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Nonlinear Process Fault Diagnosis Based on
Serial Principal Component Analysis
Xiaogang Deng, Xuemin Tian, Sheng Chen, Fellow, IEEE, and Chris J. Harris

Abstract— Many industrial processes contain both linear
and nonlinear parts, and kernel principal component analy-
sis (KPCA), widely used in nonlinear process monitoring, may not
offer the most effective means for dealing with these nonlinear
processes. This paper proposes a new hybrid linear–nonlinear
statistical modeling approach for nonlinear process monitoring by
closely integrating linear principal component analysis (PCA) and
nonlinear KPCA using a serial model structure, which we refer to
as serial PCA (SPCA). Specifically, PCA is first applied to extract
PCs as linear features, and to decompose the data into the PC
subspace and residual subspace (RS). Then, KPCA is performed
in the RS to extract the nonlinear PCs as nonlinear features.
Two monitoring statistics are constructed for fault detection,
based on both the linear and nonlinear features extracted by the
proposed SPCA. To effectively perform fault identification after
a fault is detected, an SPCA similarity factor method is built
for fault recognition, which fuses both the linear and nonlinear
features. Unlike PCA and KPCA, the proposed method takes
into account both linear and nonlinear PCs simultaneously, and
therefore, it can better exploit the underlying process’s structure
to enhance fault diagnosis performance. Two case studies involv-
ing a simulated nonlinear process and the benchmark Tennessee
Eastman process demonstrate that the proposed SPCA approach
is more effective than the existing state-of-the-art approach based
on KPCA alone, in terms of nonlinear process fault detection and
identification.

Index Terms— Fault detection, fault identification, kernel prin-
cipal component analysis (KPCA), nonlinear process monitoring,
serial principal component analysis, similarity factor.

I. INTRODUCTION

AS MODERN industrial processes become very compli-
cated, large-scale and highly invested, fault diagnosis

technology shows its great value in ensuring process safety
and improving product quality. In the past several decades,
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industrial process fault diagnosis methods have been discussed
extensively by researchers [1]–[3], and existing methods are
usually divided into model, knowledge, and data-based classes.
Among these three classes, data-based fault diagnosis meth-
ods have become an increasingly hot topic in recent years,
because large amounts of historical and real-time data are
collected and stored in computer control system database [4]–
[7]. Some representative data-based methods include principal
component analysis (PCA) [8]–[10], partial least squares [11],
[12], independent component analysis (ICA) [13]–[15], and
canonical variate analysis [16], [17]. Also some cognitive fault
diagnosis methods have been studied by mining online data
information, particularly for sensor networks [18]–[20]

As one of most well-known data-based fault diagnosis
methods, PCA and its extensions have been studied in depth.
Miletic et al. [21] reported the application of PCA-based con-
trol charts for a continuous slab caster at Dofasco Company.
For multiphase batch process, Zhao and Gao [22] improved
PCA by considering the between-phase relative changes.
To handle the correlated process data, dynamic PCA based on
decorrelated residuals was developed by Rato and Reis [23].
Considering the multimode operations, several multimode
PCA methods have been developed in the works [24]–[26].
As linear PCA cannot effectively deal with the nonlinear
process monitoring problem, many modified nonlinear PCA
methods have been developed. Krammer [27] first applied
neural network to construct nonlinear PCA model. Dong and
MacAvoy [28] generalized the linear PCA to the nonlinear
principal curve method. Guo et al. [29] combined the radial
basis function neural network and PCA to develop a nonlinear
monitoring model.

More recently, kernel PCA (KPCA) has attracted great
interest from researchers in fault diagnosis field. KPCA pro-
posed by Schölkopf et al. [30] avoids complicated non-
linear optimization procedure by the use of kernel func-
tion. Lee et al. [31] first applied KPCA to fault detec-
tion, and Choi et al. [32] developed a KPCA contribu-
tion plot for fault identification. Zhang et al. [33] built
an improved KPCA method by combining wavelet decom-
position technique and sliding median filter. Since nonlin-
ear principal components (PCs) extracted by kernel trans-
formation may violate the Gaussian distribution assumption,
Ge et al. [34] incorporated a statistical local approach
with KPCA to construct new score variables that fol-
low Gaussian distribution. Fan et al. [35] proposed a
Kernel ICA-PCA method, which considers both the nonlinear
and non-Gaussian characteristics. Utilizing local data structure
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analysis, Deng et al. [36] proposed a local data structure
assisted KPCA method for nonlinear fault detection. More
recent studies for KPCA can be found in [37]–[39].

Although KPCA has achieved great success in process fault
detection and identification, there exist some open problems
or controversial issues to motivate the further study. One
important open problem is: can one single KPCA model be
enough to describe the process data exactly? The charac-
teristics of an industrial process are generally unknown and
very complex. Although it is usually true that the industrial
process is nonlinear, and both linear and nonlinear rela-
tionships often exist among industrial process variables. In
some cases, one single nonlinear model may be not the best
choice. Therefore, hybrid linear–nonlinear modeling can offer
a viable alternative to mine the process data features. In the
time series prediction field, there are some successful cases
of applying hybrid linear and nonlinear modeling [40]–[44].
More specifically, Zhang [40] proposed to build a hybrid
ARIMA and neural network model, and the results of [40]
indicate that the combined model can be more effective than
either single linear model or single nonlinear model. Chen [41]
and Xiong et al. [42] applied hybrid linear–nonlinear model
to predict tourism demand and agricultural commodity futures
prices, respectively. Alippi et al. [43] applied the ensem-
ble of linear time invariant model and nonlinear reservoir
network to reconstruct the missing data in sensor networks.
Zhang et al. [44] performed nonlinear system identification by
combing a linear model with a nonlinear compensation term.
As shown in [41], none of a linear model or a nonlinear model
alone can offer the solution to all situations and a combination
strategy is a better choice for data modeling.

Motivated by the above analysis, we propose a new hybrid
linear–nonlinear statistical modeling approach for nonlinear
process monitoring by integrating PCA and KPCA closely
using a serial model structure, which we refer to as serial
PCA (SPCA). To the best of our knowledge, we are the first to
propose a combined linear PCA and nonlinear KPCA method
to process fault detection and diagnosis. Our contribution
is twofold. First, a hybrid linear–nonlinear fault detection
framework is presented based on SPCA. More specifically,
linear PCA is first applied to extract PCs as linear features,
and then, in the PCA residual space (RS), KPCA is used
to obtain nonlinear feature extraction. SPCA monitoring sta-
tistics are more effective in process fault detection than the
monitoring statistics constructed using either PCA or KPCA
alone. Second, an SPCA similarity factor method is developed
for fault recognition, which fuses the linear features and
nonlinear features, and therefore, it outperforms both the
PCA similarity factor method and the KPCA similarity factor
method. In general, compared with PCA and KPCA, which
only mine the linear or nonlinear features, the proposed SPCA
takes into account all the relevant statistical features, including
both linear PCs and nonlinear kernel PCs (KPCs).

The rest of this paper is organized as follows. In Section II,
after a brief overview of PCA and KPCA, the proposed SPCA
is detailed. Section III presents the fault detection procedure
based on SPCA, while the fault identification framework
based on the proposed SPCA similarity factor is provided in

Section IV. Two case studies are used to validate the proposed
SPCA approach for process fault detection and identification
in Section V, and our conclusions are offered in Section VI.

II. SPCA FOR HYBRID LINEAR–NONLINEAR MODELING

We begin by a brief overview of PCA and KPCA, followed
by the detailed description of our proposed SPCA for hybrid
linear–nonlinear modeling.

A. Overview of PCA and KPCA

PCA is a classical linear data dimension reduction
technique, which transforms the original variables into new
uncorrelated variables arranged by their variances. The new
variables with large variances are viewed as the PCs, which
represent the dominating data changes, while other variables
with small variances are the projections of the original data
onto the RS, which are usually thought to be the noise
information, but this is only true if the data only contain linear
features. Thus, PCA decomposes the original data space into
two subspaces: PC subspace (PCS) and RS. Mathematically,
given a data matrix X ∈ R

n×m with n samples of m variables,
the PCA decomposition is represented by

X = ̂X + ˜X =
k

∑

i=1

ti pT
i + ˜X (1)

where ti ∈ R
n is the i th score vector or PC, pi ∈ R

m is the
corresponding loading vector, and k is the number of retained
PCs, while ̂X ∈ R

n×m is the matrix reconstructed by the PCs
and ˜X ∈ R

n×m is the residual matrix.
In kernel PCA, an nonlinear function � : R

m → F is
implicitly assumed that maps the data in the original space
onto a new high-dimensional feature space where the data
become linearly correlated. Then, in the feature space F , linear
PCA is applied. As the nonlinear mapping �(·) is unknown,
kernel function is used to help completing the nonlinear
transformation. Specifically, by using kernel function ker(·, ·),
the inner product of two feature data �(xi) and �(x j ) in the
feature space can be calculated in the original data space as

ker(xi , x j ) = �T (xi)�(x j ) (2)

for xi , x j ∈ R
m , without having to perform the nonlinear

mapping �(·) explicitly. A commonly used kernel function is
the Gaussian kernel ker(xi , x j ) = exp(−‖xi − x j‖2/c), where
c > 0 is known as the kernel width.

For the processes operating in linear zones around some
operating points, PCA offers an efficient and robust monitoring
method, but it cannot deal with nonlinear processes. By con-
trast, KPCA is capable of extracting nonlinear features. Since
industrial processes are highly complex and the performance
of KPCA is often restricted by the chosen kernel parameters,
it is often difficult to guarantee that KPCA can precisely
capture the process characteristics. Moreover, many industrial
processes exhibit both linear and nonlinear characteristics.
Combining linear PCA and nonlinear KPCA modeling offers
a new and viable process monitoring alternative.
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Fig. 1. Schematic of SPCA statistical modeling.

B. Hybrid Modeling by Combining PCA and KPCA

The proposed hybrid linear–nonlinear SPCA method con-
sists of two modeling steps, as shown in Fig. 1. In the first
step, PCA is executed to extract linear features. The second
step involves KPCA decomposition, which extracts nonlinear
features in the RS of the PCA. We now detail this SPCA.

For the data matrix X ∈ R
n×m , which is assumed to be

mean centered and variance scaled, linear PCA decomposition
of (1) is rewritten as

X = ̂X + ˜X =
kL
∑

i=1

tLi pT
Li

+ ˜X (3)

where tLi is the i th linear score vector, pLi is the correspond-
ing loading vector, and kL is the number of PCs retained in
the PCA model. The loading vector pLi can be obtained by
the eigendecomposition of the covariance matrix as

1

n − 1
XT X pLi = λLi pLi (4)

where λLi denotes the i th eigenvalue of XT X/(n − 1).
Given a testing vector xt ∈ R

m , its i th score is given by

tLi = xT
t pLi . (5)

The first kL scores of xt , denoted by [tL1 tL2 · · · tLkL
]T ,

are available as the linear features of the testing vector.
Furthermore, the residual vector of xt is readily given by

x̃t = xt −
kL
∑

i=1

tLi pLi . (6)

In the second step, KPCA is applied to the PCA residual
matrix ˜X . The KPCA transformation of ˜X in F , denoted by
�(˜X) ∈ R

n × F , can be decomposed as

�(˜X) =
kN
∑

i=1

tNi ( pNi )
T + E (7)

where tNi ∈ R
n is the i th nonlinear score vector or feature,

pNi ∈ F is the corresponding loading vector in KPCA
decomposition, and kN is the number of KPCs retained in
the model, while E ∈ R

n × F is the KPCA residual matrix.
To obtain the KPCA score and loading vectors, the eigenvalue
decomposition of the covariance matrix is formulated as

1

n − 1
�T (˜X)�(˜X) pNi = λNi pNi (8)

with λNi denoting the i th eigenvalue of
(1/n − 1)�T (˜X)�(˜X). Denote ˜X = [x̃1 x̃2 · · · x̃n]T .
Then, there exists αi = [αi,1 αi,2 · · · αi,n ]T such
that [30], [31]

pNi =
n

∑

j=1

αi, j �(x̃ j ) = �T (˜X)αi . (9)

Combining (8) and (9) with (2), we have [30], [31]

(n − 1)λNi αi = Kαi (10)

where K ∈ R
n×n is the kernel matrix with its i th row

and j th column element given by [K ]i, j = ker(x̃i , x̃ j ) =
�T (x̃i)�(x̃ j ), and K has been mean centered [31]. It can be
seen that λNi and αi are the i th eigenvalue and eigenvector of
K , and they can be explicitly computed [30].

For the test residual vector x̃t , its i th KPCA score is
extracted by projecting �(x̃t) onto pNi as

tNi = �T (x̃t) pNi =
n

∑

j=1

αi, j �
T (x̃ j )�(x̃t) = kT

t αi (11)

where kt ∈ R
n is the test kernel vector whose j th element

is [kt ] j = ker(x̃ j , x̃t ). The detailed explanation, discussion,
and implementation of the KPCA can readily be found in the
literature [30], [31], [45].

In the literature, there exist some methods for selecting the
number of retained PCs in PCA or KPCA model, including the
average eigenvalue and cumulative percent variance methods
[31], [46]. We adopt the average eigenvalue approach to
determine kL and kN , owing to its simplicity and robustness.
This method retains the PCs whose eigenvalues are larger than
the average eigenvalue.

III. FAULT DETECTION BASED ON SPCA

For the convenience of real-time fault detection, two mon-
itoring statistics are constructed as

T 2 = tT
SPCA�−1 tSPCA (12)

Q =
n

∑

j=1

(tN j )
2 −

kN
∑

j=1

(tN j )
2 (13)

where tT
SPCA = [tL1 tL2 · · · tLkL

tN1 tN2 · · · tNkN
] contains the

monitored linear and nonlinear PCs, and � is the covariance
matrix of these components computed under the normal oper-
ating condition. The T 2 and Q statistics are standard moni-
toring statistics widely adopted in fault detection application.
For example, the two corresponding statistics of the PCA
method are constructed using tT

PCA = [tL1 tL2 · · · tLkL
], while

the two related statistics of the KPCA method are computed
with tT

KPCA = [tN1 tN2 · · · tNkN
].

To inspect if a fault occurs, the confidence limit is required
for each statistic. In order to determine the confidence limit,
the distribution for the monitored variables is required. Typi-
cally, existing PCA and KPCA methods assume some specified
distribution, usually Gaussian, for the monitored variables.
For example, the original KPCA method of [31] computes
the confidence limits for T 2 and Q statistics based on the
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Fig. 2. Flowchart of SPCA-based fault detection.

F distribution and weighted χ2 distribution for these two
statistics, respectively. Since industrial processes are highly
complex, it is difficult to guarantee that process data conform
to a specific distribution assumption, such as Gaussian. Ker-
nel density estimation (KDE) [47], [48] is a nonparametric
empirical density estimation technique, which does not need
any distribution assumption. Hence, data-driven KDE-based
method has become popular recently for confidence limit
determination [14], [16], [36], [39], [49]. Therefore, we apply
the KDE to determine the confidence limits for the PCA-,
KPCA-, and SPCA-based monitoring statistics. Specifically,
this KDE-based method computes confidence limit based on
the values of monitoring statistics under normal testing data.
In particular, 95% confidence limit is obtained in this paper.

Similar to the PCA- and KPCA-based process monitoring
procedures, the SPCA-based process monitoring procedure
consists of two stages: offline modeling and online monitoring.
During the offline modeling stage, normal operating data are
acquired and divided into the training and validating data sets.
The training data set is used to construct an SPCA model and
the validating data set is applied to determine the confidence
limits. During the online monitoring stage, new measured data
are collected and its linear and nonlinear PCs are extracted.
Then, the two monitoring statistics are computed. If at least
one of these two statistics exceeds its confidence limit, a fault
alarming signal is given to operator. This SPCA-based fault
detection procedure is shown in Fig. 2.

IV. FAULT IDENTIFICATION USING

SPCA SIMILARITY FACTOR

After a fault is detected, it is vital to diagnose the fault
source so that the fault can be repaired quickly. Some methods
were discussed for this challenging task in the literature [39],
[50], [51]. An early solution is contribution plot [51]–[53],
where the largest contribution value indicates the possible
fault variable. Contribution plot is easy to implement but
performs unsatisfactorily for complicated faults. Often many
historical fault data sets are available in computer database,
and therefore, pattern recognition strategy can be adopted to
identify fault pattern. Hence, we assume that there are many
fault pattern data sets available in the historical database.

A. PCA and KPCA Similarity Factors

PCA similarity factor [54]–[57] computes the similarity
factor between the test fault data set and each fault pattern
data set available in the historical database, and the fault
pattern with the highest similarity factor is concluded as the
recognition result. Early work on PCA similarity factor was
carried out by Johannesmeyer et al. [54]. Later, Singhal and
Seborg [55] presented a modified PCA similarity factor by
considering the weighting of PC directions. This method has
been applied in process monitoring and data classification
in [56] and [57]. To deal with nonlinear processes, Deng
and Tian [58] built a nonlinear similarity factor called KPCA
similarity factor. We now briefly review both PCA and KPCA
similarity factors.

For data sets S ∈ R
n×m and H ∈ R

n×m from a process,
which have been scaled by the mean and variance of normal
operation data, PCA is performed on them to retain the first
kL PCs for each of them. The PCSs of S and H are defined
by L = [l1 l2 · · · lkL ] ∈ R

m×kL and M = [m1 m2 · · · mkL ] ∈
R

m×kL , respectively, which contain the first kL loading vectors
of S and H . The loading vector is also the PC direction. Let
θi, j be the angle between the i th PC direction li of the data
set S and the j th PC direction m j of the data set H . The
cosine of θi, j is given by

cos θi, j = lT
i m j

‖li‖‖m j ‖ . (14)

Then, the weighted PCA similarity factor is defined as [55]

SPCA(S, H) =
∑kL

i=1

∑kL
j=1 λLi λM j (cos θi, j )

2

kL
∑

i=1
λLi λMi

= tr
(

�L LT M�2
M MT L�L

)

∑kL
i=1 λLi λMi

(15)

where tr(·) denotes the matrix trace operation, �2
M = �M�M ,

and �L and �M are the weighting matrices given by

�L = diag
{

√

λL1 ,
√

λL2 , · · · ,
√

λLkL

}

(16)

�M = diag
{

√

λM1 ,
√

λM2, · · · ,
√

λMkL

}

(17)

with diag{a1, a2 · · · , ap} as the diagonal matrix having the
diagonal elements of a1, a2 · · · , ap, while the eigenvalues λLi

and λMi correspond to the i th PCs of S and H , respectively,
with the ordered eigenvalues satisfying λL1 > λL2 > · · · >
λLkL

and λM1 > λM2 > · · · > λMkL
. The number of PCs kL

used is a key parameter in PCA similarity factor computation.
Let kS and kH be the numbers of PCs determined for S
and H , respectively, based on the average eigenvalue method.
According to [54] and [55], we can choose kL = max{kS, kH }.

The PCA similarity factor SPCA(S, H) characterizes the
similarity degree of S and H in the linear PC space. Large
value indicates high similarity degree. In particular, the two
data sets S and H are regarded to come from the same
operation pattern if the value of SPCA(S, H) is close to 1,
while they belong to different operation patterns if SPCA(S, H)
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is close to 0. However, it is clear that PCA similarity factor
can only be applied to fault diagnosis of linear processes.

For the data sets S and H , we can apply KPCA transfor-
mation to obtain their nonlinear PCSs, respectively, as

L = �T (S)AL ∈ F × R
kN (18)

M = �T (H)AM ∈ F × R
kN (19)

where AL, AM ∈ R
n×kN contain the first kN eigenvectors

of the KPCA decomposition on S and H , respectively. The
KPCA similarity factor [58] can then be written as

SKPCA(S, H) = 1
∑kN

i=1 λLi λMi

×tr
(

�L AT
L�(S)�T (H)AM

× �2
M AT

M�(H)�T (S)AL�L
)

(20)

where �L,�M ∈ R
kN ×kN are the diagonal matrices whose

diagonal elements are the square roots of the corresponding
eigenvalues {λLi , 1 ≤ i ≤ kN } and {λMi , 1 ≤ i ≤ kN },
respectively, obtained from the KPCA decomposition of S and
H . Applying kernel trick, we can compute the kernel matrices
K H S = �(H)�T (S) and KSH = �(S)�T (H). Then, the
KPCA similarity factor can be calculated explicitly as

SKPCA(S, H) = tr
(

�L AT
L KSH AM�2

M AT
M K H S AL�L

)

∑kN
i=1 λLi λMi

.

(21)

Since the KPCA similarity factor characterizes the similarity
degree of two data sets in the nonlinear PC space, it is capable
of applying to fault identification of nonlinear processes.

B. Proposed SPCA Similarity Factor

The propose hybrid similarity factor, called SPCA similarity
factor, integrates both linear and nonlinear features. When
SPCA is applied for fault identification, two steps of PCA
and KPCA decompositions are involved for S and H .

At the PCA step, the data sets are decomposed into

S = ̂S + ˜S (22)

H = ̂H + ˜H (23)

where ˜S and ˜H are the resulting PCA residual matrices, and
the PCA similarity factor SPCA(S, H) is calculated.

The KPCA step then decomposes the PCA residual matrices
˜S and ˜H into

�(˜S) = �(̂˜S) + E
˜S (24)

�( ˜H) = �(̂˜H) + E
˜H (25)

with E
˜S and E

˜H being the related KPCA residual matrices,
and the KPCA similarity factor SKPCA(˜S, ˜H) is calculated.

The new SPCA similarity factor is constructed as

SSPCA(S, H) = SPCA(S, H) · SKPCA(˜S, ˜H). (26)

In this new SPCA similarity factor, the PCA similarity factor
component is capable of describing the similarity degree in
linear PC space, while the KPCA similarity factor component
is capable of characterizing the similarity degree in nonlinear

PC space. Therefore, only when S and H are similar in both
the linear and nonlinear spaces, which means that the two data
sets are truly similar, this SPCA similarity factor is close to 1.
If S and H are not similar, either in the linear feature space
or in the nonlinear feature space or in the both spaces, then
either the PCA similarity factor or the KPCA similarity factor
or the both will be near to 0. This leads the SPCA similarity
factor close to 0.

Once a fault is detected, this SPCA similarity factor can
be used to identify the pattern of newly occurred fault. The
unknown fault data are collected and the similarity factors with
all the known fault pattern data sets are computed. The largest
SPCA similarity factor indicates the possible fault pattern. If
all the similarity factors between the occurring faulty data
and all the known historical fault data are all close to zero,
then the occurring fault pattern is unknown or unseen to the
historical database. In this case, other means must be applied
to identify the fault. For example, experience operator with
the plan knowledge may have to infer from the operational
condition the root cause of the occurring fault. Once this is
done, that is, the fault is identified, the fault data set can be
added to the historical database.

V. CASE STUDIES

Two case studies, a simulated nonlinear system [28] and
the Tennessee Eastman (TE) process [59], are used to validate
our proposed SPCA-based approach and to compare its fault
detection and identification performance with those of the
PCA-based and KPCA-based methods. The KDE method
is used to compute the 95% confidence limits of the two
monitoring statistics for the PCA-, KPCA-, and SPCA-based
fault detection methods. In all monitoring charts, the 95%
confidence limit is plotted with dashed line and the monitoring
statistic is plotted with solid line. Furthermore, all monitoring
charts are normalized by their corresponding 95% confidence
limits.

A. A Simulated Nonlinear System

The simulated nonlinear system, which is a modified version
of the example given in [28], is described by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1 = u1 + e1

x2 = u2 + e2

x3 = 2u1 + 3u2 + e3

x4 = 5u1 − 2u2 + e4

x5 = u2
1 − 3u2 + e5

x6 = −u3
1 + 3u2

2 + e6

(27)

where u1 and u2 are the independent source variables which
follow the uniform distribution in [0, 2], while e1–e6 are the
independent noise variables obeying the normal distribution
with the zero mean and variance of 0.01. Normal operation
data set consisting of 600 samples is simulated based on
the model (27). Among these data, 300 samples are used as
the training data set to build statistical model and the other
300 samples are applied as the validating data set to determine
the confidence limit. Both the KPCA and the SPCA adopt
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Fig. 3. PCA monitoring charts for fault detection of the simulated nonlinear
process.

Fig. 4. KPCA monitoring charts for fault detection of the simulated nonlinear
process.

Fig. 5. SPCA monitoring charts for fault detection of the simulated nonlinear
process.

Fig. 6. Linear PCs extracted by the PCA method for the fault data of the
simulated nonlinear process.

the Gaussian kernel with the kernel width c = 3000. For
fair comparison, the PCA, KPCA, and SPCA methods all
apply the average eigenvalue method to determine the linear
PC and/or nonlinear PC numbers, resulting in kL = 2 PCs
for the PCA, kN = 4 nonlinear PCs for the KPCA, and
kL = 2 PCs as well as kN = 4 nonlinear PCs for the SPCA,
respectively.

A fault with 300 samples is designed, where the variable
x2 has a step change of −0.5 after the 100th sample. The
fault detection results obtained by the three methods are shown
in Figs. 3–5, respectively. It can be seen that the PCA-based

TABLE I

FAULT DETECTION RATES (%) OF THREE METHODS
FOR THE SIMULATED NONLINEAR SYSTEM

Fig. 7. Nonlinear PCs extracted by the KPCA method for the fault data of
the simulated nonlinear process.

T 2 statistic cannot detect the fault, and the KPCA-based T 2

statistic does better but fluctuates around the confidence limit.
By contrast, the SPCA-based T 2 statistic clearly goes well
above the confidence limit after the occurrence of the fault.
The three Q charts all correctly detect the fault, but the
SPCA-based one yields the best indication of the occurring
fault. Detection performance can be quantified by the fault
detection rate (FDR), which is the ratio of the alarming
samples over all the fault samples. The FDRs of the three
methods are summarized in Table I, which clearly confirm that
the proposed SPCA method achieves the best fault detection
result.

We further examine the features extracted from the fault data
by the three methods. Fig. 6 shows the linear PCs obtained by
the PCA method, which are also the linear PCs for the SPCA.
Observe from Fig. 6 that there exists no obvious change in
these two linear PCs, which leads to the poor fault detection
performance of the PCA-based T 2 chart as it is constructed
based on these two features. Fig. 7 shows the nonlinear PCs
extracted by the KPCA, where it can be seen that the third
and fourth components exhibit slight changes after the 100th
sample. This explains why the KPCA-based T 2 chart is able
to sound alarm, but it fluctuates around the confidence limit.
Fig. 8 shows the nonlinear features extracted by the SPCA.
It can be seen from Fig. 8 that the third and fourth compo-
nents exhibit clear changes after the 100th sample. Thus, the
SPCA-based T 2 chart is able to confidently detect the
fault.
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Fig. 9. Flowchart of TE process.

Fig. 8. Nonlinear PCs extracted by the SPCA method for the fault data of
the simulated nonlinear process.

B. Tennessee Eastman process

The TE process, developed by Downs and Vogel [59], has
become a benchmark process for validating process control
and fault diagnosis techniques [60]–[62]. This process simu-
lates a realistic chemical process operation and its flowchart is
shown in Fig. 9. The simulation data with 52 variables can be
downloaded from http://web.mit.edu/braatzgroup/links.html,
which provides a normal operation case and 21 prepro-
grammed fault cases, denoted by IDV(1) to IDV(21). These
21 faults involve step changes and random variations in the
process variables, slow drift in reaction kinetics, valve sticking
and some unknown faults. Detailed fault descriptions can be
found in [59], [60], and [62]. The normal operation condition
includes two data sets, one having 500 samples and the another
having 960 samples. Each fault condition also includes two

Fig. 10. PCA monitoring charts for the TE process fault IDV(4).

fault data sets. One set contains 960 samples and the fault
is introduced after the 160th sample, and the another has
480 samples with the fault occurring after the 20th sample.

We use the normal data set with 500 samples as the training
data set to build model and apply the another 960 normal
samples as the validating data set to determine the confidence
limits. The fault data sets IDV(1) to IDV(21) that each
contains 960 samples are used for online fault detection and
identification, while the fault data sets IDV(1) to IDV(21)
that each contains 480 samples are assumed to form the
historical known fault pattern data sets, which are relabeled
as FP(1) to FP(21). Both the KPCA and the SPCA applies
the same Gaussian kernel function with the width parameter
c = 500 m, where m is the number of variables. The
number of PCs is determined by the average eigenvalue
method.

1) Fault Detection Performance: The fault IDV (4), which
is a step change in reactor cooling water inlet temperature,
is first used to compare the fault detection performance of
the three methods, and the results obtained are shown in
Figs. 10–12. It can be seen that the PCA-based T 2 statistic fails
to detect the fault, while the KPCA-based Q statistic fluctuates
around its confidence limit. By contrast, both the SPCA-based
T 2 and Q monitoring charts clearly and confidently detect
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Fig. 11. KPCA monitoring charts for the TE process fault IDV(4).

Fig. 12. SPCA monitoring charts for the TE process fault IDV(4).

Fig. 13. PCA monitoring charts for the TE process fault IDV(19).

Fig. 14. KPCA monitoring charts for the TE process fault IDV(19).

the occurring fault. By combining both linear and nonlinear
features, the SPCA achieves the best detection performance
for the fault IDV(4).

The monitoring results obtained by the three methods for
the fault IDV(19), which is an unknown fault, are shown in
Figs. 13–15. It can be seen from Fig. 13 that this fault is
difficult to detect by the PCA method, because its two mon-
itoring statistics are both below the corresponding confident
limits. The KPCA-based T 2 monitoring chart also fails to
detect this fault, as shown in Fig. 14. Again the SPCA method
shows its advantages in fault detection. As confirmed by its T 2

and Q monitoring charts given in Fig. 15, the SPCA method
confidently detects the fault IDV(19).

Fig. 15. SPCA monitoring charts for the TE process fault IDV(19).

Fig. 16. PCA monitoring charts for the TE process fault IDV(21).

Fig. 17. KPCA monitoring charts for the TE process fault IDV(21).

Fig. 18. SPCA monitoring charts for the TE process fault IDV(21).

The fault IDV(21), which involves a valve fault causing slow
process degradation, is also used in detection performance
comparison, and the results obtained by the three methods
are shown in Figs. 16–18. It can be seen that all the three
methods are able to detect this fault. To further analyze the
detection performance, let us define the fault detection time.
Specifically, let us consider that a fault is detected only if the
six consecutive samples are all above the confidence limit,
and the first sample of these six consecutive samples is then
defined as the fault detection time. Noting that this fault starts
at the 160th sample, the PCA-based T 2 statistic detects the
fault at the 680th sample, while its Q statistic detects the fault
at the 445th sample but then goes below the confidence limit
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TABLE II

FAULT DETECTION RATES (%) OF THREE METHODS FOR THE TE PROCESS

Fig. 19. Average FDRs achieved by the three methods averaging over the
faults IDV(4), IDV(5), IDV(10), IDV(11), and IDV(16)–IDV(21).

until the 600th sample. The KPCA-based T 2 statistic detects
this fault at the 427th sample, while its Q statistic indicates
the fault until the 672th sample. By contrast, the SPCA-based
T 2 and Q statistics both detect the fault at the 415th sample,
providing the earliest fault alarm.

Table II lists the FDRs obtained by the three methods for
all the 21 faults of the TE process. First thing to note from
Table II is that for the faults IDV(3), IDV(9), and IDV(15),
all the three methods perform poorly and cannot detect these
faults. This is not surprising as it is well known that these
three faults are extremely difficult for data-driven monitoring
methods owing to the reason that there exist no observable
changes in the mean or variance of these three fault data
sets [62]. It can also be seen that for the faults IDV(1), IDV(2),
IDV(6)–IDV(8), and IDV(12)–IDV(14), all the three methods
perform similarly well. However, for detecting the faults
IDV(4), IDV(5), IDV(10), IDV(11), and IDV(16)–IDV(21),
the proposed SPCA method clearly outperforms the other two
methods. Fig. 19 shows the average FDRs over these ten faults
achieved by the three methods.

False alarming rate (FAR) is an important metric in classifi-
cation applications. For our fault detection problem, we define
the FAR as the percentage of the normal operating samples

TABLE III

FARs AND FFDPs OF THE THREE METHODS FOR THE TE PROCESS

TABLE IV

COMPARISON OF AVERAGE COMPUTATION TIMES

PER SAMPLE IN ONLINE MONITORING

exceeding the confidence limit over all the normal operating
samples. For the three methods, we compute their FARs on
the 160 × 21 = 3360 normal samples from the 21 TE process
simulation data sets, and the results are listed in Table III.
As 95% confidence limit is used as the detection threshold,
up to 5% of the samples may exceed the confidence limit
statistically. From Table III, it can be seen that although the
SPCA does not obtain the lowest FARs, its FAR values for the
two monitoring statistics are both lower than 5%, which are
consistent to the 95% confidence limit. It is worth emphasizing
that the FAR is not the false fault detection probability (FFDP).
In a real industrial application, an isolated sample exceeding
the confidence limits is never taken to signify that a fault
has occurred. Only when several successive samples, e.g.,
6, consistently exceed the confidence limits can a fault is
detected. By designing the appropriate confidence limits to
ensure that the FAR is below 5%, the FFDP is practically
zero. This allows us to determine the overall performance of
a method by its FDR. In Table III, we also give the FFDPs of
the three methods, by assuming that a fault is detected when
three successive samples exceed the confidence limits.

For the three methods, their computation loads at the online
monitoring stage are different. The PCA is the simplest, which
costs the least computation time. By contrast, the KPCA,
which involves the kernel vector calculation, is more complex
and requires more computation time than the PCA. Compared
with the KPCA, the SPCA further adds the linear feature
extraction step and, therefore, is slightly more complex than
the KPCA. However, as the computation of linear features
is very simple, the computation time of the SPCA is only
marginally more than that of the KPCA. To validate our
analysis, we run the TE process online monitoring programs
ten times in the same computer with the configuration of
Intel Core i7-5500U processor (2.4 GHz) and 8-GB RAM
memory. The average computation times per sample in the
online monitoring required by the three methods are listed in
Table IV. It can be seen that the PCA only needs 7.25×10−5 s
for monitoring each sample and the KPCA’s computation time
increases to 9.35×10−3 s, while the SPCA spends 9.54×10−3 s
for monitoring each sample, which is indeed only marginally
higher than that of the KPCA method.

2) Fault Identification Performance: After a fault is
detected, it is necessary to identify what kind of fault is
occurring by computing the similarity factors between the fault
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Fig. 20. Similarity factors between the fault IDV(7) and the historical known
fault pattern data sets of FP(1) to FP(21). (a) PCA similarity factor. (b) KPCA
similarity factor. (c) SPCA similarity factor.

data set under investigation with the historical known fault
pattern data sets of FP(1) to FP(21). The largest similarity
factor then identifies the fault pattern. We first use the fault
IDV(7) as an example. The PCA similarity factors, KPCA
similarity factors, and SPCA similarity factors between the
fault IDV(7) and the known fault pattern data sets of FP(1)
to FP(21) are calculated and the results are shown in Fig. 20.
It can be seen from Fig. 20 that for all the three methods, the
seventh similarity factor, namely, the similarity factor between
the fault IDV (7) and the known fault pattern data set FP(7),
attains the largest value of 0.99. Therefore, in theory, all the
three methods correctly identify the fault pattern. However,
the result of the PCA similarity factor is not very convincing.
This is because the 5th and 12th PCA similarity factors are
larger than 0.9, while the 3rd, 15th, and 16th PCA similarity
factors are bigger than 0.8. These large similarity factors are
also close to 1, and therefore, the PCA similarity factor may
be easily influenced by the noise, potentially leading to a
wrong diagnosis. The KPCA similarity factor is marginally
better than the PCA similarity factor, and there are several
other large KPCA similarity factor values close to 1, e.g., the
3rd, 5th, and 12th KPCA similarity factors. By contrast, all the

Fig. 21. Gray images of the similarity factors for all the 21 fault data sets
of IDV(1) to IDV(21). (a) PCA similarity factor. (b) KPCA similarity factor.
(c) SPCA similarity factor.

SPCA similarity factors other than the seventh one are smaller
than 0.45 and many of them are close to zero. Therefore, by
fusing both linear and nonlinear features, the method of SPCA
similarity factor is most effective in the recognition of the fault
IDV(7).
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TABLE V

FAULT IDENTIFICATION RESULTS FOR THE TE PROCESS
BY THE THREE SIMILARITY FACTOR-BASED METHODS

We then analyze the fault recognition results for all the
21 fault testing data sets as shown in Fig. 21, where the
PCA similarity factors, KPCA similarity factors, and SPCA
similarity factors between all the fault data sets of IDV(1) to
IDV(21) and the historical known fault pattern data sets of
FP(1) to FP(21) are depicted in gray images. In a gray image,
the darkest black color represents the largest similarity factor
that is close to 1, while the lightest black color, i.e., white
color, is for the smallest similarity factor that is zero or close
to 0. From Fig. 21(a), it can be seen that the gray image
or the similarity “matrix” is not very diagonal, indicating
that it is difficult for the PCA-based method to identify fault
convincingly and correctly. By taking the largest similarity
factor as the recognized fault pattern, the PCA-based method
misclassifies seven faults, which are indicated in Table V. The
clarity of the KPCA similarity factors shown in Fig. 21(b) is
slightly better, and the method makes five wrong recognitions
which are also listed in Table V. Observe from Fig. 21(c) that
the SPCA-based similarity “matrix” is much close to diagonal,
and therefore, the SPCA-based method offers the best fault
discriminant ability. The number of incorrect recognitions
made by the SPCA-based method is only 4, as indicated
in Table V. As mentioned previously, the faults IDV(3),
IDV(9), and IDV(15) are extremely difficult for a data-driven
method. Thus, out of the other 18 fault cases, the SPCA-based
method only makes one error in fault identification. The fault
identification rate, which is the percentage of the correctly
identified fault cases over all the fault cases, is also shown in
Table V for each method.

VI. CONCLUSION

A novel hybrid linear–nonlinear statistical modeling
approach, referred to as SPCA, has been proposed for nonlin-
ear process monitoring and fault diagnosis. Our contribution
has been twofold. First, we have derived the SPCA-based
model, which fuses both linear and nonlinear features for
effective fault detection of nonlinear processes. Specifically,
PCA first extracts the linear features and KPCA then mines
the nonlinear features on the PCA RS. The SPCA-based
monitoring statistics constructed by fusing both linear and
nonlinear features offer more effective fault detection capa-
bility than either the PCA-based or KPCA-based monitoring
charts. Second, an SPCA-based similarity factor has been
developed for fault identification with the aid of historical fault
database, which is more powerful for fault pattern diagnosis
than either the PCA-based or KPCA-based similarity factor
method. Simulation results involving a simulated nonlinear
system and the TE benchmark process have confirmed the
superior performance of the proposed SPCA approach over

the existing KPCA-based approach, in terms of fault detection
and identification.

As a note to the related topic, specifically, statistical mod-
eling of time-varying industrial data, we point out that the
existing studies of [63]–[65] are worth further investigating.
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