Q) − P ) = 0, Tr(QΨ) = 0,
Ψ � 0, Tr(Q) ≤ P, Q � 0.

(47)

By recalling Theorem 1, we further have the following
conclusion.

Conclusion 6: The optimal Q of P6 has the following
closed form

Q = Φ− 1
2
[
V H

]
:,1:N

(
μ− 1

2
[
ΛH

]−1

1:N,1:N
− [

ΛH
]−2

1:N,1:N

)+

×[
V H

]H

:,1:N
Φ− 1

2 , (48)

where Φ is given by Φ = I + 1
μTr

(
K−1

n ĤQ
1
2
(
I +

Q
1
2 Ĥ

H
K−1

n ĤQ
1
2
)−2

Q
1
2 Ĥ

H
K−1

n RR

)
RT, and the unitary

matrix V H satisfies K
− 1

2
n ĤΦ− 1

2 = UHΛHV H
H with

ΛH ↘.
Like solving P5, the analytical optimal Q given by

Conclusion 6 is usually not available, since the unknown Q
still exists in both sides of (48). As a result, we also focus
on the same three cases of RT and RR as in Section IV-A.1
to explore the optimal closed-from Q from the equation (48),
as elaborated below.

a) P6.1: Like P5.1, for RT �= I and RR �= I, we apply an
auxiliary variable G∈CN×N to solve the non-convex problem
P6. Motivated by the fact that the average MSE metric in (45)
is achieved by the Wiener filter, we can rewrite the average
MSE objective as [24]

Tr
((

I+K−1
n ĤQĤ

H)−1)
= min

G
Tr

(
I−Q

1
2 Ĥ

H
GH−GĤ(Q

1
2 )H+G(Kn

+ ĤQĤ
H
)GH

)
, (49)

where Q = (Q
1
2 )HQ

1
2 . Note that Q

1
2 is not required to be

positive semidefinite. The optimal G to the inner minimization
problem (49) is readily derived as

G = Q
1
2 Ĥ

H
(Kn + ĤQĤ

H
)−1, (50)

which is exactly the Wiener filter. As such, the equality in (49)
holds. Further, for addressing the nonconvexity of P6, we pro-
pose an iterative algorithm that alternates between optimizing
G and Q. Firstly, for any given Q, the optimal G to the inner
minimization problem (49) is given by (50). Secondly, for a
fixed G, we apply the simple matrix manipulation to design
Q=Q

1
2 (Q

1
2 )H such that

min
Q

Tr
(
Q

1
2 D(Q

1
2 )H − Q

1
2 Ĥ

H
GH − GĤ(Q

1
2 )H

)
+ C,

s.t. ‖Q 1
2 ‖2

F ≤ P, (51)

where D = Tr(GRRGH)RT +Ĥ
H
GHGĤ and C = Tr(I +

σ2
nGGH). Since problem (51) is convex w.r.t. Q

1
2 , its full

KKT conditions are given by{
Q

1
2 (D + μI) = GĤ

μ ≥ 0, μ(‖Q 1
2 ‖2

F − P ) = 0.
(52)

where the parameter μ can be uniquely found using the
bisection method [22]. In particular, for μ = 0, the optimal
Q is directly obtained as Q

1
2 = GĤD†. It is worth noting

that the KKT conditions in (52) are quite different from those
in (47) derived for the positive semidefinite matrix Q and
have much simplified mathematical forms. In fact, it can be
regarded as a special case of (47) by setting Kn = G, Q = 0
and Ψ = μI−(D+μI)Q(D+μI) in the involved first KKT
condition, respectively.

b) P6.2: For RT = I , by following similar derivations
to that of P5.2 and observing the KKT conditions in (47),
we arrive at the following conclusion.

Conclusion 6.2 When RT =I , the optimal Q of P6 is given
by

Q =
[
V H

]
:,1:N

(
μ−1

[
ΛH

]−1

1:N,1:N

− [
ΛH

]−2

1:N,1:N

)+[
V H

]H
:,1:N

, (53)

Computation of μ: Similar to Conclusion 4, the optimal
scalar μ satisfying Tr(Q) = P can be calculated as μ =�Lmax

l=1 [ΛH]−1
l,l

P+
�Lmax

l=1 [ΛH]−2
l,l

, where Lmax denotes the maximum integer

satisfying μ−1
[
ΛH

]−1

Lmax,Lmax
−[

ΛH
]−2

Lmax,Lmax
≥ 0.

c) P6.3: For RR = I , we recall P5.3 and rewrite the first
KKT condition in (47) as

B− 1
2 Ĥ

H (
I + ĤB− 1

2 Q̃B− 1
2 Ĥ

H)−2

ĤB− 1
2

= (μkn)/σ2
nI−knB

− 1
2 ΨB− 1

2 . (54)

According to Theorem 1, we have the following optimal
Q̃

Q̃ =
[
V H

]
:,1:N

(
μ−1

[
ΛH

]−1

1:N,1:N
−[

ΛH
]−2

1:N,1:N

)+

×[
V H

]H
:,1:N

, (55)
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where the unitary matrix V H is similarly specified by the
SVD: ĤΦ− 1

2 = UHΛHV H
H with ΛH ↘. Based on the

optimal Q̃, the optimal Q of P6 has the same closed form
as that in Conclusion 5.3.

Computation of μ: Since the optimal Q̃ in (55) has a
similar expression to that in (53), the corresponding optimal
scalar μ satisfying Tr(Q̃)=P can be derived similarly to that
in P6.2.

In a nutshell, the optimal Q’s in P5.2, P5.3, P6.2 and P6.3
with either RT = I or RR = I are all directly obtained
in closed forms based on the original objective function,
while the optimal solutions to P5.1 and P6.1 focusing on the
general RR �= I and RT �= I are derived through applying
the iterative optimization procedure to the modified objective
function.

B. Multiple Weighted Power Constraints With Imperfect CSI

Recently, there have been a few studies on MIMO trans-
ceiver designs considering different power allocation schemes
under imperfect CSI. For example, the authors of [31] pro-
posed various error-tolerant diagonal precoding schemes with
different power allocation strategies to overcome the effect
of imperfect MIMO channel feedback. However, to the best
of our knowledge, for more general imperfect MIMO system
setup, the globally optimal solutions to the robust MIMO
transceiver designs under general power constraints have not
been investigated. In the sequel, we mainly investigate the
robust transmit covariance matrix optimization from the per-
spectives of average capacity maximization and average MSE
minimization.

1) Average Capacity Maximization: The average capacity
maximization problem of MIMO systems under multiple
weighted power constraints is formulated as

P7 : min
Q

− log
∣∣∣I + K−1

n ĤQĤ
H
∣∣∣

s.t. Tr(ΩiQ) ≤ Pi, 1 ≤ i ≤ I, Q � 0. (56)

Similar to P5.1, an alternative convex upper-bound opti-
mization of P7 is given by

min
Q,y

1/(ln 2) Tr
(
(K(t)

n )−1RR

)
y

− log
∣∣σ2

nI + yRR+ĤQĤ
H∣∣,

s.t. Tr(ΩiQ) ≤ Pi, y = Tr
(
RTQ

)
, Q � 0, 1 ≤ i ≤ I.

(57)

Accordingly, KKT conditions of problem (57) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĥ
H(
σ2

nI+yRR+ĤQĤ
H)−1

Ĥ =μΩ−βRT − Ψ,

f(y)=Tr
((

(σ2
nI+yRR+ĤQĤ

H
)−1−(K(t)

n )−1
)
RR

)
= β,

y − Tr
(
RTQ

)
= 0, μI−βRT 	 0

μ̃ > 0, Tr(ΩQ) − P = 0, Ω =
∑I

i=1
μiΩi,

μi

(
Tr(ΩiQ) − Pi

)
= 0, Tr(ΩiQ) ≤ Pi,

Tr(QΨ) = 0, Ψ � 0, Q � 0, 1 ≤ i ≤ I.

(58)

It is readily shown that the above KKT conditions have
similar formulation to (39). Therefore, the corresponding opti-
mal Q of problem (57) has an almost identical closed-form
solution to that of problem (38) by slightly modifying Φ as
Φ = Ω−(β/μ)RT with Ω =

∑I
i=1 μiΩi, where the optimal

μi’s are uniquely determined by Algorithm 1. In particular,
for the special case of RR = I , we replace Q with Q̃ =(
σ2

n+Tr(RTQ)
)−1

Q. Then problem (56) is rewritten as

min
Q

− log
∣∣∣I + ĤQ̃Ĥ

H
∣∣∣

s.t. Tr(Ω̃iQ̃) ≤ Pi, 1 ≤ i ≤ I, Q̃ � 0, (59)

where Ω̃i = σ2
nΩi + PiRT, ∀i. Note that problem (59)

has a similar structure to P3, and thereby can be globally
solved following the same methodology as that of solving P3.
Nevertheless, for another special case of RT = I , the optimal
closed-from Q to P7 is hard to obtain directly, since Tr(Q)
involved in Kn cannot be determined as a constant like in
P5.2 focusing on the single total power constraint.

2) Average MSE Minimization: The average MSE min-
imization problem of MIMO systems subject to multiple
weighted power constraints can be formulated as

P8 : min
Q

Tr
(
(I + K−1

n ĤQĤ
H
)−1

)
s.t. Tr(ΩiQ) ≤ Pi, 1 ≤ i ≤ I, Q � 0. (60)

For tackling the non-convexity of P8, the proposed alternat-
ing optimization algorithm in P6.1 is still applicable. To be
specific, by recalling the equivalent MSE objective in (49),
the optimal G to P8 with any given Q has the same closed
form as (51), while the optimal Q for any given G should be
designed such that

min
Q

1
2

Tr
(
Q

1
2 D(Q

1
2 )H − Q

1
2 Ĥ

H
GH − GĤ(Q

1
2 )H

)
s.t. ‖Q 1

2 ‖2
F ≤ P. (61)

The full KKT conditions of problem (61) are then given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q
1
2 (D + μ̃Ω) = GĤ ,

μ̃>0, Tr(Q
1
2 Ω(Q

1
2 )H)−P = 0, Ω =

∑I

i=1
μiΩi,

μi ≥ 0, μi

(
Tr

(
Q

1
2 Ωi(Q

1
2 )H

) − Pi

)
= 0,

Tr
(
Q

1
2 Ωi(Q

1
2 )H

) ≤ Pi,

(62)

Observe from (62) that for any given Ω, the optimal μ̃
leading to Tr(Q

1
2 Ω(Q

1
2 )H) = P can also be found via

bisection search, while the optimal μi’s are computed from
Algorithm 1. Furthermore, for the special case of RR = I ,
P8 can be rewritten as

min
�Q

Tr
((

I + ĤQ̃Ĥ
H)−1)

s.t. Tr(Ω̃iQ̃) ≤ Pi, Q̃ � 0, 1 ≤ i ≤ I. (63)

Since problem (63) has a similar structure to problem (26),
the optimal Q̃ can be calculated as that in Conclusion 4.
However, like the average capacity maximization, for RT =
I , the optimal closed-form Q to P8 is hard to obtain due
to the unknown Tr(Q) under multiple power constraints.
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Fortunately, the proposed alternating optimization algorithm
is still applicable.

V. SUMMARY AND DISCUSSION

A. Convergence and Complexity Analysis
In summary, when considering spatial correlations at both

transmitter and receiver antenna arrays, i.e. RT �= I and
RR �= I, we apply the classical SCA technique to tackle
the non-convex average capacity maximization P5.1 and
P7. As for the non-convex average MSE minimization,
we firstly introduce an auxiliary variable G, and then apply
the two-block alternating optimization algorithm to solve
P6.1 and P8. Actually, both the proposed SCA-based algo-
rithm and two-block alternating optimization algorithm belong
to the block successive upper-bound minimization (BSUM)
framework [32]. For each above-mentioned problem, the
unique optimal solutions to its involved convex subproblems
are all available, and the corresponding objective value is
upper-bounded due to the closed and bounded feasible region,
i.e. Tr(ΩiQ) ≤ Pi, 1 ≤ i ≤ I . Taking the average
capacity maximization in P5.1 as an example, we must have

f(Q(t)) = g(Q(t)|Q(t))
(a)

≥ g(Q(t+1)|Q(t)) ≥ f(Q(t+1))
during the iteration process, where f(Q) denotes the optimal
objective value of P5, and g(Q|Q(t)) dentoes a locally tight
upper-bound of f(Q) based on (35). The inequality (a) holds
due to the minimization in P5. The similar property can also
observed for P7, P6.1 and P8. Motivated by the above facts,
the proposed SCA-based algorithm and two-block alternating
optimization algorithm are both guaranteed to monotonically
converge to a locally optimal solution of the corresponding
optimization problem [32, Th. 2]. Furthermore, for the special
case of RT = I or RR = I, the corresponding optimization
problems P7 and P8 under multiple power constraints are both
solved by Algorithm 1, whose global convergence has been
illustrated in Section III-B.

In addition, within each iteration of the proposed SCA-based
algorithm for average capacity maximization, the computa-
tional complexity mainly comes from the update of dual
variables using the classical subgradient method (for P5.1) or
Algorithm 1 (for P7). As a result, the worst-case complexities
of solving P5.1 and P7 in each SCA iteration are given
by IsubO1 and TmaxO1 with O1 = O

(
Iinn

(
N3

T + N3
R +

min(N2
R NT , NRN

2
T ) + log(Pλmax(RT )/ε)

))
, respectively,

where Isub and Iinn denote the numbers of iterations for find-
ing the optimal dual variables {μ, β} and for alternately opti-
mizing Q and y until convergence, respectively. The involved

complexity O
(
Iinn

(
N3

T + N3
R + min(N2

R NT , NRN
2
T )

))
is

mainly due to the matrix inversion and SVD of size NT ×NT ,
NR ×NR and NT ×NR, while O(

Iinn log(Pλmax(RT )/ε)
)

denotes the worst-case complexity of the bisection search for
finding the optimal y [5].

Furthermore, the complexities of solving P6.1 and P8
are both dominated by the second block optimization of
Q, where the dual variables are updated by either the
bisection search or Algorithm 1. Specifically, P6.1 and
P8 have the worst-case complexities of IA(O2 + O3) and

IA(O2 + TmaxO3), respectively, where IA denotes the num-
ber of iterations required for alternately optimizing G and Q
until convergence. Similarly, the involved complexity O2 =
O(N3

R + N2
TNR + N2

RNT ) comes from the matrix inversion
and multiplication of size NR ×NR, NR ×NT , while O3 =
O

((
N3

T + log(‖G�H‖√
Pε

)
))

is due to the matrix inversion of
size NT × NT and the bisection search on the optimal μ.
Finally, for two convex problems P7 and P8 with RR =
I , whose semi-closed-form solutions are available based on
Proposition 1, their worst-case complexities are mainly from
Algorithm 1, and both are calculated as O4 = O(

Tmax

(
N3

T +
min(N2

TNR, N
2
RNT )

))
.

B. Extension to Multiuser Scenarios

Our proposed Theorem 1 can also be extended to uplink
multiuser MIMO systems with successive interference cancel-
lation (SIC) at the transmitter. Specifically, motivated by the
iterative water-filling strategy, where the single-user transmit
covariance matrix optimization is studied by regarding all
other users’ signals as noise, the KKT conditions of both
capacity maximization and MSE minimization subject to gen-
eral power constraints under perfect CSI have the similar
structure to (1), and thus Theorem 1 is applicable. In contrast,
both average capacity maximization and MSE minimization
for the imperfect CSI case become more complex over the
MIMO scenarios, since channel error exists in each user’s
channel and thus render Theorem 1 inapplicable. Furthermore,
in downlink multi-user MIMO systems, the existence of
multi-user interference usually leads to highly coupled opti-
mization variables and complicated non-convex objectives.
Similarly, in MIMO multi-hop relaying systems, the relay
forwarding matrices are also coupled in the optimization
objective and multiple power constraints. For these two sce-
narios, it is quite difficult to summarize a general structure
of KKT conditions of the general utility optimization problem
as that in Theorem 1, not to mention the derivation of the
unified analytical solution. A potential alternative scheme is to
firstly apply the majorization-minimization technique to find
an easier-to-handle approximation of the original intractable
problem, and then utilize Theorem 1 to solve this approximate
problem. Since this topic is beyond the scope of our work,
we consider it as our future research direction.

VI. NUMERICAL RESULTS

In this section, the global optimality of the KKT conditions
based solution drawn from Theorem 1 and Algorithm 1
is demonstrated by numerical simulations. Unless otherwise
stated, we consider a Nt×Nr = 6×4 MIMO system with d =
4 data streams for evaluating the performance of the proposed
perfect transceiver designs of Section III concerning a pair
of classical performance metrics, namely achievable informa-
tion rate and MSE, as well as their robust counterparts in
Section IV. Moreover, for each type of transceiver design, both
the total power constraint and individual per-antenna power
constraints are considered. To be specific, under the assump-
tion of the unit noise variance and the CSCG distributed
channel, i.e. H ∼ CN (0, INtNr), the transmit signal-to-noise
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ratio (SNR) is defined as SNR = 10 log(P )dB. For simplicity,
the maximum per-antenna power is assumed to be P1 = · · · =
PNt = P/Nt. Correspondingly, the power weighting matrices
are set as Ωi = diag[01×(i−1), 1,01×(Nt−i)], ∀i = 1, · · · , Nt.

Furthermore, the element-wise variance of the random CSI
error component HW is chosen as γe = 0.02. Accordingly,
the estimated channel Ĥ is generated according to CN (0, (1−
γe)RT

T⊗RR), implying that the random component of channel
H follows the standard CSCG distribution CN (0, INrNt).
Armed with the widely adopted exponential model [33], the
transmit and receive channel correlation matrices (i.e. RT

and RR) of the robust transceiver designs in Section IV are
modeled as [RT ]i,j = p

|i−j|
t , [RR]m,n = p

|m−n|
r , ∀i, j =

1, · · · , Nt; ∀m,n = 1, · · · , Nr, where pt, pr ∈ [0, 1] whose
values are specified later.4 For the proposed alternating opti-
mization (Prop-Alt) algorithms in P5.1 and P6.1 of Section IV,
the convergence threshold characterized by the relative incre-
ment/decrement in the objective value is set to ε = 10−4.
All simulations are carried out using MATLAB R2019b and
Intel(R) Core i3 Processor, and the points are obtained by
averaging over 200 channel realizations.

We compare the performance of our proposed perfect
and robust transceiver designs to the following benchmark
schemes: 1) CVX solution: The optimal transmit covariance
matrix Q is derived using the well-known CVX tool [34].
2) Equal power allocation (EPA): For the total power
constraint, we design the optimal Q by allocating all transmit
power equally among all eigenchannels of H . In particu-
lar, this transmission strategy is asymptotically optimal for
MIMO systems in the high-SNR regime. For the individual
per-antenna power constraints, the optimal Q = P/NtINt

is simply chosen. 3) Strongest eigenchannel transmission
(SET): For the total power constraint, the optimal Q is
designed for ensuring all transmit power is allocated to the
strongest eigenchannel of H . Note that this scheme is asymp-
totically optimal for MIMO systems in the low-SNR regime.
Furthermore, for satisfying the per-antenna power constraints,
we simply modify the optimal Q by adjusting the transmit
power allocated to each element of the strongest eigenchannel.
4) Nonrobust design: In this scheme, the optimal Q is
obtained only based on the estimated channels, and then
substituted into the expressions of the average information rate
and MSE.

A. Perfect CSI

Fig. 1 (a) and Fig. 1 (b) show the achievable capacity versus
SNR for all studied algorithms under the total and per-antenna
power constraints, respectively. It is observed from Fig. 1 (a)
that the unified closed-form solution given by Theorem 1
achieves the same maximum capacity as the CVX solution.
The EPA and SET schemes perform close to the optimal
closed-form solution in the high-SNR and low-SNR regime,
respectively, as discussed above. Furthermore, in Fig. 1 (b)
under per-antenna power constraints, Algorithm 1 is seen to

4In fact, our work is applicable to arbitrary transmit and receive correlation
matrices. Note that the exponential correlation model may not be suitable
when a distributed antenna array is considered.

Fig. 1. Achievable information rate of different algorithms versus SNR under
the (a) total power constraint and (b) per-antenna power constraints; (c) shows
the convergence of Algorithm 1.

converge to the maximum capacity achieved by the CVX solu-
tion, and its convergence behavior is shown in Fig. 1 (c), where
the power margin is defined as the difference between the
actual antenna transmit power and its corresponding maximum
threshold, i.e. Tr(ΩiQ)−Pi, ∀i. It is clear from Fig. 1 (c) that
for each antenna the power margin converges to zero within
100 iterations, implying that Algorithm 1 is capable of finding
the KKT conditions based optimal solution at an acceptable
convergence speed. In particular, compared to Fig. 1 (a),
we find a larger performance gap between Algorithm 1 and
the EPT scheme in Fig. 1 (b), since the asymptotical optimality
of the EPT scheme in the high-SNR regime is not established
under the per-antenna power constraints.
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Fig. 2. Normalized MSE and average CPU runtime of different algorithms
versus SNR under (a) total power constraint; (b)/(c) per-antenna power
constraints.

Fig. 2 (a) and Fig. 2 (b) plot the normalized MSE, denoted
by Tr

((
I + R−1

n HQHH
)−1)

/d, versus SNR under the total
and per-antenna power constraints for all studied algorithms,
respectively. Like in Fig. 1, both the unified closed-form solu-
tion in Theorem 1 directly aiming for satisfying the total power
constraint and Algorithm 1 aiming for satisfying per-antenna
power constraints achieve the almost identical normalized
MSE performance to the CVX solution, as shown in Fig. 2 (a)
and Fig. 2 (b), respectively, which again demonstrates their
global optimality. Similarly, the EPT scheme performs closer
to the optimal design in Fig. 2 (a) than that in Fig. 2 (b).
Furthermore, in Fig. 2 (c), we illustrate the average CPU
runtime of all studied algorithms. It is clear that the time

overhead of Algorithm 1 is remarkably reduced compared
to the CVX solution, which demonstrates its low complexity.
Moreover, due to the suboptimal closed-form transmit covari-
ance matrices adopted by both EPT and SET schemes, their
average CPU runtime is much less than that of Algorithm 1.

B. Imperfect CSI
In this subsection, we consider the imperfect MIMO CSI,

and focus our attention on evaluating both the average capacity
and normalized MSE performance of the proposed robust
designs under the total and per-antenna power constraints,
respectively. In order to demonstrate the effectiveness of
the proposed robust designs, a low-complexity approximate
scheme in [5] is adopted as a benchmark. With this scheme,
the term Kn = σ2

nI + Tr(RTQ)RR in (31) is relaxed to
Kn � (σ2

n + λmax(RR)Tr(RTQ))I , based on which both
average capacity maximization and average MSE minimization
become convex and the closed-form solutions can be derived
under the total power constraint, as shown in P5.3 and P6.3.

Firstly, Fig. 3 (a) plots the convergence behavior of the
Prop-Alt algorithm in P5.1 for the robust transceiver design
with pt = pr = 0.6. It is observed that the Prop-Alt
algorithm monotonically converges to the same maximum
within 10 iterations, regardless of the initial value of Q.
This fact confirms the stability and rapid convergence of the
Prop-Alt algorithm. Fig. 3 (b) and Fig. 3 (c) also show the
average capacity achieved by different algorithms versus SNR
for different antenna setups Nr × Nt and transmit-receive
correlation pt×pr, respectively. Specifically, in Fig. 3 (b) with
two different antenna setups, we readily observe the higher
average capacity of each algorithm forNr×Nt = 6×4 than for
Nr×Nt = 4×4 due to the expansion of the antenna array. Nat-
urally, the perfect design using the unified closed-form solution
in Theorem 1 has the best capacity performance. However,
as the SNR increases, the achievable average capacity of the
robust design given by P5.1 firstly increases and then becomes
saturated, since a high SNR can lead to the increasing power of
the equivalent noise Kn. Moreover, the low-complexity design
in [5] achieves lower average capacity than the robust design,
since an upper bound of the original optimization objective is
studied instead, but it still performs better than the nonrobust
design. Furthermore, the performance gain of the robust design
over the non-robust design is enlarged in the high-SNR regime.
Similarly, in Fig. 3 (b) with different transmit-receive corre-
lation, the robust designs given by P5.1 for pt �= 0, pr �= 0,
P5.2 for pt = 0, pr = 0.6 and P5.3 for pt = 0.6, pr = 0 all
outperform the corresponding non-robust designs in terms of
the average capacity. In particular, the capacity advantage of
these robust designs is more evident for the strong transmit
correlation pt = 0.6. The high average capacity is clearly
observed for pt = pr = 0.6, as compared to both pt =
0.6, pr = 0 and pt = 0, pr = 0.6, which may be attributed
to the stronger correlation of the CSI error matrix.

As for per-antenna power constraints, Fig. 4 shows the
average capacity performance and CPU runtime versus SNR
of different algorithms, where transmit-receive correlations
of pt = pr = 0.6 and pt = 0.6, pr = 0 are considered.
To be specific, it is observed from Fig. 4 (a) that for different
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Fig. 3. (a) The convergence of the Prop-Alt algorithm in P5.1 for pt = pr =
0.6; Average capacity achieved by different algorithms versus SNR under the
total power constraint.

error variance γe, the average mutual information achieved
by the robust solution derived from the Prop-Alt algorithm
decreases with the increasing error variance γe, and still
outperforms both the non-robust design and the lower-bound
design for each γe. Moreover, a larger performance improve-
ment of the robust design over the non-robust design is
observed in the high-SNR regime or for a large γe. Similar
to Fig. 2 (c), we also compare the average CPU runtime of
different algorithms in Fig. 4 (b). Obviously, the Prop-Alt
algorithm has the largest time consumption due to the extra
SCA-based iterations compared to other schemes. Actually,
in the step 3 of Algorithm 1, the low-complexity, perfect and

Fig. 4. Average capacity achieved by different algorithms versus SNR under
the per-antenna power constraints.

nonrobust designs all can lead to the optimal closed-form
solution without the SCA operation, and thus exhibit lower
time overhead. In particular, the time overhead of the perfect
design is lowest due to the simple optimization problem
structure.

Futhermore, as seen from Fig. 4 (c) with pt =0.6, pr =0, the
robust solution derived from the Prop-Alt algorithm in P7.1
achieves almost the same performance as the CVX solution,
which further verifies the global optimality of the Prop-Alt
algorithm for pt = 0.6, pr = 0. Furthermore, in Fig. 2 (c),
we illustrate the average CPU runtime of all studied algo-
rithms. It is clear that Algorithm 1 realizes the same MSE
performance as the CVX solution with the remarkably reduced
time overhead, which demonstrates the low complexity of
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Fig. 5. Average normalized MSEs achieved by different algorithms versus
SNR under the total power constraint.

Algorithm 1. Moreover, due to the suboptimal closed-form
transmit covariance matrices adopted by both EPT and SET
schemes, their average CPU runtime is much less than that of
Algorithm 1.

On the other hand, Fig. 5 plots the average normalized MSE
of the robust designs in P6.1, P6.2, P6.3 versus SNR for
different transmit-receive correlations, where the total power
constraint is considered. As expected from the design philos-
ophy, in Fig. 5 (a) with pt = 0.6, pr = 0.8, the average nor-
malized MSE achieved by the robust design in P6.1 increases
with the error variance γe and still outperforms the non-robust
design, however, it performs worse than the perfect design,
similarly to that in Fig. 3 (b). Similar conclusions can also be
obtained from Fig.5 (b) considering both pt = 0.8, pr = 0 and
pt = 0, pr = 0.8. It is worth noting that using the unified
closed-form solution in Theorem 1, the global optimality of
our robust designs in P6.2 for pt = 0.8, pr = 0 and P6.3 for
pt = 0, pr = 0.8 can both be validated in Fig. 5 (b).

Finally, upon considering per-antenna power constraints,
Fig. 6 presents the average normalized MSE performance
achieved by the Prop-Alt algorithm in P7.2 for the general case
of pr = pt = 0.8. More specifically, Fig. 6 (a) and Fig. 6 (b)
respectively consider different error variance γe and antenna
setups Nr ×Nt. It is clear from Fig.6 (a) that the larger γe is,
the worse the average normalized MSE becomes. Moreover,
as γe increases, the performance gap between the robust
and non-robust designs becomes larger. Being consistent with
Fig. 4 (a), the higher normalized MSE of the robust design
under Nr ×Nt = 6 × 4 can be observed from Fig. 6 (b).

Fig. 6. Average normalized MSE of robust and nonrobust algorithms versus
SNR under individual per-antenna power constraints for (a) different antenna
setups Nt × Nr and (b) different transmit-receive correlation (pt, pr).

VII. CONCLUSION

For MIMO systems, the key task of many transceiver
optimization problems is to optimize the positive semidefi-
nite transmit covariance matrix. By considering the realistic
multiple weighted power constraints and the imperfect CSI,
a unified framework was proposed for deriving the water-
filling structure of the optimal covariance matrix, which helps
reveal interesting underlying relationships among solutions of
rather different MIMO transceiver designs. Specifically, for
the case of multiple power constraints, we jointly applied
Pareto optimization theory and Lagrangian dual theory to
derive the corresponding optimal closed-form solution, which
can be found by the proposed modified subgradient method.
For the imperfect CSI case, various alternating optimization
algorithms were proposed to address the non-convexity of
the robust design and thus enable the unified framework
directly applicable. Overall, this KKT conditions based unified
framework can be applied to a wide range of applications
in communications. Finally, our numerical results verified
the rapid convergence and global optimality of the proposed
algorithms.
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