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Abstract—Key challenges in vehicular transportation and com-
munication systems are understanding vehicular mobility and
utilizing mobility prediction, which are vital for both solving the
congestion problem and helping to build efficient vehicular com-
munication networking. Most of the existing works mainly focus
on designing algorithms for mobility prediction and exploring
utilization of these algorithms. However, the crucial questions
of how much the mobility is predictable and how the mobility
predictability can be used to enhance the system performance are
still the open and unsolved problems. In this paper, we consider
the fundamental problem of the predictability limits of vehicular
mobility. By using two large-scale urban city vehicular traces,
we propose an intuitive but effective model of areas transition to
describe the vehicular mobility among the areas divided by the city
intersections. Based on this model, we examine the predictability
limits of large-scale urban vehicular networks and obtain the max-
imal predictability based on the methodology of entropy theory.
Our study finds that about 78%–99% of the location and above
70% of the staying time, respectively, are predicable. Our findings
thus reveal that there is strong regularity in the daily vehicular
mobility, which can be exploited in practical prediction algorithm
design.

Index Terms—Mobility modeling, mobility prediction, pre-
dictability limits, vehicular networks.

I. INTRODUCTION

URBAN vehicular traffic congestion is an increasingly se-
rious problem that is significantly affecting many aspects

of the quality of metropolis life around the world [1]. Scientific
traffic engineering, which aims to achieve efficient management
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of the resource of networks of roads and transportation systems,
becomes a hot research topic that attracts broad interests [2].
On the other hand, newly emerged vehicular communication
networks are seen as a key technology to help in relieving the
traffic congestion and improving road safety, by building intel-
ligent transportation systems [3]–[5]. Thus, conscious efforts
in developing intelligent transportation systems to deal with
the transportation problems of urban cities have simultaneously
come from both research fronts on the networks of vehicles
and the vehicular communication networks. Critical issue for
transportation systems, which are networks formed by vehicles,
is how to handle the vehicular dynamics in terms of mobility
within the capacity of the existing road system by predicting
and guiding the vehicular traffics [1], [9]. On the other hand,
the capability of predicting the vehicular mobility can play
a significant role in various communication and networking
functions from bandwidth reservation to service provisioning
[4], [10]–[12].

From the preceding discussion, we have identified that ve-
hicular mobility prediction is vital both to solving the problems
of vehicular transportation systems and to building efficient
vehicular communication networks. After the recent years of
intensive research, a large number of mobility models are
available, which can be classified into three different classes:
synthetic models, which are obtained by mathematical model-
ing; survey models, which are obtained by extracting mobility
patterns from surveys; and trace-based models, which are ob-
tained by generating mobility patterns from real mobility traces
[12]. In addition, many works [13], [14] have exploited the
design of prediction algorithms based on the existing mobility
models. Currently, further works are exploring the applica-
tions of mobility predication to help with the urban traffic
prediction, driving guidance, vehicular communications, etc.
However, the vehicular dynamics in a transportation system
or vehicular communication network are highly complex. For
example, the movement schedules of individual vehicles are
typically unknown to the “network,” and vehicular trajectories
can easily appear random and unpredictable. In particular, how
much the mobility can be predicted is an open and unsolved
problem. Therefore, there are more fundamental questions to be
addressed before designing prediction algorithm and utilizing
prediction, which include what is the role of the randomness
playing in the vehicular mobility, is there any regularity in the
daily vehicular movement, and to what degree is the mobility
predictable.

Against this background, in this paper, we consider the fun-
damental problem of the predictability limit for the vehicular
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mobility in large-scale cities. Specifically, we explore the use
of areas transition to model the vehicular mobility among the
areas divided by the intersections of city roads. In this mobility
model, vehicles stay in an area for some time and then move
to another area by making the next location choice, which
is the most intuitive description of mobility. The questions
we addressed include that are there regularities governing the
vehicular mobility, in terms of location transition between areas
and the staying time in each area, and how can these regularities
influence the predictability of vehicular mobility. Most impor-
tantly, we answer the fundamental question of what are the
limits of predictability existing in the seemingly random vehi-
cular mobility. Our contributions are summarized as follows.

1) We collect a large vehicular trace, i.e., the Beijing trace,
which includes more than 20 000 vehicles for the duration
of one month to study the mobility of vehicles. This is the
largest urban city vehicular data trace available.

2) We propose an intuitive but effective model of areas tran-
sition to describe the vehicular mobility among the areas
divided by the key intersections of city. Based on this
mobility model, we utilize the method for predictability
limits based on entropy theory to quantify how much the
vehicular mobility can be predicted, in terms of location
choice and staying time.

3) We demonstrate our proposed predictability limits of
vehicular mobility by experimentally verifying that about
78%–99% of the location above and 70% of the staying
time, respectively, can be predicted based on the Beijing
trace and another existing large urban vehicular trace, i.e.,
the Shanghai trace [15]. Thus, our real-mobility-trace-
based results reveal that there exists a strong regularity in
the daily vehicular mobility, in terms of both temporal and
spatial dimensions, which can potentially be exploited in
prediction algorithm design.

The rest of this paper is organized as follows. After introduc-
ing the related work in Section II, we present the two vehicular
data traces in Section III, which are used to illustrate and ex-
perimentally verify our proposed methodology. Section IV pro-
vides our mobility model. With this mobility model, Section V
presents the method for predictability limits based on entropy
theory. In Sections VI and VII, we present our experimental
results for the predictability limits of the location and staying
time, respectively, based on the Beijing and Shanghai traces.
We conclude this paper in Section VIII.

II. RELATED WORK

As previously mentioned, the existing mobility models can
be classified into three different classes: synthetic models, sur-
vey models, and trace-based models [12]. The synthetic models
[16], [17] and the survey-based models [18], [19] are often un-
able to provide realistic modeling of motion patterns, although
they can be very complex. The trace-based approach attempts
to extract mobility models from real mobility traces by ap-
proximating the movements based on the observed movement
patterns [20], [21]. All the aforementioned mobility models are
often too complex to be concisely described by mathematical
equations. In contrast to these existing models, we use an intu-

itive but effective model of areas transition to describe the ve-
hicular mobility for urban city. Furthermore, instead of model-
ing the individual mobility, as most of the existing works do, our
work focuses on the fundamental problem of the predictability
limits for vehicular mobility and experimentally verifies the
obtained predictability limits based on real mobility trace data.

The related work in vehicular mobility prediction comes
from the two main communities, i.e., the transportation system
community [1], [2], [9], [22] and the vehicular networking
community [13], [14]. From the first community, some works
investigate the vehicular behavior prediction in terms of trajec-
tories and routes [1], [6]–[9], [22]. For examples, Wu et al. [9]
applied the support vector regression to predict the travel time
of vehicles, and Stathopoulos and Karlaftis [1] concentrated
on developing the multivariate time-series state-space method
to predict the urban traffic for solving the traffic congestion
problem, whereas Kindzerske and Ni [22] applied the nonpara-
metric regression approach to predict traffic conditions. From
the second community, Zhang et al. [13] proposed an instant
traffic clustering algorithm to partition the road points into
the time-variant clusters by deriving the application-specific
message update rules for affinity propagation to aid vehicular
network design, whereas Namboodiri and Gao [14] explored
the predictability of the location of mobility and use the pre-
diction to aid the routing algorithm design for vehicular ad
hoc networks. All these works focus on predication algorithm
design and apply the prediction for the transportation system
and vehicular network design. In contrast to these studies that
investigate specific prediction algorithms, our work considers
the fundamental problem of what is the limit of predictability
for vehicular mobility in large-scale urban cities.

Rather than studying vehicular mobility prediction, some
interesting studies investigate human mobility and prediction.
For example, [23] examines the predictability limit of human
mobility, whereas [11] explores the temporal predictability of
human mobility and uses the prediction to assist the bandwidth
reservation in advance.

III. DATA TRACES AND PREPROCESSING

Since we use two large-scale urban vehicular traces, i.e., the
Shanghai and Beijing traces, to study the vehicular mobility
predictability and to verify our proposed predictability limits,
we first provide a brief description of these two traces.

A. Data Sets

The Shanghai trace [15] was collected by SG project [24], in
which 2019 operational taxis continuously covered the whole
month of February 2007 in Shanghai city. In this trace, a taxi
sends its position report by general packet radio service (GPRS)
to the central database every 1 min when it has passengers on
board but every 15 s when it is vacant for the reason of real-time
scheduling. However, the different intervals of reporting may
distort the records of the physical movements of the taxis, since
most taxis are not vacant most of the time. Another potential
drawback of this trace is that the number of taxis is limited, as
2000 taxis and 1 min duration may not be sufficient to record
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the statistical features of mobility in a high-speed large urban
environment.

In collecting the Beijing trace, we used the mobility track
logs obtained from 27 000 participating Beijing taxis carrying
GPS receivers during May 2010. The reason for us to also
choose taxis, instead of other vehicular devices, is that taxis are
more sensitive to urban environments in terms of underlying
road topology, traffic control, and urban planning; and they
have broader coverage in space and operation time than buses
and private cars. Specifically, we utilized the GPS devices to
collect the taxis’ locations and time stamps and GPRS modules
to report the records every 15 s for moving taxis. The specific
information contained in such a report includes the following:
the taxi’s ID, the longitude and latitude coordinates of the taxi’s
location, time stamps, instant speed, and heading.

B. Data Preprocessing

By collecting the GPS information of longitude and latitude
coordinates, we obtain the taxis’ moving traces that indicate the
taxis’ locations varying with the time. Since these locations are
measured by GPS devices, the collected data are noisy due to
the inaccuracy of the GPS device. Furthermore, the taxis may
not all report their locations at the same time slot with the same
fixed frequency, as in the case of the Shanghai trace. Therefore,
it is necessary to process the data trace to obtain the accurate
locations of all the taxis in the same time slots and with the
same frequency. In order to achieve these goals, we first use the
city maps of Shanghai and Beijing for the respective traces to
correct the taxis’ locations so that they are on the related city
roads. Then, we delete the sequent records of GPS positions
that do not change during time interval of 2 min to cleanse
the long stopping of vehicles due to reasons of waiting for
passengers, parking, etc. Finally, we use the method of linear
interpolation (LI) to insert location points so that all the taxis
have location information at every 15-s interval. To illustrate
how this LI method works, consider the location information
of one taxi in the original trace with the locations l1, l2, . . . , ln
recorded at the time points t1 < t2 < · · · < tn, and we want to
insert the location information lt at the time point t, which is
calculated according to the 15-s frequency. We need to find tm
that satisfies tm ≤ t < tm+1 and then to estimate the location
lt by the following LI:

lt =
tm+1 − t

tm+1 − tm
· lm +

t− tm
tm+1 − tm

· lm+1.

In order to verify that the preceding data preprocessing ap-
proach does not introduce artificial and inaccurate information
into the original data trace, we use the data obtained by this
preprocessing method for the one-day taxi locations to plot
the trajectories of all the taxis, and the results show that the
data sets are sufficiently large, and even using one-day data can
recover the whole city maps. By comparing the recovered maps
of Beijing and Shanghai with the true Beijing and Shanghai
maps, we find that all the taxis’ trajectories determined by the
preprocessing are on the related city roads, and the two city
maps drawn by these one-day trajectories are very similar to
the corresponding true city maps.

IV. MOBILITY PREDICTION MODEL

A. Motivation

Two of the most important properties that characterize the
mobility are the temporal and spatial parameters. The spatial
property deals with the positions of vehicles, such as in which
region and which road that a vehicle is traveling, as well as its
moving direction, etc. When vehicles are traveling on the city
roads, they usually transfer from one road to another at almost
stationary velocity when the roads are free. Therefore, the
transitions from one road to another are important observations
of the vehicular mobility. The temporal property describes
the vehicular staying time in each region, which depends on the
vehicular moving speed and the traffic conditions. An accurate
vehicular mobility model should have the ability to faithfully
describe these basic temporal and spatial properties.

Consider a vehicle moving in the roads of a city. It will travel
along a road and comes across an intersection. It may wait at
the traffic light for some time and choose the direction at the
intersection and then travels to another road to drive on. In the
downtown of a large city, the roads are usually very crowded,
and the intersections are very dense, which lead to very long
waiting time at intersections and relatively short driving time
along roads. Therefore, intersection is an important factor in
modeling the urban vehicular mobility. Imagine viewing from
the sky above the city; we observe a crowd of vehicles waiting
at the area of each intersection and streams of traffic moving
from one area to another area. Thus, in order to describe the
vehicular distribution, we should pay particular attention to the
areas around intersections.

By dividing the whole city into different areas, each in-
cluding at least one intersection, we can model the vehicles
moving from one area to an adjacent area and therefore model
the vehicular traffic transiting from one area to another. Then,
the mobility prediction is about how and when the vehicles
will transit among these areas/locations. The spatial parameter
describes the next area that each vehicle will transit to based
on its historical transition information, whereas the temporal
property characterizes how long each vehicle will stay in the
current area and how long it will stay after it moves into
the next area. Although vehicular mobility can be described
by a variety of different models [12], this simple approach
appropriately characterizes its temporal and spatial parameters,
which enables the analysis of predictability limits for large-
scale urban vehicular mobility.

B. Area Partition

In order to divide the vehicular mobility system into the areas
that vehicles transit between, we need to take the roads and
city structure into consideration. As intersections are the most
important factor in modeling the urban vehicular mobility and
distributions, we divide the system according to the positions
of the key intersections in the city roads. More specifically,
we use the key intersections as the centers of the partitioned
areas and employ the Voronoi diagram, which is a frequently
used method of decomposing a given space [25], to achieve
the actual partitioning. In this approaches, the Voronoi diagram
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facilitates dividing the city by the positions of intersections,
which cannot be achieved by other simple model of grid shape
meshes, for instance.

In a Voronoi diagram, a finite set of sites V = {v1, v2, . . . ,
vN} is given in the Euclidean plane. The Voronoi cell An

corresponding to the site vn consists of all the points whose
distances to vn are not greater than their distances to any other
site vm, m �= n. In using the Voronoi diagram to partition the
system region, the set of all the key intersections is V . Each site
vn ∈ V is a selected intersection that is the center of the site or
area. If we denote all the points in the system region as the set
X, the distance between the point x ∈ X and the site vn ∈ V is
defined as dx,vn

= ‖x− vn‖. The area An for site vn can be
then formally expressed as

An = {x ∈ X|dx,vn
≤ dx,vm

, ∀vm ∈ V \ {vn}} . (1)

Based on this Voronoi diagram, we obtain all the boundaries
that partition the system region into the N different areas. After
the region has been divided into the different areas, we can
then decide which area a vehicle belongs to according to its
longitude and latitude information. Consequently, the vehicular
mobility is described by the transitions of vehicles from one
area to another.

Let us consider the 2-D vehicular mobility defined by a
sequence of steps that a vehicle travels in the city, which
is described or partitioned as the areas around the intersec-
tions, as previously discussed. Step n is defined by the tuple
(tn, An, t

d
n), which records that the vehicle enters area An at

time tn, and it stays in An for the duration of tdn. Every vehicle
moves in step by step by transiting from one area to another
area, which depicts each vehicle’s mobility. Thus, the traffic
flows of the whole system can be described by combining all
the vehicles’ mobility patterns and all the intersections together
as a system.

From the historical information, we can obtain the sequence
of the areas/locations that each vehicle has traveled, which
is denoted by An−1 = {A1, A2, . . . , An−1}. Then, the task of
location prediction becomes finding the most possible next area
An that the vehicle will travel to according to the historical
transitions An−1. Furthermore, with the continuous record of
the areas traveled by the vehicles, we can calculate the degree of
location predictability by analyzing the location sequences. For
the staying time in each area, we can also obtain the history dis-
tribution of Sn−1 = {td1, td2, . . . , tdn−1}. Then, the staying-time
prediction problem becomes deciding tdn given Sn−1. Similarly,
the degree of staying-time predictability can be calculated by
analyzing all the staying-time sequences. From the preceding
analysis, we can see that the proposed mobility prediction
model is capable of analyzing the predictability based on the
vehicular historical mobility information.

C. Basic Statistic Properties of Mobility

The area partition results or the number of areas and the
sizes of the areas divided depend on the intersection selection.
Therefore, we need to be able to select different numbers of
intersections to partition the areas for different applications. For

Fig. 1. Distributions of the aggregated number of traveled areas over all the
vehicles.

this purpose, we count all the intersections for the two cities,
which are 845 intersections in Beijing and 622 intersections
in Shanghai. We then sort all the intersections of a city by the
traffic volumes from the largest to the smallest. This allows us
to select some desired percentage of the intersections for city
area partitioning and mobility studying.

When we select 90% of the intersections (760 for Beijing and
559 for Shanghai) for our model, we obtain the statistics of the
aggregated number of traveled areas over all the vehicles and
depict its cumulative distribution function (cdf) in Fig. 1. From
the results, we observe that 80% of the Shanghai vehicles travel
about 500–560 areas, whereas 80% of the Beijing vehicles
travel about 500–760 areas. This difference in the number of
areas traveled reflects the underlying different scales of the two
cities. In addition, the percentage of the Beijing taxis, which
travel less than 500 areas, is larger than that of the Shanghai
taxis, which travel less than 500 areas. This indicates that
relatively more Beijing vehicles stay in small local areas. The
area distributions thus demonstrate that most of the vehicles in
both Beijing and Shanghai cover the areas of the whole city,
and only a small number of taxis travel in some local areas.

To get a visual view of our area partition method, we select
50% of the intersections with largest traffic through sorting
all the intersections by the traffic volumes from the largest
to the smallest and plot the area partition results for Beijing
and Shanghai traces in Figs. 2 and 3, respectively, where we
divide the whole city, shown in the figures’ left part, into the
given number of areas, shown in the figures’ right part. In these
two area partitions, we mark the selected intersections as the
red points and plot the boundaries of each area by the blue
curves. From these results, we can see that the main underlying
city structures of both Shanghai and Beijing are captured by
selecting only 50% of the intersections.

To illustrate diverse behaviors of individual vehicles, we
choose 10% of the intersections, which are 84 and 62 intersec-
tions for Beijing and Shanghai, respectively, to partition the two
cities, and select two representative vehicles with very different
mobility patterns from each trace for observation. Specifically,
we plot the areas visited by the vehicle as nodes and use the
size of a node to indicate the percentage of the time that the
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Fig. 2. Illustration of area partition for Beijing city by selecting 50% of the intersections.

Fig. 3. Illustration of area partition for Shanghai city by selecting 50% of the intersections.

vehicle spends in the area, whereas we use the links between
the nodes to represent the observed movements between these
areas. The results obtained for Beijing and Shanghai traces are
shown in Figs. 4 and 5, respectively. For the Beijing trace,
the first selected vehicle moves in the vicinity of ten areas,
whereas the second visits as many as 72 areas. For the Shanghai
trace, one taxi selected travels in about 12 areas, and the other
covers all the areas. These results clearly indicate the very
diverse vehicular mobility patterns. The results also show that
individual taxis tend to spend most of their staying times in a
few particular areas.

V. METHODOLOGY FOR PREDICTABILITY

We use the entropy that quantifies the uncertainty to obtain
the fundamental limits of vehicular predictability.

A. Entropy Theory for Predictability

The basic concept of entropy is originally defined in the con-
text of thermodynamics. It measures the degree of randomness
in a set of configurations [26]. For a discrete random variable X
that takes the value from the set {x1, x2, . . . , xN}, the entropy
is defined as

H(X) = −
N∑
i=1

p(xi) log2 (p(xi))

where p(xi) denotes the probability of X = xi. Entropy is
measured in bits, and it indicates how predictable a variable is.
Low entropy implies high degree of predictability.

Under the mobility model introduced in Section IV, both
the prediction problems for location and staying time can be
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Fig. 4. Travel locations and staying times of the two selected representative vehicles from the Beijing trace. (a) Vehicle traveling a small number of locations.
(b) Vehicle traveling a large number of locations.

Fig. 5. Travel locations and staying times of the two selected representative vehicles from the Shanghai trace. (a) Vehicle traveling a small number of locations.
(b) Vehicle traveling a large number of locations.

abstracted as the following unified problem. The prediction
problem is underpinned by the stochastic process X = {X1,
X2, . . . , Xn, . . .}, and the task at the nth step of prediction is
to predict the next symbol Xn given the historical information
Xn−1 = {Xo

1 , X
o
2 , . . . , X

o
n−1}, where Xn−1 denotes the past

observation of the sequence Xn−1 = {X1, X2, . . . , Xn−1}.
More specifically, for location prediction, Xn−1 = An−1, and
each Xi is a discrete random variable that takes the value from
the set of N values. Similarly, for staying time prediction,
Xn−1 = Sn−1, but each Xi is a continuous-valued random vari-
able. For the purpose of a unified treatment of both the location
and staying time predictions, we assume that the continuous-
valued staying time has been quantized into the set of N values.
Therefore, each Xi in the case of staying time prediction is
turned into a discrete N -valued random variable. Here, N is
used for notational purpose, and it does not imply that the
size of the area set is equal to the size of the discrete staying
time set.

For the process X = {X1, X2, . . . , Xn, . . .}, where each
Xi is a discrete N -valued random variable, the entropy rate
measures the uncertainty that remains in the next information

symbol produced by the process given the complete knowledge
of the past. It is a natural measure of the predictability in
predicting the evolution of the process [27]. For a stationary
process X , its entropy rate can be written as

H ≡ lim
n→∞

1
n
H(Xn) = lim

n→∞

1
n

n∑
i=1

H(Xn|Xn−1) (2)

where H(Xn|Xn−1) is the conditional entropy at the nth pre-
diction step, and it can be obtained by the chain rule for entropy.
The entropy rate (2) is defined under the generic condition that
the process has memory or the series {X1, X2, . . . , Xn, . . .}
has temporal correlation, so that the probability of the next
symbol depends on the current and past ones. Otherwise, the
entropy rate of an uncorrelated series is simply defined as

Hu = H(Xn) = −
N∑
i=1

pi log2(pi) (3)

where pi denotes the probability of Xn taking the ith value in
the set of N values.
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To calculate the entropy rate from the vehicular histori-
cal information series Xn, we use an estimation based on
Lempel–Ziv data compression [28], which is proved to rapidly
converge to the true entropy of the series. For the series Xn

with size n, the entropy rate is estimated as

He =

(
1
n

n∑
i=1

Λi

)−1

ln(n) (4)

where Λi is the length of the shortest substring starting at
position Xi that does not appear as a contiguous substring of
the previous i− 1 symbols X1, . . . , Xi−1. It has been proven
that He converges to the true entropy of X when n approaches
infinity [28].

Thus, we have the following three cases of entropy [23].
1) The random entropy Hr = log2(N) for the purely ran-

dom sequence X , whose element Xn takes the ith value
with equal probability of pi = 1/N for 1 ≤ i ≤ N . It
measures how random the vehicles are traveling when
the location visiting probability and temporally correlated
series are not considered, which directly indicates how
many locations the vehicle has traveled in the modeled
areas.

2) The uncorrelated entropy Hu = −
∑N

i=1 pi log2(pi) for
the temporally uncorrelated series X .

3) The entropy H for the generic temporally correlated
series X , whose estimate is He given in (4).

B. Fundamental Limits of Predictability

If the sequence X of one vehicle has the entropy rate of
H = 0, then the vehicular mobility location or staying time is
completely regular and its trajectory is fully predictable. On the
other hand, if it has the entropy rate of H = Hr = log2(N),
which is the maximum value of entropy, then its mobility
follows a purely random pattern and we cannot predict its
next move with the accuracy exceeding 1/N . However, for
most of the vehicles, their mobility patterns are governed by
a certain amount of randomness and some degree of regularity
in their movements or staying times, which can be exploited
for prediction. In other words, their entropy rate values H lie
between 0 and Hr.

Related to the limit of predictability for the location or
staying time given the historical series, we obtain from [23] that
the upper bound of the predictability limit, i.e., Ψmax, for the
series X can be calculated from

H = − (Ψmax log2(Ψ
max) + (1 −Ψmax) log 2(1 −Ψmax))

+ (1 −Ψmax) log2(N − 1) (5)

where H is the entropy rate of X .

VI. LOCATION PREDICTION LIMITS

To analyze the predictability of travelling locations across
the vehicles based on the vehicular mobility, we combine the
entropy and maximal predictability limit. Specifically, we first
determine the entropy H and the predictability limit Ψ of each

Fig. 6. Location prediction properties of the Beijing trace. (a) Distribution of
entropy. (b) Distribution of maximal predictability limit.

vehicle according to its travelling area records during the whole
trace collection time, as well as its maximal predictability limit
Ψmax according to (5). Then, we obtain the distributions p(H)
and p(Ψmax) over all the vehicles. We are also interested to
know what would be the statistics if the individual vehicular
sequence of the area record were to be a temporal uncorrelated
sequence or a purely random equiprobable sequence. Thus, we
also calculate Hu and Hr and the corresponding maximum
predictability limits Ψu,max and Ψr,max under these two as-
sumptions, respectively. This allow us to obtain the distribu-
tions of p(Hu) and p(Hr) and p(Ψu,max) and p(Ψr,max) for
comparison purpose.

A. Results of Predictability Limits

The distributions of the entropy and the maximal predictabil-
ity limit so obtained for Beijing and Shanghai traces are shown
in Figs. 6 and 7, respectively, where Figs. 6(a) and 7(a) depict
the entropy distributions p(Hr), p(Hu) and p(H); whereas
Figs. 6(b) and 7(b) show the distributions of maximal pre-
dictability limits p(Ψr,max), p(Ψu,max), and p(Ψmax).

We observe that the distributions p(Hr) peak at Hr = 9.5
and Hr = 9.1 for Beijing and Shanghai traces, respectively.
This implies that each update of the vehicles’ distribution
would represent 9.5 and 9.1 bits of the new information on
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Fig. 7. Location prediction properties of the Shanghai trace. (a) Distribution
of entropy. (b) Distribution of maximal predictability limit.

average for the two cities, respectively. In other words, a vehicle
would choose its next area randomly from the N̂ = 29.5 ≈
724 and N̂ = 29.1 ≈ 549 next locations on average in the two
cities, respectively. Recall that the numbers of the total areas
partitioned for Beijing and Shanghai are N ≈ 760 and N ≈
559, respectively, which agree with the values provided by the
two distributions of random entropy Hr. In contrast, the true
entropy distributions p(H) for both Shanghai and Beijing traces
peak at two much smaller entropy values. Specifically, for the
Beijing trace, p(H) peaks at H = 0.2 and 3.1, whereas for the
Shanghai trace, p(H) peaks at H = 0.2 and 1.9. It is seen that
the vehicles in both cities can roughly be divided into the two
groups according to entropy distribution: one group’s entropy
is approximately around the high peak, and the other group’s
entropy is approximately around the low peak. The vehicles in
the first group have low uncertainty of H = 0.2 in their loca-
tion trajectories, that is, these vehicles will choose their next
locations from the 20.2 = 1.15 ≈ 1 alternative areas on average,
which is an almost certain decision. The vehicles in the high
peak group will choose their next locations from the alternative
21.9 ≈ 4 and 23.1 ≈ 9 locations on average for Shanghai and
Beijing, respectively. Note that these are much smaller than N̂
suggested by the distributions of random entropy. Similarly,
using the distribution of p(Hu) also gives the misleadingly
higher uncertainty level in the vehicular location patterns.

The limit in the probability that any algorithm can correctly
predict the vehicle’s next location is the predictability limit
Ψ, and the upper bound of Ψ is given by Ψmax. From the
distributions of Ψmax shown in Figs. 6(b) and 7(b) for Beijing
and Shanghai traces, respectively, we can see that p(Ψmax) is
narrowly distributed with the two peaks for both Shanghai and
Beijing. Specifically, for the Beijing trace, the two peaks occur
at Ψmax = 0.76 and Ψmax = 0.99, whereas for the Shanghai
trace, they are at Ψmax = 0.85 and Ψmax = 0.99. Obviously,
these two peaks of p(Ψmax) correspond to the two peaks of
p(H). The high peak of p(Ψmax) indicates that the mobility of
this group of vehicles can potentially be correctly predicated
with probability almost equal to 1, whereas the low peak of
p(Ψmax) indicates that the mobility of this group of vehicles
can be correctly predicated with probability approximately
equal to 0.76 and 0.85 for Beijing and Shanghai, respectively.
It is seen that the predictability of the Shanghai trace is slightly
higher than that of the Beijing trace. These results confirm that,
despite the apparent randomness of the individuals’ trajectories,
the historical record of the daily vehicular mobility patterns
contains a surprisingly high degree of potential predictability.
This is a far cry from the almost complete unpredictability
suggested by the distributions of p(Ψr,max), which peak at
Ψr,max ≈ 0 for both Shanghai and Beijing traces. The distribu-
tion p(Ψr,max) simply shows that the future location becomes
almost completely unpredictable if only the number of the
areas visited is used to predict the next location. Observe the
distributions p(Ψu,max); they are much more widely distributed
with the inconspicuous peak at Ψu,max ≈ 0.5 for both Beijing
and Shanghai traces. Thus, if an algorithm only relies on the
different visiting probabilities for individual areas in predicting
and does not exploit the inherent temporal correlation in the
mobility patterns, it cannot achieve the full potential prediction
power.

To further analyze the results of maximal predictability limit
shown in Figs. 6 and 7, we choose two typical vehicles that rep-
resent the low peak and high peak groups of p(Ψmax), respec-
tively, for the Beijing trace. We vary the number of the areas
for partitioning Beijing city by changing the percentage of the
selected intersections from 5% to 100% and obtain the maximal
predictability limits Ψmax of these two vehicles as the function
of the percentage of the selected intersections. The results are
given in Fig. 8(a) and (b) for the high-predictability group
and low-predictability group representatives, respectively. We
observe that the predictability limit increases with the increase
in the intersections or areas used. The larger the number of areas
used for partitioning, the smaller the individual areas become,
and more details related to the mobility regularity appear, which
increases the predictability. With more than 40% of the total
intersections, the predictability limit of the high-predictability
group is higher than 99% and becomes almost constant.
For the low-predictability group, when using more than 60%
of the intersections, the predictability probability is above
80% to 82%.

Next, we divide all the vehicles into the two groups of
high predictability and low predictability, respectively, for both
Shanghai and Beijing traces, and analyze the average location
predictability limit of each group. The results of the average
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Fig. 8. Maximal predictability limits of the low- and high-predictability vehicle groups in the Beijing trace. (a) High-predictability group representative.
(b) Low-predictability group representative.

Fig. 9. Limits of average location predictability for Beijing and Shanghai
traces.

maximal predictability limit of each group as the function of the
percentage of the selected intersections are depicted in Fig. 9.
We observe that the average location predictability limits of the
high-predictability groups for Beijing and Shanghai are almost
the same: they both reach around 99% when selecting more
than 20% of the intersections for partition, and the limits remain
very stable. For the two low-predictability groups, the average
maximal predictability limit of Beijing is around 78%, which is
lower than that of Shanghai. In addition, the average location
predictability limit for Shanghai’s low-predictability group is
more stable than that for Beijing’s low-predictability group. In
summary, the location predictability results obtained reveal that
the taxis in both Shanghai and Beijing can be divided into the
two groups with the predictability limits of about 99% and 80%,
respectively.

B. Predictability Validation

The results of location predictability reveal that there is a
high degree of regularity embedded in vehicular daily travelling
mobility. In order to analyze the variations of predictability
limits in the high- and low-predictability groups of Beijing and
Shanghai traces, the cdfs of the numbers of areas traveled are

Fig. 10. (a) cdf of the number of areas traveled and (b) pdf of the number of
possible next locations, for the low- and high-predictability groups in Beijing
and Shanghai traces.

plotted in Fig. 10(a), whereas the probability density functions
(pdfs) of the numbers of next possible locations are depicted in
Fig. 10(b), for both groups of the two cities. The reason to use
the cdf, instead of the pdf, in Fig. 10(a) is for better visualiza-
tion. In terms of the number of traveled locations, as expected,
the vehicles in the high-predictability group of a city travel
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less locations than those of the corresponding low-predictability
group. From the distributions in Fig. 10(a), we observe that,
generally, Shanghai’s taxis travel less locations than Beijing’s
taxis. In terms of the number of next possible locations, as
expected, the pdf’s peak of the high-predictability group of a
city is in the left of the pdf’s peak of the corresponding low-
predictability group. From the pdfs shown in Fig. 10(b), we
can see that, in general, Shanghai’s taxis are more predictable
than Beijing’s taxis in choosing next locations. The pdf width
of Beijing’s low-predictability group is narrower than the pdf
width of the high-predictability group, indicating that the varia-
tion in the individual vehicles’ predictability limits of the high-
predictability group is larger. In contrast, the pdf widths of
the two Shanghai groups are approximately the same, which
suggest that the variations in the individual vehicles’ predicta-
bility limits of the two groups are approximately the same.

VII. STAYING TIME PREDICTION LIMITS

Different from the location prediction that mainly depends
on the regularity of individual vehicle, the staying time of a
vehicle in one area depends on the traffic status of the area.
Therefore, to predict the possible staying time for a particular
vehicle that enters the area, the historical information of all the
other vehicles’ staying times in this area plays a much more
important role than the historical information of this vehicle’s
staying time in this area. In other words, the sequence of an
individual vehicle’s staying time in one area can be regarded as
an uncorrelated sequence. In addition, as previously mentioned,
the staying time is a continuous value, and we need first to
quantize it with certain quantization precision (QP).

A. Initial Investigation of Prediction Limits

For each area, we want to obtain the distribution of the
staying times of all the vehicles that pass through the area. We
first need to select a QP to quantize the continuous staying time
into a discrete-valued set. Since each series of single vehicle’s
staying time is uncorrelated, we can use the uncorrelated en-
tropy Hu to measure the uncertainty of individual series, which
is denoted by Hu

t here for emphasizing that we are dealing with
the staying time. The corresponding maximal predictability
limit for staying time obtained using the method described in
Section V is denoted by Ψu,max

t . For the Beijing trace, with the
QP of 10, 30, and 50 s, respectively, we obtain the distributions
p(Hu

t ) and p(Ψu,max
t ) of each area and depict the average

distributions of p(Hu
t ) and p(Ψu,max

t ) over all the areas in
Fig. 11(a) and (b), respectively. From the results in Fig. 11,
we observe that, given the QP of 10 s, the entropy Hu

t of the
staying time is in the range of [6, 9], and the predictability limit
is distributed in the range of [0.1, 0.2]. In addition, the chosen
QP influences the distributions of entropy and predictability
limit. The higher the quantization accuracy (the smaller the
QP value), the higher the entropy and, hence, the lower the
predictability limit. However, even with QP = 50 s, the entropy
distribution peaks at Hu

t = 6.8, and the maximal predictability
limit peaks at Ψu,max

t = 0.16, which means that, if we want to
predict how many 50 s the vehicle will stay in the area, we have

Fig. 11. Staying time prediction properties of the Beijing trace. (a) Distribu-
tion of entropy. (b) Distribution of maximal predictability limit.

at most 16% of the probability to get it right. This indicates that
it is difficult to forecast the individual vehicle’s staying time by
its historical information in spatial dimension alone. A practical
prediction algorithm must exploit other vehicular properties for
a better prediction of the individual vehicle’s staying time.

B. Limits of Predictability Exploiting Temporal Regularity

Based on the preceding investigation and analysis, it is clear
that relying on the spatial historical distribution to predict the
future staying time in an area will result in poor predictability.
It is also obvious that the historical distribution of stay time
in an area significantly varies in the different time of a day. In
order to utilize the regularity existed in the temporal dimension,
we slot the whole day by every 2 h and obtain the staying time
distribution for every 2 h of the whole day. In the prediction,
we then utilize the corresponding distribution that locates in the
same time slot when the vehicle enters into the area. Again,
in order to quantify the predictability of the staying time with
the aid of temporal regularity, we investigate the limits of
predictability of these distributions.
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Fig. 12. Limit of staying-time predictability as a function of QP.

In order to obtain the limit of predictability for staying time
as a function of QP, we vary the value of QP from 5 to 60 s, and
for each QP value, we plot the peak point of the maximum pre-
dictability limit distribution. The results are shown in Fig. 12.
We observe that when QP varies from 5 to 30 s, the predictabil-
ity limit rapidly increases. With QP = 30 s, the predictability
limits are around 59% and 65% for Beijing and Shanghai traces,
respectively. However, when QP increases to 60 s, the max-
imum predictability limit Ψu,max

t only increases to 77% and
70% for Shanghai and Beijing traces, respectively. The results
obtained clearly confirm that, by exploiting the regularity in the
temporal dimension, the prediction accuracy associated with
the QP of 30 s is sufficient for most practical applications of
predicting the vehicular staying time. With the QP of 50–60 s,
about 70% of the predictability limit can be achieved.

VIII. CONCLUSION

In this paper, we have extensively investigated the pre-
dictability limits of vehicular mobility based on the two real-
istic large-scale urban city vehicular mobility traces. The main
results obtained show that there exists some stronger regularity
in the daily vehicular mobility in both the temporal and spatial
dimensions, which can be exploited to predict the vehicular
mobility with a high degree of prediction accuracy. Specifically,
for both Shanghai and Beijing traces, the location predictability
limit of 80%–99% can be achieved, whereas above 70% of the
staying-time predictability limit can be reached with appropri-
ate QP by exploiting the temporal regularity.

The most important finding in this study is that the de-
velopment of accurate predictive models and algorithms is
possible and has solid scientific foundation, and this provides
the fundamental guiding principle for solving large-scale prob-
lems and benefiting many potential applications, from urban
transportation system planning, transportation safe and traffic
control, to the vehicular network algorithm design and system
deployment. Although using specific prediction algorithm to
make explicit predication based on vehicular historical mobility
trajectory is beyond the scope of this paper, appropriate data-
mining- or Kalman-filter-based algorithms could turn the pre-
dictability limit identified in this study into the actual mobility

prediction reality. Therefore, our future work will investigate
whether the existing or any new prediction algorithms can
indeed achieve the predictability limit founded in this study.
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