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Dual-Band Super-Resolution Channel Prediction
in High-Mobility MIMO Systems

Yiliang Sang, Ke Ma , Zhaocheng Wang , Fellow, IEEE, and Sheng Chen , Life Fellow, IEEE

Abstract— For multiple-input multiple-output systems, channel
prediction is crucial for mitigating channel aging in mobile
scenarios. The existing channel prediction schemes typically
require strictly equal sampling intervals of historical and
predicted channel sequences, which imposes enormous pilot
overhead in high-mobility scenarios with frequent channel
estimation. To tackle this problem, we investigate the super-
resolution channel prediction, where the future channel sequence
is predicted at a finer temporal resolution without additional
channel estimation. Specifically, we theoretically analyze the
physics process underlying super-resolution channel prediction
to show that the measurement of Doppler phase rotation faces
the challenging issue of phase ambiguity in high-mobility and
high-frequency scenarios. To address this issue, a deep learning-
based dual-band fusion approach is proposed to adaptively
integrate the low-frequency information for accurate Doppler
phase measurement. To realize accurate channel prediction at a
finer temporal resolution, we propose the physics feature-inspired
neural ordinary differential equation with modulated-periodic-
based multi-layer perceptron for effectively learning the dynamics
of fast time-varying channels. Simulation results verify that
our proposed scheme outperforms existing channel prediction
schemes and it maintains robust performance in high-mobility
scenarios.

Index Terms— Multiple-input multiple-output, channel predic-
tion, high-mobility scenarios, Doppler shift, deep learning.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) is one of
the fundamental technologies in wireless communica-

tion systems [1], [2]. To fully exploit the potential of MIMO,
channels need to be acquired at the base station (BS). As the
numbers of users and antennas rapidly increase, however,
the pilot overhead of channel estimation becomes excessive.
Although the existing channel estimation works have proposed
to utilize compressed sensing [3], [4], codebook-based
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schemes [5], [6], and deep learning (DL) [7], [8] to reduce
the overhead, channel aging in mobile user equipment (UE)
scenarios exacerbates the problem of pilot overhead [9] due
to the need for frequent channel estimation. To resolve
these issues, channel prediction has been widely adopted to
obtain the future channel sequence without additional channel
estimation [10].

The conventional channel prediction schemes mainly
include the autoregressive (AR) model [11], [12] and the linear
extrapolation model [13]. Specifically, the work [11] proposed
a vector Kalman filter-based predictor with AR parameter
estimation. The study [12] designed a spatial-temporal AR
to leverage the channel sparsity in the angle-delay domain,
while a Prony-based angle-delay domain prediction scheme
was derived in [13]. Nonetheless, these schemes heavily rely
on some simplified theoretical assumptions on channel models,
which may not be consistent with the complex time-varying
characteristics of MIMO channels encountered in practical
scenarios due to the multi-path and Doppler effects.

Since DL has strong capabilities to adaptively capture the
complex correlations in channel sequences, it offers a powerful
solution to tackle the aforementioned problem. Recently, DL-
based channel prediction schemes have been widely studied
to flexibly adapt to practical channels [14], [15], [16], [17],
[18], [19], [20]. Specifically, recurrent neural network (RNN)
was utilized in [14], [15], and [16] to extract the temporal
correlations of channel sequences. The works [17] and [18]
used convolutional neural network (CNN) to capture the
spatial features of channel sequences, followed by a long short-
term memory (LSTM) network for channel prediction. The
study [19] proposed a spatial-temporal neural network with
the attention mechanism, while a transformer-based predictor
was designed in [20].

However, the specific sampling interval of the channel
sequence is not modeled in the above schemes, and therefore
the sampling intervals of historical and predicted channel
sequences are required to be strictly equal. In other words,
only the channel sequence at the same temporal resolution as
the historical channel sequence can be accurately predicted.
Unfortunately, in high-mobility scenarios, the sampling
interval of predicted channel sequence needs to be quite short
to mitigate the severe channel aging, which inevitably leads to
enormous pilot overhead due to frequent channel estimation.

Owing to the fact that channel sequences at different
temporal resolutions fundamentally reflect the continuous-time
variations in the same channel, they exhibit the temporal
correlations. Thus, leveraging the historical channel sequence
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can potentially predict the future channel sequence at a finer
temporal resolution, which is termed the super-resolution
channel prediction. As a promising solution, the neural
ordinary differential equation (ODE) [21], [22], [23], [24],
with its powerful continuous-time learning architecture, can
be used to model channel prediction at a finer temporal
resolution. In particular, the ODE-RNN was proposed in [25]
to learn the temporal dynamics for continuous-time channel
prediction, while a tensor neural ODE was employed in [26]
to implement channel prediction at a finer temporal resolution.
In the study [27], the ODE-LSTM architecture that combines
the neural ODE with LSTM was designed.

Nevertheless, these existing neural ODE-based channel
prediction schemes are purely data-driven, and they neglect
the physics process underlying super-resolution channel
prediction. Specifically, the temporal channel variations arise
from the Doppler phase rotation of each path, which is
proportional to the UE velocity and the carrier frequency [12],
[13], [20]. In high-mobility and high-frequency scenarios, the
Doppler phase rotation between adjacent channel estimations
may span multiple integer cycles (multiple of 2π), where
the specific multiple integer cycles cannot be determined.
However, to predict the channel sequence at a finer temporal
resolution, the actual Doppler phase rotation of each path
needs to be accurately measured. Thus, the uncertainty in
determining the exact multiple integer cycles between adjacent
channel estimations can impede the measurement of actual
Doppler phase rotation of each path. This issue is referred
to as phase ambiguity, which causes serious performance
degradation of super-resolution channel prediction in high-
mobility and high-frequency scenarios.

Fortunately, in the non-stand-alone (NSA) architecture
widely deployed in beyond 5G and 6G systems [28], [29],
[30], high- and low-frequency antennas are generally co-
located at the same BS [31], [32], [33]. Therefore, dual-band
channels share the same surrounding multi-path environment,
and their corresponding paths generated by the same scatterer
are demonstrated to exhibit the spatial congruence including
the analogous angles and delays in field experiments [34],
[35], [36], [37]. More importantly, since the Doppler phase
rotation is proportional to the carrier frequency, the Doppler
phase rotation within the same sampling interval for the low-
frequency band is smaller than that for the high-frequency
band. Therefore, utilizing the low-frequency channel sequence
can more accurately measure its actual Doppler phase rotation
in each path. Furthermore, based on the spatial congruence of
paths in dual-band channels, the accurately measured actual
Doppler phase rotation in each path from the low-frequency
band can be used to assist in the measurement of actual
Doppler phase rotation in the corresponding path for the high-
frequency band, overcoming the issue of phase ambiguity.

In addition, the existing neural ODE-based channel
prediction schemes encounter difficulties in effectively fitting
temporal channel dynamics in high-mobility scenarios, which
hinders accurate channel prediction at a finer temporal
resolution. In particular, in high-mobility scenarios, the
magnitude part of channel dynamics is a slowly time-varying
function [26], [38], while the phase part is a periodic function

with rapid temporal variations due to the drastic changing
Doppler phase rotation. However, the existing neural ODE-
based channel prediction schemes employ piecewise linear and
monotonic activation functions, such as rectified linear unit
(ReLU), tanh and sigmoid, and hence they cannot efficiently
fit the rapidly time-varying and periodic phase part.

In this paper, we propose a dual-band fusion approach
to integrate the low-frequency information for assisting in
the super-resolution channel prediction in the high-frequency
band, so that the issue of phase ambiguity in high-mobility
scenarios can be tackled by the accurate measurement of
actual Doppler phase rotation in the low-frequency band.
To effectively extract the Doppler phase rotation features
in each path from the multi-path channels, DL is adopted
to adaptively implement the dual-band fusion. Furthermore,
in order to efficiently fit channel dynamics in high-mobility
scenarios, we propose the physics feature-inspired neural
ODE with modulated-periodic-based multi-layer perceptron
(MLP), wherein the periodic MLP exploits rapidly time-
varying and periodic sine function as nonlinear activations
to facilitate learning of the phase part in channel dynamics,
and the modulated MLP utilizes piecewise linear ReLU as
nonlinear activations to fit the remaining magnitude part.
Simulation results demonstrate that our proposed scheme
outperforms existing channel prediction schemes and it
maintains robust performance in high-mobility scenarios. The
main contributions of this paper can be summarized as follows.
• We theoretically analyze the physics process underlying

super-resolution channel prediction to demonstrate that
the accurate measurement of actual Doppler phase
rotation faces the issue of phase ambiguity in high-
mobility and high-frequency scenarios.

• We propose a DL-based dual-band fusion approach to
adaptively integrate the low-frequency information for
addressing the issue of phase ambiguity in the high-
frequency band.

• We investigate the physics features of channel dynamics
in high-mobility scenarios, and show that the phase part
of channel dynamics exhibits rapid temporal variations
and periodicity, while the magnitude part changes slowly
over time.

• To specifically exploit these physics features of channel
dynamics, we propose the neural ODE with modulated-
periodic-based MLP to efficiently fit channel dynamics in
high-mobility scenarios for accurate channel prediction at
a finer temporal resolution.

Table I offers a brief comparison of our proposed scheme
with existing channel prediction schemes. In contrast to
existing schemes, the proposed scheme can handle the issue of
phase ambiguity by integrating the low-frequency information
and sufficiently leverage the physics features of channel
dynamics for accurate super-resolution channel prediction.

This paper is organized as follows. Section II presents the
system model. In Section III, the physics process underlying
super-resolution channel prediction is investigated, where the
phase ambiguity is elaborated. The proposed dual-band fusion
approach is presented in Section IV, and our physics feature-
inspired neural ODE with modulated-periodic-based MLP is
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TABLE I
COMPARISON BETWEEN PROPOSED AND EXISTING CHANNEL PREDICTION SCHEMES

elaborated in Section V. Section VI presents the simulation
results. Our conclusions are drawn in Section VII.

Notations: Rm×n and Cm×n denote the m × n real and
complex spaces, respectively. Matrices and vectors are denoted
by boldface capital and lower-case letters, respectively. [·]i
represents the i-th element of a vector or the i-th column of a
matrix, and [·]i,j denotes the (i, j)-th element of a matrix. j =√
−1 represents the imaginary unit. (·)T and (·)H express the

transpose and conjugate transpose, respectively. IN denotes the
N ×N identity matrix. For a complex number x, |x| denotes
its magnitude, and ∠x represents its phase. ∥ · ∥2 and ∥ · ∥∞
denote the 2-norm and infinite norm of a vector, respectively.
⌊·⌋ is the floor function, and mod(a, b) denotes a modulo b.
⊙ represents the element-wise product, while ◦ is the function
composition operator. → denotes the mapping, implying that
given an input, there exists only one unique output. U
and N denote the uniform distribution and the Gaussian
distribution, respectively. log(·) denotes the logarithm function
with base e.

II. SYSTEM MODEL

We consider the NSA architecture, where high- and low-
frequency antennas are deployed at the same BS. The C-band
as 3.5 GHz and sub-1G band as 0.9 GHz are utilized to
represent respectively the high- and low-frequency bands. Our
objective is to exploit the sub-1G information to assist in the
C-band channel prediction. Moreover, we consider the time
division duplexing (TDD) based multi-user MIMO system,
where a BS serves K UEs. For simplicity, each UE is equipped
with one C-band antenna and one sub-1G antenna but our
proposed scheme can be directly extended to the scenario
with multiple-antenna UEs. The BS is equipped with dual-
polarized antennas in the uniform planar array for dual bands,
and the numbers of C-band/sub-1G antennas in the horizontal
and vertical directions are Mh/M h and Mv/M v, respectively.
Hence, the total numbers of C-band and sub-1G antennas at the
BS are given by M =2MhMv and M =2M hM v, respectively.
To clearly distinguish two frequency bands, the variables of
sub-1G band are marked with overline throughout.

A. Channel Model

The 3D time-varying multi-path channel model [39] that has
been widely used in existing channel prediction works [40],
[41] is adopted for the C-band channel. Denote the C-band
channel vector at time t between the BS and the k-th UE as

h(k)(t)∈CM×1, whose m-th element [h(k)(t)]m is given by

[h(k)(t)]m =
L(k)

p∑
lp=1

α
(k)
lp

ej2π

(
r
(k)
tx,lp

)T
dtx,m

λ e
j2πf

(k)
D,lp

t
e
−j2πfcτ

(k)
lp , (1)

where L
(k)
p denotes the number of paths, α

(k)
lp

, f
(k)
D,lp

and τ
(k)
lp

represent the complex path gain, Doppler shift and delay of
the lp-th path, respectively, while λ denotes the wavelength,
fc is the carrier frequency, and dtx,m is the location vector of
the m-th BS antenna. Furthermore, let us define the spherical
unit vector r at azimuth angle ϕ and elevation angle θ as

r(ϕ, θ) =
[
sin θ cos ϕ, sin θ sin ϕ, cos θ

]T
. (2)

Then, r(k)
tx,lp

in (1), which denotes the spherical unit vector at

azimuth departure angle ϕ
(k)
lp,AOD and elevation departure angle

θ
(k)
lp,ZOD, can be written as

r
(k)
tx,lp

= r
(
ϕ

(k)
lp,AOD, θ

(k)
lp,ZOD

)
. (3)

In (1), the temporal channel variations are caused by the
Doppler phase rotation 2πf

(k)
D,lp

t of each path, while the other
channel parameters are usually assumed to be slow-changing
over time [12], [20], [26]. However, when the UE velocity v
is very high, the time-varying features of these other channel
parameters also need to be modeled [19], [42]. Achieving
accurate channel prediction under the scenario that these other
channel parameters change relatively fast over time is left
for future work. Furthermore, the Doppler shift f

(k)
D,lp

in (1),
which is proportional to the UE velocity v(k) and the carrier
frequency fc [12], [13], [20], can be written as

f
(k)
D,lp

=
fc
(
r

(k)
rx,lp

)T
v(k)

c
, (4)

where c is the light speed, and r(k)
rx,lp

represents the spherical

unit vector at azimuth arrival angle ϕ
(k)
lp,AOA and elevation

arrival angle θ
(k)
lp,ZOA, which can be expressed similarly to (3),

while v(k) denotes the k-th UE velocity vector at travel
azimuth angle ϕ

(k)
v and travel elevation angle θ

(k)
v , which can

be expressed as

v(k) = v(k)r
(
ϕ(k)

v , θ(k)
v

)
. (5)

For the sub-1G band, the channel vector at time t between
the BS and the k-th UE h

(k)
(t)∈CM×1 can be modeled in

the way similar to that for its C-band counterpart.
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The wireless channel results from the interaction between
the transmitted signals and the surrounding multi-path
environment around BS and UE [33]. In the NSA architecture,
since C-band and sub-1G antennas are deployed at the same
BS, the dual-band channels share a common multi-path
environment for a given UE, so that their paths generated by
the same scatterer exhibit spatial congruence, including similar
azimuth and elevation arrival angles [34], [35], [36], [37]. For
the azimuth and elevation arrival angles of dual bands, ϕ

(k)
lp,AOA

and ϕ
(k)

lp,AOA as well as θ
(k)
lp,ZOA and θ

(k)

lp,ZOA, the analogy can be
formulated as

ϕ
(k)

lp,AOA = ϕ
(k)
lp,AOA + ∆ϕAOA, (6)

θ
(k)

lp,ZOA = θ
(k)
lp,ZOA + ∆θZOA, (7)

where ∆ϕAOA and ∆θZOA denote dual-band angular deviations
of azimuth and elevation arrival angles, respectively.

B. Transmission Model

To estimate the channels at the BS, all the UEs transmit
the orthogonal pilots periodically. Let us define the period of
channel estimation as Te. The uplink received signal at time
jTe, Y j ∈ CM×K , can be expressed as

Y j =
√

ρUEHjΨ +N j , (8)

where ρUE is the UE transmit power, Hj ∈ CM×K is the
channel matrix H(t) =

[
h(1)(t),h(2)(t), · · · ,h(K)(t)

]
∈

CM×K at time jTe, i.e., Hj = H(jTe), while Ψ ∈ CK×K

is the pilot matrix satisfying ΨΨH = IK , and N j ∈ CM×K

represents the corresponding additional white Gaussian noise
(AWGN) matrix whose elements have variance σ2. According
to the received signal Y j , the estimated channel matrix

H̃j =
[
h̃

(1)

j , h̃
(2)

j , · · · , h̃
(K)

j

]
∈ CM×K can be obtained by

the classical least square (LS) or minimum mean square error
(MMSE) channel estimation [43]. Then, based on the well-
known reciprocity between uplink and downlink channels in
the TDD system [44], the estimated uplink channel matrix H̃j

can be used for downlink channel prediction.
Furthermore, the spectral efficiency in downlink data

transmission Rj , which has been widely used in existing
channel prediction works [11], [20], [38], [45], is utilized
to evaluate the theoretical system performance, which can be
written as

Rj =
K∑

k=1

log2

(
1 +

ρBS
∣∣(h(k)

j

)H
q

(k)
j

∣∣2∑
m ̸=k ρBS

∣∣(h(k)
j

)H
q

(m)
j

∣∣2 + σ2

)
, (9)

where ρBS is the BS transmit power, h(k)
j ∈ CM×1 is the

channel h(k)(t) at time jTe, i.e., h(k)
j =h(k)(jTe), and q(k)

j ∈
CM×1 represents the precoding vector satisfying

∥∥q(k)
j

∥∥2

2
=1,

which is designed based on H̃j .

III. SUPER-RESOLUTION CHANNEL PREDICTION AND
PHASE AMBIGUITY IN HIGH-MOBILITY SCENARIOS

In this section, we firstly introduce the frameworks of
conventional channel prediction and super-resolution channel

Fig. 1. (a) Conventional channel prediction framework, and (b) Super-reso-
lution channel prediction framework.

prediction. Next, we theoretically analyze the physics process
underlying super-resolution channel prediction, wherein the
phase ambiguity is elaborated.

A. Channel Prediction Problem Formulation

In wireless communication systems, the number of UEs is
growing exponentially [16], which imposes substantial pilot
overhead of channel estimation. Moreover, to mitigate channel
aging in mobile UE scenarios, frequent channel estimation
aggravates the problem of pilot overhead.

To this end, channel prediction has been extensively studied
to obtain the future channel sequence based on the temporal
correlations [14], [15], [16], [17], [18], [19], [20]. Specifically,
by using orthogonal pilots among different UEs, channel
prediction can be applied to each UE separately [11], [20],
[38]. Thus the design of channel prediction schemes can focus
on a single UE, and the UE superscript k is omitted. Besides,
as the number of UEs becomes large, nearby UEs usually
exhibit spatial correlations [46], [47], which can be utilized
for further improving the performance of channel prediction.
Exploiting spatial correlations among nearby UEs is left for
future channel prediction works.

As depicted in Fig. 1(a), the existing works typically
formulate channel prediction as time series prediction with
the same temporal resolution. Consequently, the prediction
period of future channel sequence Tp must be strictly equal
to the estimation period of historical channel sequence Te in
the conventional channel prediction framework, which can be
formulated as {

h̃j

}J

j=1
→
{
ĥJ+p

}P

p=1
, (10)

where ĥJ+p ∈CM×1 is the predicted channel vector at time
(J + p)Te, and J and P denote the lengths of historical
and predicted channel sequences, respectively, while the
mapping → implies that it is mathematically feasible to

uniquely determine the future channel sequence
{
ĥJ+p

}P

p=1

solely based on the historical channel sequence
{
h̃j

}J

j=1
.

In high-mobility scenarios, channel aging is extremely severe.
To mitigate this problem, the prediction period Tp needs to
be very short. Unfortunately, since the estimation period Te
is strictly equal to Tp in the conventional channel prediction
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framework, it imposes excessive pilot overhead of channel
estimation.

Owing to the fact that channel sequences at different
temporal resolutions inherently reflect the continuous-time
variations in the same channel h(t), they exhibit the temporal
correlations. Thus, the historical channel sequence has great
potential for predicting the future channel sequence at a
finer temporal resolution, which is termed the super-resolution
channel prediction. As shown in Fig. 1(b), we assume that
the estimation period Te is η times the prediction period
Tp, i.e., Te/Tp = η > 1. In this way, the future channel
sequence is predicted at a finer temporal resolution to mitigate
severe channel aging, while maintaining the pilot overhead
of channel estimation unchanged. Let us define ĥ(J,p) ∈
CM×1 as the predicted channel vector at time JTe + pTp.
Without additional information, however, it is mathematically
infeasible to uniquely determine the future channel sequence

at a finer temporal resolution
{
ĥ(J,p)

}P

p=1
from the historical

channel sequence
{
h̃j

}J

j=1
in high-mobility and high-

frequency scenarios. The reason is elaborated in the next
subsection.

B. Phase Ambiguity of Super-Resolution Channel Prediction

As the temporal channel variations are determined by
the Doppler phase rotation at each path, the objective of
channel prediction essentially is predicting the corresponding
Doppler phase rotation. We present the phase ambiguity
theorem to explain the infeasibility of predicting

{
ĥ(J,p)

}P

p=1

solely based on
{
h̃j

}J

j=1
in high-mobility and high-frequency

scenarios.
Theorem 1 (Phase Ambiguity in Single-Band Systems): If

the number of integer cycles of C-band Doppler phase rotation
between adjacent channel estimations, nD,lp =

⌊ 2πfD,lpTe

2π

⌋
,

satisfies nD,lp ≥ 1, predicting
{
ĥ(J,p)

}P

p=1
solely based on{

h̃j

}J

j=1
is infeasible.

Proof: Due to the periodic feature of Doppler phase
rotation 2πfD,lpTe in

{
h̃j

}J

j=1
, only the Doppler phase

rotation within one integer cycle, mod(2πfD,lpTe, 2π), can
be measured, while nD,lp cannot be determined. In order

to calculate mod(2πfD,lpTp, 2π) for predicting
{
ĥ(J,p)

}P

p=1
,

2πfD,lpTe needs to be estimated because Tp < Te. However,
when nD,lp ≥ 1, the uncertainty in determining nD,lp means
that it is infeasible to distinguish the desired 2πfD,lpTe from
various elements in

{
mod(2πfD,lpTe, 2π) + 2πnD,lp |nD,lp ∈

N+

}
. Therefore, predicting

{
ĥ(J,p)

}P

p=1
solely based on{

h̃j

}J

j=1
is infeasible if nD,lp≥1. □

The above phase ambiguity is similar to the well-known
spatial aliasing effect in phased array antennas [48], [49], [50],
which states that it is infeasible to reconstruct a spatial signal
if the spacing of the antenna elements is greater than half of
the wavelength of this signal.

IV. DUAL-BAND FUSION APPROACH FOR
SUPER-RESOLUTION CHANNEL PREDICTION

A. Motivation

In the NSA architecture, since the C-band and sub-
1G channels share the common surrounding multi-path
environment, their corresponding paths generated by the same
scatterer exhibit the spatial congruence, especially for the
analogous ϕlp,AOA and ϕlp,AOA, and the analogous θlp,ZOA and
θlp,ZOA of each path [34], [35], [36], [37]. Based on this spatial
congruence, we have the following corollary.

Corollary 1: For a dual-band system, assuming that
ϕlp,AOA = ϕlp,AOA and θlp,ZOA = θlp,ZOA, then the C-band
and sub-1G Doppler phase rotations within one integer cycle,
mod(2πfD,lpTe, 2π) and mod(2πfD,lpT e, 2π), satisfy

mod(2πfD,lpTe, 2π)− fcTe

f cT e

mod(2πfD,lpT e, 2π)

= 2π

(
fcTe

f cT e

nD,lp − nD,lp

)
, (11)

where nD,lp =
⌊ 2πfD,lpT e

2π

⌋
is the number of integer cycles of

sub-1G Doppler phase rotation within T e.
Proof: When ϕlp,AOA =ϕlp,AOA and θlp,ZOA =θlp,ZOA,

the spherical unit vectors of the dual bands are the same,
i.e., rrx,lp = rrx,lp , according to the definition of spherical
unit vector ((3) for rrx,lp and the similar form for rrx,lp ).
Thus, for a given UE, the Doppler phase rotations of the dual
bands satisfy

2πfD,lpTe

2πfD,lpT e
= fcTe

f cT e
, and (11) can be obtained by

substituting mod(2πfD,lpTe, 2π)+2πnD,lp for 2πfD,lpTe and
mod(2πfD,lpT e, 2π) + 2πnD,lp for 2πfD,lpT e. □

In Corollary 1, it can be observed that the mappings of
dual-band Doppler phase rotations within one integer cycle
can be utilized to infer nD,lp and nD,lp , which can further
be exploited to reconstruct the actual C-band Doppler phase
rotation by 2πfD,lpTe = mod(2πfD,lpTe, 2π) + 2πnD,lp .
Note that when ϕlp,AOA and ϕlp,AOA as well as θlp,ZOA and
θlp,ZOA exist deviations, the information from the mappings
of dual-band Doppler phase rotations within one integer
cycle can still be utilized to infer 2πfD,lpTe, because the
dual-band angular deviations are very limited in practical
scenarios [34], [37].

However, different pairs of nD,lp and nD,lp can map to
the same 2π

(
fcTe

fcT e
nD,lp−nD,lp

)
in (11), indicating that the

phase ambiguity still exists in dual-band systems. In the
subsequent theorem, we investigate this phase ambiguity and
find that the solution spaces of nD,lp and nD,lp are usually
smaller than N+ when the phase ambiguity exists in dual-
band systems. Since N+ is the solution space of nD,lp when
the phase ambiguity exists in single-band systems according
to Theorem 1, integrating the sub-1G information can assist
in accurate super-resolution channel prediction in the C-band.

Theorem 2 (Phase Ambiguity in Dual-Band Systems): For
a dual-band system, the solution space of (nD,lp , nD,lp),
Sd(nD,lp , nD,lp), which contains all elements mapping to the
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Fig. 2. Doppler phase rotations of C-band and sub-1G band versus time.

same 2π
(

fcTe

fcT e
nD,lp − nD,lp

)
, is given by

Sd(nD,lp , nD,lp) ={(
mod(nD,lp , pD)+ndpD, mod(nD,lp , qD)+ndqD

)
| nd∈N,

pD, qD∈N+,
pD

qD
=

fcTe

f cT e

in irreducible form
}

, (12)

where “in irreducible form” means that pD
qD

is the irreducible
fraction of fcTe

fcT e
.

Proof: Let us define the different pairs of nD,lp and nD,lp

that map to the same 2π
(

fcTe

fcT e
nD,lp−nD,lp

)
as nD,lp+∆nD,lp

and nD,lp + ∆nD,lp , respectively, where ∆nD,lp , ∆nD,lp ∈
Z̸=0 denote the corresponding integer differences. The phase
ambiguity in dual-band systems can be expressed as

fcTe

f cT e
nD,lp−nD,lp =

fcTe

f cT e
(nD,lp +∆nD,lp)−(nD,lp +∆nD,lp).

(13)

(13) can be further simplified into

∆nD,lp

∆nD,lp

=
fcTe

f cT e
=

pD

qD
, (14)

where pD, qD∈N+, and pD
qD

is the irreducible fraction of fcTe

f cT e
.

Since ∆nD,lp , ∆nD,lp ∈ Z̸=0, (14) indicates that when
∆nD,lp = ndpD and ∆nD,lp = ndqD with nd ∈ Z, the
corresponding mapping of 2π

(
fcTe

fcT e
nD,lp − nD,lp

)
remains

the same. Therefore,
(
mod(nD,lp , pD), mod(nD,lp , qD)

)
is a

feasible solution in Sd(nD,lp , nD,lp). Meanwhile, since the
integer cycle of Doppler phase rotation is non-negative,(
mod(nD,lp , pD), mod(nD,lp , qD)

)
is also the smallest solu-

tion in Sd(nD,lp , nD,lp). Consequently, all feasible solutions
of (nD,lp , nD,lp) in Sd(nD,lp , nD,lp) follow the form of(
mod(nD,lp , pD)+ndpD, mod(nD,lp , qD)+ndqD

)
with nd∈N,

which completes the proof. □
Remark 1: Since the Doppler phase rotation is proportional

to the carrier frequency, the velocity of Doppler phase
rotation in the sub-1G band is slower than that in the C-
band, as shown in Fig. 2. When the sub-1G Doppler phase
rotation does not span one integer cycle, (11) is equivalent to

2πfD,lpTe = fcTe

fcT e
mod(2πfD,lpT e, 2π), which means that

the estimated sub-1G Doppler phase rotation can be used to
accurately infer the C-band Doppler phase rotation.

Remark 2: Since pD and qD are typically larger than 1,
the solution spaces of nD,lp and nD,lp in Sd(nD,lp , nD,lp)
are usually smaller than N+, implying that the system can
still benefit from the dual-band information when the phase
ambiguity exists in both C-band and sub-1G band. Meanwhile,
as the numbers of integer cycles of dual-band Doppler
phase rotations are limited owing to finite UE velocity in
practical scenarios, the feasible solutions of nD,lp and nD,lp in
Sd(nD,lp , nD,lp) are typically very limited. For instance, when
fc = 3.5 GHz, f c = 0.9 GHz, Te = 40 ms, and T e = 5 ms, the
fraction fcTe

f cT e
= 3.5×40

0.9×5 = 280
9 , thus pD and qD are 280 and 9,

respectively. This implies that the dual-band system encounters
the phase ambiguity only if nD,lp ≥mod(nD,lp , pD) + pD ≥
280 according to (12). However, nD,lp ≥ 280 means the UE
velocity v ≥ 2160 km/h according to (4), which is impossible
in practical scenarios.

B. Problem Formulation

We assume that the sub-1G estimation period T e is 1/Γ of
the C-band estimation period Te, where Γ ∈ N+ for simplicity.
This means that each C-band channel vector h̃j corresponds

to a sub-1G channel sequence
{
h̃(j−1,γ)

}Γ

γ=1
with length

Γ, wherein h̃(j−1,γ) ∈ CM×1 represents the estimated sub-
1G channel vector at time (j − 1)Te + γT e. The objective
of this paper is to utilize the channel sequence of dual

bands
{
h̃j ,
{
h̃(j−1,γ)

}Γ

γ=1

}J

j=1

for accurate C-band super-

resolution prediction of
{
ĥ(J,p)

}P

p=1
.

Due to the complex multi-path effect and noise in practical
wireless communication systems, accurately extracting the
Doppler phase rotation features of each path from estimated
channels for super-resolution prediction is challenging for
conventional channel prediction schemes [12], [14], [18],
[20]. Considering that DL enjoys strong fitting capabilities
to capture intricate correlations, we propose to utilize DL to
effectively model the dual-band fusion-based super-resolution
channel prediction.

C. CNN-LSTM-Based Dual-Band Fusion Model

The proposed DL-based dual-band fusion model can be
expressed as

{uj}J
j=1 =

{
fd

(
h̃j ,
{
h̃(j−1,γ)

}Γ

γ=1
; Ωd

)}J

j=1

, (15)

where uj is the fused feature vector at time jTe, and fd(·) is
the dual-band fusion model with parameters Ωd. We use CNN
and LSTM to fit fd(·), as depicted in Fig. 3, which consists of
two components: C-band feature extraction model and sub-1G
feature extraction model. We now detail them one by one.
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Fig. 3. Structure of proposed CNN-LSTM-based dual-band fusion model.

1) C-Band Feature Extraction Model: The C-band feature
extraction can be partitioned into the preprocessing module
and the convolution module. Specifically, in the preprocessing
module, since the angle-domain channel usually presents the
sparsity that is beneficial to take full advantage of DL [12],
[51], [52], the C-band channel vector h̃j is transformed to
the angle domain from the spatial domain via discrete Fourier
transform (DFT), which can be written as

h̃A,j = F H
Ah̃j , (16)

where h̃A,j ∈CM×1 denotes the corresponding angle-domain
channel vector, F A = diag(B,B) ∈ CM×M is the angle-
domain unitary matrix for dual-polarized directions, and
B ∈ CM/2×M/2 is the DFT matrix. Furthermore, due
to the large dynamic ranges of h̃A,j , the maximum value
normalization is adopted to obtain h̃

N
A,j = h̃A,j

∥h̃A,j∥∞
. In addition,

the complex-value elements of h̃
N
A,j are split into their real

and imaginary parts, which are then stacked on two feature
channels for subsequent feature extraction.

In the convolution module, multiple convolution layers
are sequentially employed to capture the C-band features,
where each convolution layer is followed by a batch
normalization layer and a nonlinear activation layer. After the
last convolution layer, a pooling layer is used to reduce the
feature space, where the output is the ultimate C-band feature
vector sj corresponding to time jTe.

2) Sub-1G Feature Extraction Model: Similar to the C-band
feature extraction, the spatial-domain sub-1G channel vector
h̃(j−1,γ) is transformed to the angle domain and normalized.
Then, the convolution module is employed to capture the
sub-1G features, where the output is denoted as x(j−1,γ).
Next, x(j−1,γ) is used by LSTM to extract the Doppler

phase rotation features of sub-1G channel sequence, where
the process in the basic LSTM cell can be expressed as{

y(j−1,γ), c(j−1,γ)

}
= LSTMCell

(
x(j−1,γ),{

y(j−1,γ−1), c(j−1,γ−1)

})
. (17)

The pair of state vectors
{
y(j−1,γ), c(j−1,γ)

}
represents the

hidden state and the memory cell corresponding to time
(j − 1)Te + γT e, respectively.

Finally, the hidden state of the last LSTM cell y(j−1,Γ)

corresponding to time (j−1)Te+ΓT e =jTe is used as the sub-
1G feature vector sj , which is further concatenated with the
C-band feature vector sj to obtain the fused feature vector uj

at time jTe for sequential super-resolution channel prediction.

V. NEURAL ODE WITH MODULATED-PERIODIC-BASED
MLP FOR SUPER-RESOLUTION CHANNEL PREDICTION

Based on the above fused feature series {uj}J
j=1, the super-

resolution channel prediction can be expressed as{
ĥ(J,p)

}P

p=1
= fs

(
{uj}J

j=1; Ωs

)
, (18)

where fs(·) is the super-resolution channel prediction model
with parameters Ωs. Note that the sampling interval of
input sequence {uj}J

j=1 corresponds to the estimation
period Te, while the sampling interval of output sequence{
ĥ(J,p)

}P

p=1
is the prediction period Tp. We introduce the

neural ODE architecture for channel prediction at a finer
temporal resolution. Then, by analyzing the physics features
of channel dynamics in high-mobility scenarios, we propose
the modulated-periodic-based MLP to enhance prediction
performance.
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Fig. 4. Proposed neural ODE architecture with modulated-periodic-based MLP for super-resolution channel prediction.

A. Neural ODE Architecture

To fit fs(·), the existing works [14], [15], [16], [17],
[18] usually adopted the classic RNN architecture to extract
the temporal correlations of {uj}J

j=1. Taking LSTM as an
example, define

{
yj , cj

}
as the hidden state and the memory

cell, respectively, with the corresponding state transfer similar
to (17). However, since

{
yj , cj

}J

j=1
is updated based on

{uj}J
j=1, the state transfer in LSTM only operates at a

single temporal resolution Te, so that the conventional LSTM
cannot accurately model channel prediction at a finer temporal
resolution Tp.

To address this problem, the neural ODE, as a continuous-
time learning architecture, can be used to effectively fit fs(·)
[21], [22], [23], [24]. The neural ODE learns the dynamics
of continuous-time state y(t) using neural networks, which
naturally incorporate the state transfer in arbitrary temporal
resolutions. Mathematically, the neural ODE can be expressed
as

dy(t)
dt

= g
(
y(t), t; Ωo

)
, (19)

where g(·) denotes the dynamic fitting model with parameters
Ωo. If the initial state y(t0) is obtained, the state y(t) at time
t can be inferred by the ODE solver as follows

y(t) =
∫ t

t0

g(y(τ), τ ; Ωo)dτ + y(t0), (20)

where the integrator can be implemented by various numerical
methods, such as Euler method and Runge-Kutta method.

To obtain a robust initial state y(t0), the neural ODE can
be integrated with LSTM, as shown in Fig. 4. Specifically,
LSTM is first employed to adaptively capture the temporal
correlations of {uj}J

j=1, where its hidden state yJ at time
JTe is utilized as the initial state y(t0). Based on y(t0), the
state transfer at a finer temporal resolution Tp is realized by

the ODE solver (20). Moreover, the cascaded ODE solvers

are used to jointly predict
{
ĥ(J,p)

}P

p=1
with length P ,

where the output state of the p-th ODE solver y(t0 + pTp)
serves as the initial state of the (p + 1)-th ODE solver.
This initial state y(t0 + pTp), together with Tp, which is
the duration required to characterize the channel dynamics
and the interval of numerical integration, is utilized to
predict y

(
t0 + (p + 1)Tp

)
. These P ODE solvers share the

same parameters due to their identical temporal resolution,
effectively reducing model storage overhead. Then, P FC
layers with the same parameters are exploited to transform
the state sequence {y(t0 + pTp)}P

p=1
to the corresponding pre-

dicted angle-domain channel sequence
{
ĥA,(J,p)

}P

p=1
, where

ĥA,(J,p)∈CM×1 is the predicted angle-domain channel vector

at time JTe +pTp. Finally,
{
ĥ(J,p)

}P

p=1
can be acquired by

applying the inverse transform F A on (16).

B. Physics Feature-Inspired MLP With Modulated-Periodic
Activation Function

For the neural ODE, the design of dynamic fitting model
g(·) plays a vital role in learning dy(t)

dt . Considering that
dy(t)

dt corresponds to the temporal channel dynamics dh(t)
dt ,

the physics features of dh(t)
dt are investigated for designing

a dedicated dynamic fitting model.
1) Physics Features of Channel Dynamics in High-Mobility

Scenarios: According to (1), the m-th element of dh(t)
dt can

be expressed as

d[h(t)]m
dt

=
d
∑Lp

lp=1 αlpe
j2π

(rtx,lp )Tdtx,m

λ ej2πfD,lp te−j2πfcτlp

dt
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=
Lp∑

lp=1

αlpe
j2π

(rtx,lp )Tdtx,m

λ
dej2πfD,lp t

dt
e−j2πfcτlp

=
Lp∑

lp=1

j2πfD,lpαlpe
j2π

(rtx,lp )Tdtx,m

λ ej2πfD,lp te−j2πfcτlp

=
Lp∑

lp=1

|2πfD,lpαlp |e
j

(
∠(jαlp )+2π

(
(rtx,lp )Tdtx,m

λ +fD,lp t−fcτlp

))
.

(21)

The magnitude part Flp(·) and the phase part Glp(·) in d[h(t)]m
dt

can be written respectively as

Flp(·) = |2πfD,lpαlp |, (22)

Glp(·) = e
j

(
∠(jαlp )+2π

(
(rtx,lp )Tdtx,m

λ +fD,lp t−fcτlp

))
. (23)

Since Flp(·) is determined by slowly time-varying channel
parameters fD,lp and αlp , Flp(·) changes slowly over time.
These slowly time-varying parameters can be extracted from
the historical channel sequence, making Flp(·) a function of the
state y(t) that contains the information of historical channel
sequence. By contrast, due to the drastic changing Doppler
phase rotation 2πfD,lpt, Glp(·) is a rapidly time-varying and
periodic function of the state y(t) and time t.

In the existing neural ODE-based channel prediction
schemes [21], [22], [23], [24], [25], [26], [27], tanh-, sigmoid-
or ReLU-based MLP is used to construct the dynamic fitting
model for learning dh(t)

dt . However, the rapidly time-varying
and periodic features of phase part Glp(·) pose significant
challenges to the learning of dh(t)

dt for all tanh-, sigmoid-
and ReLU-based MLPs for two reasons. First, since tanh,
sigmoid and ReLU can all be regarded as piecewise linear,
the fitting mechanism of neural networks that use them
as nonlinear activations is essentially a form of piecewise
linear approximation [53], [54], [55], [56], [57]. Furthermore,
because the magnitude of the Fourier transform of this
piecewise linear approximation-based fitted function decreases
as the change rate of fitted function with its input increases
(see Appendix A for a detailed analysis), neural networks with
piecewise linear activations can effectively learn the slowly
time-varying magnitude part Flp(·), but they are insufficient
to approximate the rapidly time-varying phase part Glp(·).
Second, due to their monotonic nature, it is difficult for MLPs
based on tanh, sigmoid and ReLU to accurately fit the periodic
phase part Glp(·) in channel dynamics.

2) Modulate-Periodic-Based MLP: To address the above
problems, we propose a modulated-periodic-based MLP to
effectively learn channel dynamics in high-mobility scenarios,
as depicted in Fig. 4, which consists of a preprocessing
module, a periodic-based MLP and a modulated-based MLP.
In the preprocessing module, the layer normalization is applied
on y(t)∈Rn0×1 to speed up training. The normalized vector,
denoted as ym(t)∈Rn0×1, is fed to the modulated MLP for
learning Flp(·). A FC layer is adopted for time t to scale
up its dimension, yielding the output vector yt(t) ∈ Rn0×1.
The sum of yt(t) and ym(t) is utilized as the input vector
yp(t) ∈ Rn0×1 for the periodic MLP to fit Glp(·). Different

from the traditional neural ODE, therefore, two parallel MLPs
are employed to effectively learn channel dynamics dh(t)

dt .
2.1) The periodic MLP is dedicated to the fitting of rapidly

time-varying and periodic Glp(·), which uses sine function as
the nonlinear activation for two reasons. First, when the values
of the weight matrix in the MLP that define the frequency of
sine function are large, sine function is a rapidly time-varying
function, thereby enhancing its fitting capability of rapidly
time-varying feature in Glp(·). Second, as sine function is
inherently periodic, it can naturally model the periodic feature
in Glp(·). Specifically, the periodic MLP is defined by

dy(t)
dt

= WL(ψL−1 ◦ψL−2 ◦ · · · ◦ψ1)
(
yp(t)

)
+ bL, (24)

ψl

(
yp,l(t)

)
= αl(t)⊙ sin

(
W lyp,l(t) + bl

)
, (25)

where L is the number of FC layers, ψl(·) represents the l-th
layer of the periodic MLP, which consists of a FC layer with
the weight matrix W l∈Rnl×nl−1 , the bias vector bl∈Rnl×1

and the following sine function sin(·), and yp,l(t)∈Rnl−1×1 is
the corresponding input vector with yp,1(t) =yp(t). Inspired
by the modulated magnitude sine function form of dh(t)

dt
in (21), sine function is modulated by the magnitude parameter
αl(t) ∈ Rnl×1, which models the magnitude part Flp(·).

However, due to the periodic feature of sine function, the
training of MLP with sine activations often converges to
undesired local minima. To address this problem, we adopt a
principled initialization scheme in [58] to ensure that the input
distribution before sine activation, W lyp,l(t)+bl, mainly falls
within [−π/2, π/2] for l ∈ {2, 3, . . . , L − 1}, which can be
written as

[W l]i,j ∼ U
(
−
√

6/nl−1,
√

6/nl−1

)
, l ∈ {1, 2, . . . , L− 1}.

(26)

Additionally, to facilitate the fitting of rapidly time-varying
and periodic feature in Glp(·), the input vector yp(t) needs
to be multiplied by a large hyperparameter ω to ensure that
sin
(
W 1ωyp(t)+b1

)
spans multiple integer cycles, becoming

a rapidly varying and periodic function of yp(t).
Remark 3: The study [58] demonstrated that the output

vector of the first layer, yp,2(t), follows the arcsine distribution
Arcsin(−1, 1). By using the initialization scheme (26) for the
weight matrix of the second layer W 2, the dot product of
W 2 and yp,2(t),

∑n1
j=1[W 2]i,j [yp,2(t)]j , follows the normal

distribution according to the central limit theorem. Then,
through numerical approximations, the normal distribution
through the sine activations yields again the arcsine distri-
bution Arcsin(−1, 1). By analogy, the dot products of W l

and yp,l(t) for l ∈ {2, 3, . . . , L − 1} all follow the normal
distribution by using the initialization scheme (26) in each
layer. Thus W lyp,l(t) + bl mainly falls within [−π/2, π/2],
solving the training difficulty of sine-based MLP.

2.2) The magnitude parameter αl(t) is learned by the
modulated MLP that fits the magnitude part Flp(·). Since
Flp(·) is a slowly time-varying function, the modulated MLP
uses piecewise linear ReLU as the nonlinear activation.
Consequently, the modulated MLP can be written as

αl(t) = ψ′l ◦ψ
′
l−1 ◦ · · · ◦ψ

′
1

(
ym(t)

)
, (27)
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ψ′l
(
ym,l(t)

)
= ReLU

(
W ′

lym,l(t) + b′l
)
, (28)

where ψ′l(·) is the l-th layer of modulated MLP, which consists
of a FC layer with the weight matrix W ′

l ∈ Rnl×nl−1 , the
bias vector b′l∈Rnl×1 and the ReLU activation function, and
ym,l(t)∈Rnl−1×1 is the input vector with ym,1(t)=ym(t).

C. Model Training and Prediction

Let Ĥ(J,p) =
[
ĥ

(1)

(J,p), ĥ
(2)

(J,p), · · · , ĥ
(K)

(J,p)

]
∈ CM×K denote

the predicted C-band channel sequence of K UEs at time
JTe + pTp. Based on Ĥ(J,p) and the corresponding perfect
channel matrix H(J,p) =

[
h

(1)
(J,p),h

(2)
(J,p), · · · ,h

(K)
(J,p)

]
∈CM×K ,

the spectral efficiency R(J,p) can be calculated according
to (9). To optimize the proposed DL models, we adopt the
negative average spectral efficiency widely used in multi-user
MIMO systems [59], [60] as the loss function, which can be
expressed as

loss = −Ravg, (29)

Ravg =
1
P

P∑
p=1

R(J,p), (30)

where Ravg denotes the average spectral efficiency. Note that
H(J,p) can be obtained by channel estimation with the finer
temporal resolution Tp and long pilot sequence to ensure high
signal-to-noise ratio (SNR).

The proposed dual-band super-resolution channel prediction
scheme consists of two stages: training and prediction. In the
training stage, conventional channel estimation schemes are
employed to periodically collect the dual-band channels, where
the estimation periods of C-band and sub-1G are Tp and T e,
respectively. To construct a training data sample, the historical
C-band channel sequence with temporal resolution Te can
be obtained by downsampling the estimated C-band channel
sequence with temporal resolution Tp by a factor of Te/Tp.
This, together with the estimated sub-1G channel sequence,
jointly serves as the input. The corresponding future C-band
channel sequence with temporal resolution Tp is used as the
label. Based on the constructed training data set, the loss
function (29) is calculated to optimize the model parameters.
Once the model has been sufficiently trained, it switches to the
prediction stage. At this stage, conventional channel estimation
schemes measure the C-band and sub-1G channel sequences
with estimation periods Te and T e, respectively. The estimated
C-band and sub-1G channel sequences are jointly utilized
to predict the future C-band channel sequence with a finer
temporal resolution Tp. Since Te is generally much larger than
Tp, the pilot overhead of C-band channel estimation can be
significantly reduced.

VI. SIMULATION STUDY

A. Simulation Setup

We consider a multi-user MIMO system, where a BS serves
K = 5 single-antenna UEs. In our simulations, the channel
model of 3GPP TR 38.901 for urban macro-cell scenarios is
used to generate the data set [39]. In this channel model, line-
of-sight (LOS) and non-line-of-sight (NLOS) scenarios are

TABLE II
DUAL-BAND CHANNEL PARAMETERS

both included, where the LOS probability is calculated based
on the 2D distance d2D between BS and UE together with the
UE height hUE. The complex channel gain αlp is primarily
determined by the path loss and initial phase. More details
can be found in Subsection 7.5 of [39]. In the LOS scenario,
the path loss is calculated as

PLLOS[dB] = 28 + 22log10(d3D) + 20log10(fc), (31)

where d3D is the 3D distance between BS and UE and recall
that fc is the carrier frequency. In the NLOS scenario, the path
loss is expressed as

PLNLOS = max(PLLOS, PL′NLOS),
PL′NLOS[dB] = 13.54 + 39.08log10(d3D) (32)

+ 20log10(fc)− 0.6(hUE − 1.5). (33)

The initial phase is uniformly distributed within (−π, π) [40].
Moreover, the channel delay τlp is calculated as

τlp = −1.5τslog(Xlp), (34)

where τs is the delay spread and Xlp ∼ U(0, 1). In our
simulations, the cell radius is 300 m, and the BS height is
set to 25 m [41]. The specific dual-band parameters are listed
in Table II. Unless otherwise stated, Gaussian distribution
is adopted to model dual-band angular deviations with
∆ϕAOA∼N (0, σ2

AOA) and ∆θZOA∼N (0, σ2
ZOA) [31], where

σAOA and σZOA both are set to 5◦. The default UE velocity
is set to v = 80 km/h. The default lengths of historical and
predicted channel sequences are set to J = 9 and P = 7.
To calculate the C-band spectral efficiency of downlink
transmission, the BS transmit power ρBS is set to 35 dBm,
the noise factor is 5 dB, and the zero-forcing precoding is
employed for simultaneously serving all UEs [61].

The parameters of the proposed DL models are specified
in Table III. Here, Lc and Ll are the numbers of convolution
layers and LSTM layers, respectively, while fi and fo denote
the numbers of input and output feature channels. We adopt
a (3, 3, 1) CNN structure, i.e., the kernel size, stride, and
padding size of the convolution layer are set to 3, 3 and
1. LReLU denotes the leaky ReLU. The layer normalization
is used before LSTM to accelerate convergence, while the
dropout strategy is exploited in the FC layer to avoid
overfitting. For the ODE solver, the Euler method [25], [27] is
selected as the integrator. “Preprocessing FC” denotes the FC
layer for scaling up the dimension of time t. To ensure that
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TABLE III
PROPOSED DL MODELS

sin(W 1ωyp(t) + b1) spans multiple integer cycles to fit the
rapidly time-varying function, the hyperparameter ω is set to
30 [58]. The training data set and the test data set consist of
48, 640 and 2, 560 samples, respectively. The batch size is set
to 64. The models are trained for 200 epochs using the Adam
optimizer with the initial learning rate lr=1× 10−5.

In our simulation, we compare the following schemes:
• Proposed dual-band fusion: Use CNN to extract dual-

band spatial features, and then combine LSTM with
the neural ODE using modulated-periodic-based MLP to
learn temporal channel dynamics.

• Proposed without sub-1G: Use CNN to extract C-
band spatial features, and then combine LSTM with
the neural ODE using modulated-periodic-based MLP to
learn temporal channel dynamics.

• ODE-LSTM: Use CNN to extract C-band spatial
features, and then combine LSTM with the neural ODE
to learn temporal channel dynamics [27].

• CNN-LSTM: Use CNN to extract C-band spatial features
and LSTM to capture temporal correlations [17].

For fair comparisons, CNN and LSTM in all the schemes adopt
the same structure.

B. Investigation of Proposed Schemes

1) Investigation of CNN Structure: First, to ensure the
satisfactory performance with a relatively small model
complexity, the average spectral efficiency convergence
performance of our proposed dual-band fusion scheme with
respect to the numbers of CNN layers Lc and output feature
channels fo is investigated in Fig. 5. Observe that the proposed
dual-band fusion models with different CNN structures all
converge within 100 epochs. It can also be seen that the
average spectral efficiency improves when Lc increases from
2 to 3 and fo increases from 64 to 128, as deeper and
wider neural networks have stronger fitting capability. Further
increasing Lc and fo does not improve the performance but
imposes higher model complexity. Thus, the CNN structure

Fig. 5. Convergence performance comparison of proposed dual-band fusion
scheme with different CNN structures.

Fig. 6. Convergence performance comparison of our proposed scheme with
different dynamic fitting models.

with Lc = 3 and fo = 128 is appropriate for our dual-band
fusion scheme.

2) Investigation of Dynamic Fitting Model: We further
investigate the convergence performance of our proposed
scheme with those of different dynamic fitting models in
Fig. 6. Periodic-based MLP represents that the modulated
MLP is removed in the proposed modulated-periodic-based
MLP. For a fair comparison, the numbers of FC layers in
the periodic-based, tanh-based [27] and sigmoid-based [24]
MLPs are equal to the sum of the numbers of FC layers in
the modulated and periodic MLPs of our proposed modulated-
periodic-based MLP. It can be seen that the performance of
the periodic-based MLP is superior to those of the tanh-based
and sigmoid-based MLPs, which indicates that using sine
function is beneficial to effectively learning the rapidly time-
varying and periodic phase part in channel dynamics. It can
also be observed that our proposed modulated-periodic-based
MLP outperforms the periodic-based MLP, which indicates
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Fig. 7. Average spectral efficiency with respect to sub-1G estimation period
T e for proposed dual-band fusion scheme.

that the modulated MLP with ReLU can efficiently fit the
remaining slowly time-varying magnitude part. Therefore,
the proposed DL model adopts the modulated-periodic-based
MLP to construct the dynamic fitting model in the subsequent
simulations.

3) Validation of Phase Ambiguity Theorem in Dual-Band
Systems: To validate the theorem of phase ambiguity in dual-
band systems given in Subsection IV-A, the impact of sub-1G
estimation period T e on our dual-band fusion scheme is
evaluated in Fig. 7, given UE velocity v = 80 km/h and C-band
estimation period Te = 40 ms. According to (4), the maximum
C-band Doppler phase rotation within Te is 20.74π > 2π,
thus the phase ambiguity exists in the C-band. Meanwhile,
the estimation period for the maximum sub-1G Doppler phase
rotation to span one integer cycle is 15 ms. Therefore, in Fig. 7,
when T e is 5 ms or 10 ms, the phase ambiguity does not exist
in the sub-1G band, whereas when T e is 20 ms or 40 ms, both
the C-band and sub-1G band face the phase ambiguity issue.
It can be observed that the proposed dual-band fusion scheme
significantly outperforms “Proposed without sub-1G” when
T e is 5 ms and 10 ms, since the estimated sub-1G Doppler
phase rotation can be used to accurately infer the Doppler
phase rotation in the C-band, as elucidated in Remark 1.
As T e increases from 10 ms to 20 ms and 40 ms, although
the proposed dual-band fusion scheme suffers from slight
performance degradation, it still surpasses “Proposed without
sub-1G”. This is because the feasible solutions for dual-band
Doppler phase rotations are much fewer than those in single-
band systems, as discussed in Remark 2.

4) Impact of Dual-Band Angular Deviations: Table IV
investigates the impact of dual-band angular deviations ∆ϕAOA
and ∆θZOA on the average spectral efficiency performance of
our proposed dual-band fusion scheme. To model ∆ϕAOA and
∆θZOA, we employ the Gaussian distribution with ∆ϕAOA ∼
N (0, σ2

AOA) and ∆θZOA ∼ N (0, σ2
ZOA) as in [31], and the

uniform distribution with ∆ϕAOA ∼ U(−aAOA, aAOA) and
∆θZOA ∼U(−aZOA, aZOA) as in [32], respectively. It can be
seen that the average spectral efficiency performance decreases

TABLE IV
IMPACT OF DUAL-BAND ANGULAR DEVIATIONS

as dual-band angular deviations increase, because the spatial
congruence of dual bands becomes weaker. Moreover, even
in the cases with σAOA = σZOA = 30◦ or aAOA = aZOA =
30◦, our proposed dual-band fusion scheme still significantly
outperforms “Proposed without sub-1G”, whose performance
is 33.15 bps/Hz as shown in Fig. 7.

5) Explicit Illustration of Dual-Band Fusion to Address
Phase Ambiguity: Given the C-band estimation period Te =
10 ms, sub-1G estimation period T e = 5 ms, and C-band
prediction period Tp = 5 ms, Fig. 8 presents two data
samples of true and predicted channels of the strongest angle
index in the C-band, showing their real and imaginary parts.
Note that 30 ms, 40 ms, and 50 ms are synchronized with
the input time slots of 0 ms, 10 ms, and 20 ms, whereas
25 ms, 35 ms, and 45 ms are not. It can be observed that
the predicted channel without using sub-1G information
achieves smaller errors at the time slots of 30 ms, 40 ms, and
50 ms, but exhibits larger errors at the time slots of 25 ms,
35 ms, and 45 ms. This verifies that only using the C-band
channel sequence for super-resolution prediction encounters
the phase ambiguity issue. By contrast, the proposed dual-band
fusion scheme achieves very accurate predictions at all time
slots, and moreover it significantly outperforms the scheme
without using sub-1G information, which demonstrates that the
phase ambiguity issue is effectively addressed by dual-band
fusion.

C. Performance Comparison

1) Comparison of Complexity and Running Time: The
numbers of model parameters, numbers of floating-point
operations (FLOPs), and running times for different schemes
are summarized in Table V, with the running time measured on
NVIDIA GeForce RTX 4090. It can be seen that the schemes
using the neural ODE require more model parameters, FLOPs,
and running time, because these schemes need to fit the
channel dynamics and conduct predictions through numerical
integration. In particular, the running time of our proposed
dual-band fusion scheme, 4.283 ms, is sufficient to predict
the channel sequence with the prediction period Tp = 5 ms.
The results of Table V show that our proposed dual-band
fusion scheme imposes higher complexity and running time
than the existing DL-based schemes but as will be shown in
the subsequent results, it achieves much more accurate channel
prediction.

2) Performance Comparison Under Different UE Velocities:
Fig. 9 shows the average spectral efficiency as the function
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TABLE V
COMPLEXITY AND RUNNING TIME COMPARISON OF DIFFERENT SCHEMES

Fig. 8. Comparison of true and predicted channels in the C-band at different time slots without sub-1G information and with dual-band fusion.

Fig. 9. Average spectral efficiency with respect to UE velocity v for different
channel prediction schemes.

of UE velocity v for different channel prediction schemes.
It can be seen that the CNN-LSTM baseline has the poorest
performance for the super-resolution channel prediction,
and its performance degrades dramatically in high-mobility
scenarios. This is because the conventional LSTM is incapable
of modeling channel prediction at a finer temporal resolution.
It can also be seen that our proposed scheme without sub-
1G feature extraction outperforms the ODE-LSTM baseline
considerably, which verifies that the proposed modulated-
periodic-based MLP can effectively fit channel dynamics by
fully exploiting the physics features. Moreover, the proposed
dual-band fusion scheme achieves much better performance
than its counterpart without sub-1G feature extraction,
especially in high-mobility scenarios, which validates the
necessity of exploiting the low-frequency sub-1G information
to address the phase ambiguity issue in the high-frequency C-
band prediction. In addition, the average spectral efficiency in

Fig. 10. Spectral efficiency at different predicted points p for different
channel prediction schemes.

v = 160 km/h is only 0.73% lower than that in v = 10 km/h
for our proposed dual-band fusion scheme. This indicates that
our proposed dual-band fusion scheme can maintain robust
performance in high-mobility scenarios.

3) Performance Comparison at Different Prediction Points:
Fig. 10 compares the spectral efficiency at different prediction
points p for various channel prediction schemes. It can be
seen that the CNN-LSTM baseline outperforms the ODE-
LSTM baseline when p=1. This is because the prediction of
CNN-LSTM is based on sequential processing techniques [16],
[20], which prioritize accurately fitting the channel ĥ(J,1)

with p = 1 as the input for the subsequent predictions of{
ĥ(J,p)

}P

p=2
. However, for the prediction of the entire channel

sequence, the performance of CNN-LSTM is significantly
inferior to that of ODE-LSTM, which verifies that LSTM
cannot model channel prediction at a finer temporal resolution.
Moreover, our proposed dual-band fusion scheme attains the
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Fig. 11. Average spectral efficiency as function of C-band estimation SNR
for various channel prediction schemes.

Fig. 12. Average spectral efficiency as function of C-band estimation period
Te for various channel prediction schemes.

best performance and it outperforms the ODE-LSTM by
around 6%, in terms of the average spectral efficiency.

4) Performance Comparison with Respect to C-band
Estimation SNR: Fig. 11 investigates the impact of C-
band estimation SNR on the average spectral efficiency for
different channel prediction schemes. It can be observed
that the performance of the proposed scheme without sub-
1G information approaches our proposed dual-band fusion
scheme when the C-band estimation SNR is 15 dB. This is
because the sub-1G estimation SNR is fixed at 5 dB, and the
information of C-band channel itself plays the dominant role in
channel prediction, especially at high C-band estimation SNR.
Moreover, it can be seen that our dual-band fusion scheme
consistently outperforms the two baselines across all C-band
estimation SNRs, particularly in low-SNR scenarios. Observe
that our proposed dual-band fusion scheme experiences only
a 2.7% average spectral efficiency degradation when the

SNR reduces from 15 dB to −5 dB. This verifies its robust
performance with respect to C-band estimation SNR.

5) Performance Comparison with Respect to C-band
Estimation Period: Fig. 12 shows the average spectral
efficiency as the function of the C-band estimation period
Te for different channel prediction schemes. As anticipated,
the average spectral efficiency of all the schemes decreases as
the C-band estimated period Te increases, since the temporal
correlations of channel sequence become weaker. However,
it can be observed that the proposed dual-band fusion scheme
markedly surpasses the two baselines, and it achieves a robust
performance with respect to the C-band estimation period
Te. Specifically, the degradation of average spectral efficiency
from Te = 10 ms to Te = 80 ms for our dual-band fusion
scheme is only 2.12%, which is much smaller than 5.12% for
the ODE-LSTM and 15.25% for the CNN-LSTM.

VII. CONCLUSION

In this paper, we have investigated the super-resolution
channel prediction at a finer temporal resolution without
additional channel estimation. Our contribution has been
twofold. First, we have theoretically analyzed that phase ambi-
guity in high-mobility and high-frequency scenarios impedes
the accurate measurement of actual Doppler phase rotation,
thereby degrading the performance of super-resolution channel
prediction. To address this problem, we have proposed a
DL-based dual-band fusion approach to integrate the low-
frequency sub-1G information, where CNN and LSTM are
used to adaptively fuse the features of C-band and sub-1G
channel sequences. Second, inspired by the physics features
of channel dynamics in high-mobility scenarios, we have
proposed the neural ODE with modulated-periodic-based MLP
to enhance prediction performance. Simulation results have
demonstrated that our proposed schemes outperform existing
channel prediction schemes and maintain robust performance
in high-mobility scenarios.

APPENDIX

A. Function Fitting Property of MLP With Piecewise Linear
Activations

The following derivation is inspired by [54] and [53]. For
simplicity, let us consider the scenario of a 2-layer MLP with
ReLU activations but the derivation can be extended to other
piecewise linear activations. The fitted function by this MLP,
fReLU(·), can be expressed as

fReLU(x) = W 2ReLU(W 1x+ b1) + b2, (35)

where x ∈ Rn0×1 is the input vector, W l ∈ Rnl×nl−1 and
bl ∈Rnl×1 are the weight matrix and bias vector of the l-th
layer, l ∈ {1, 2}. (35) can be further reformulated as

fReLU(x) =
n1∑

j=1

[W 2]jReLU
(
[W 1x+ b1]j

)
+ b2

=
n1∑

j=1

[W equ,2]j [W 1x+ b1]j + b2, (36)
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where W equ,2 ∈ Rn2×n1 is the equivalent weight matrix,
whose j-th column satisfies

[W equ,2]j =

{
[W 2]j , if [W 1x+ b1]j ≥ 0,

0, otherwise.
(37)

It can be seen that when the j-th neuron [W 1x + b1]j is
greater than 0, it is multiplied by a weight vector [W equ,2]j ,
contributing [W equ,2]j [W 1x + b1]j for the output fReLU(x).
Thus, the fitting mechanism of ReLU-based MLP is essentially
a form of piecewise linear approximation. By analogy, the L-
layer MLP with ReLU activations can be explicitly written
as [53]

fReLU(x) =
∑

ϵ

1Pϵ(x)(W ϵx+ bϵ), (38)

where ϵ is the index of linear regions Pϵ, and 1Pϵ is the
indicator function on Pϵ, while W ϵ ∈ RnL×n0 and bϵ ∈
RnL×1 are the corresponding weight matrix and bias vector,
respectively.

Furthermore, the Fourier transform of fReLU(x) can be
formulated as [54]

fReLU,F(k)=
∫

fReLU(x)e−jkxdx = j
∑

ϵ

1Pϵ,F(k)
W ϵk

∥k∥22
, (39)

where k ∈ Rn0×1 is the frequency corresponding to x
and represents the change rate of fReLU(x) with x, while
fReLU,F(k) and 1Pϵ,F(k) are the Fourier transforms of fReLU(x)
and 1Pϵ

(x), respectively. Note that the exact form of 1Pϵ,F(k)
is omitted due to its complexity, but its magnitude decreases
as ∥k∥2 increases [54]. Consequently, as the frequency
k increases, the magnitude of fReLU,F(k) in (39) rapidly
decreases.
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