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Abstruct-The paper investigates the application of a radial 
basis function network to digital communications channel equal- 
ization. It is shown that the radial basis function network has 
an identical structure to the optimal Bayesian symbol-decision 
equalizer solution and, therefore, can be employed to implement 
the Bayesian equalizer. The training of a radial basis function net- 
work to realize the Bayesian equalization solution can be achieved 
efficiently using a simple and robust supervised clustering algo- 
rithm. During data transmission a decision-directed version of 
the clustering algorithm enables the radial basis function network 
to track a slowly time-varying environment. Moreover, the clus- 
tering scheme provides an automatic compensation for nonlinear 
channel and equipment distortion. This represents a radically new 
approach to the adaptive equalizer design. Computer simulations 
are included to illustrate the analytical results. 

I. INTRODUCTION 

IGH speed communications channels are often impaired H by channel intersymbol interference and additive noise. 
Adaptive equalizers are required in these communications 
systems to obtain reliable data transmission. A discrete time 
model of a digital communications system is depicted in 
Fig. 1, where a digital sequence s ( t )  is transmitted through 
a dispersive channel with transfer function 

The transmitted symbol sequence s ( t )  is assumed to be an 
equiprobable and independent binary sequence taking values 
from { f l } .  The channel output is corrupted by an additive 
white Gaussian noise e@). The task of the equalizer is to 
recover the transmitted symbols based on the channel obser- 
vation y(t). 

From estimation theory, it is known that the best perfor- 
mance is obtained by detecting the entire transmitted sequence 
using the maximum likelihood sequence estimator (MLSE) 
[l], [2]. Adaptive MLSE is implemented in the form of a 
channel estimator and a Viterbi algorithm. High complexity 
and deferring decisions associated with the MLSE are how- 
ever often unacceptable in many practical communications 
systems. Most of the practical equalizers therefore employ an 
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Fig. 1 Discrete-time model of data transmission system. 

architecture of making decisions symbol by symbol. Symbol- 
decision equalizers can further be classified into two categories 
according to whether they estimate a channel model explicitly. 
In a typical direct-modeling equalizer, a channel model is 
identified explicitly. The transmitted symbols are treated as 
states and a Kalman filter is used to estimate these states 
[3]. The indirect-modeling approach recovers the transmitted 
symbols by filtering the channel observations, usually using an 
adaptive linear filter [4], without estimating a channel model 
explicitly. This is by far the widest used equalizer structure 
and it is considered in the present study. 

The structure of the symbol-decision and indirect-modeling 
equalizer is shown in Fig. 2. The operation of the equalizer at 
each sample t is based on m most recent channel observations 
and a decision is made regarding the transmitted symbol at 
sample t - 7,  where the integers m and 7 are known as the 
equalizer order and delay, respectively. How the m channel 
observations are processed determines the performance and the 
complexity of the equalizer. The indirect modeling approach 
is sometimes referred to as the inverse modeling because, 
traditionally, the equalization problem is viewed as an inverse 
filtering in which the equalizer forms an approximation to the 
inverse of the distorting channel [4]. From this view point, 
the filter within the architecture of Fig. 2 becomes linear and, 
the resulting equalizer is called a linear transversal equalizer 
(LTE). This view point however has certain shortcomings. 
Firstly, it completely ignores the fact that s ( t )  is binary. It 
ought to exploit this information to the benefit of performance, 
as is the case in the M B E .  The inverse modeling also 
implies that increasing the equalizer order m should lead to a 
more accurate approximation and hopefully better equalization 
performance. This is however not true due to the noise 
enhancement. Previous research [5 ] ,  [6] has demonstrated that 
the LTE does not achieve the full performance potential of the 
given symbol-decision structure in Fig. 2. Better performance 
can be obtained if some more complex filtering method 
is employed. 
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Fig. 2 Architecture of symbol-decision equalizer without estimating 
channel model. 

The use of the multilayer perception [5] and the polynomial 
filter [6] as equalizers can achieve significant performance im- 
provement over the LTE. This is because these two nonlinear 
equalizers are able to approximate the optimal symbol-decision 
equalizer solution implicitly. The multilayer perceptron how- 
ever, has problems of slow convergence and unpredictable 
solutions during the training while the polynomial equalizer 
suffers a drawback of exponentially increasing filter dimen- 
sion. Furthermore, it is not known how to specify parameters 
of these two nonlinear equalizers even when the channel 
transfer function, the symbol and the noise statistics are given. 
Their parameters can only be set by experiment in an ad hoc 
manner. This is in contrast to the LTE whose parameters are 
completely specified by the Wiener filter solution when the 
channel statistics are provided. 

The present study proposes a novel strategy for an adaptive 
equalizer design based on the radial basis function (RBF) 
network [7]-[9]. The optimal solution for the symbol-decision 
architecture of Fig. 2 is first derived using the Bayes decision 
theory [lo], [ l l ] .  It is then shown that this optimal Bayesian 
equalizer solution has an identical structure to the RBF net- 
work. For a known channel, therefore, all the parameters 
of the RBF network are specified explicitly, giving rise to 
precisely the Bayesian solution. Moreover, the training of an 
RBF network to realize the optimal equalizer can be carried 
out very efficiently by exploiting the underlying data structure. 
This involves a supervised clustering to position the RBF 
centers at the desired channel output states. Because noisy 
channel observations form Gaussian clusters and the means of 
these data clusters are the desired channel states, rapid con- 
vergence is guaranteed. The supervised clustering algorithm is 
very simple and robust, and it represents a radical departure 
from traditional training methods which are mostly based on 
minimizing the mean square error between the desired filter 
output and the actual filter output. Often communications 
channels are time-varying and, during data transmission, the 
desired channel output states will be changing. The RBF 
network can track these changes using a decision-directed 
clustering algorithm. Similar to the multilayer perceptron and 
the polynomial equalizers, the adaptive RBF equalizer is 
capable of compensating nonlinear distortion. Compared with 
the two previous nonlinear equalizers, however, the adaptive 

RBF equalizer has significant performance and implementation 
advantages because its structure is explicitly equivalent to the 
underlying optimal Bayesian solution. Computer simulation 
results are used to demonstrate the optimal performance of 
RBF equalizers. 

11. OPTIMAL SYMBOL-DECISION EQUALIZER 

The general symbol-decision equalizer depicted in Fig. 2 
is characterized by the equalizer order m and delay T. For 
the general channel of n h  + 1 taps given in (l), there are 
n, = 2nh+m combinations of the channel input sequence 

(2) 
T s ( t )  = [ s ( t )  ' * f s(t - m + 1 - n h ) ]  . 

This gives rise to n, points or values of the noise-free channel 
output vector 

P ( t )  = [$(t ) .  . . y(t - m + l)]? (3) 

These points will be referred to as the desired channel states, 
and they can be partitioned into two classes according to the 
value of s ( t  - T )  

} (4) 
Y& = {$( t ]s ( t  - T )  = l}, 
YL,r = {Y( t ) (s ( t  - T )  = -1). 

The two sets Y& and Y L , ~  contain the information of 
the channel transfer function, the symbol statistics and the 
equalizer constraints. Each desired state y : ~  YA, or yf E 
Y;, has a priori probability of appearance p i .  Under the 
previous assumptions on symbol statistics, all the desired 
states have a same probability of appearance p = l/n,. The 
numbers of the states in Yz, and YL, are denoted as nb and 
n; , respectively. 

Because of the additive white Gaussian noise, the noisy 
observation vector 

y(t) = [ y ( t )  . . . y(t - m + I)]' (5)  
is a random process having conditional Gaussian density 
functions centered at each of the desired channel states. It 
is apparent that channel observations form clusters and the 
means of these data clusters are the desired states. Determining 
the value of the transmitted symbol s ( t  - T )  based on the 
observation vector (5) is a decision problem. The Bayes 
decision theory [lo], [ l l ]  provides the optimal solution to 
the general decision problem and, therefore, can be employed 
to derive the optimal solution for the general equalizer of 
Fig. 2. It is straightforward to verify that this optimal Bayesian 
equalizer solution is defined as [6] 

with the optimal Bayesian filter or decision function given by 

nh 

nT 

j=1 

(7) 
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where the first sum is over y l  E YA, r ,  the second sum is 
over y j  E Y;, r ,  and g,“ is the noise variance. 

The optimal equalizer solution clearly depends on the noise 
distribution as well as the desired channel states. Multiplying 
f ~ ( y ( t ) )  by a positive constant does not change the optimally. 
What is critical is the optimal decision boundary defined by 

It partitions the observation space into two decision regions 
corresponding to the two decisions i ( t  - T) = f l .  Because 
the Bayesian decision function (7) is nonlinear, the optimal 
boundary (8) is a hypersurface in the observation space. The 
decision boundary of any linear equalizer is a hyperplane in the 
observation space. Therefore a performance gap always exists 
between the LTE and the optimal equalizer. For equiprobable 
symbols, the coefficients in the optimal filter (7) become 
redundant and can be removed, giving rise to the following 
simpler form of the optimal decision function. 

n$ 

fB b ( t ) )  = exp (- I(y(t) - Y+ I I 2/2g:) 
i=l 

An example is given to illustrate these results. 

chosen as m = 2. Let the channel transfer function be 
For the purpose of graphical display, the equalizer order is 

H ( z )  = 0.5 + 1.02-l. (10) 

All the combinations of s ( t )  and the desired channel states are 
listed in Table I. The states of Y& and Yq1 are also plotted 
in Fig. 3 using the “square” 0 and “cross” x ,  respectively. 
When P(t) is at a particular state, the observation vector y(t) 
is a stochastic process having a Gaussian density function with 
a mean equal to the given state and a variance equal to that 
of the noise. For noise variance of = 0.125, 1000 samples of 
y(t) are plotted in Fig. 3 using dots. It is seen that observations 
form clusters around the desired channel states. The optimal 
decision boundary computed using (9) is a curve, which is a 
two-dimensional hypersurface. When a y(t) is observed at the 
right-hand region of he boundary, the decision i ( t  - 1) = 1 is 
made. If the observation vector y(t) appears in the left-hand 
region of the boundary, i ( t  - 1) = -1 is made. This way of 
making decisions is optimal because it produces the minimum 
average error probability or bit error rate. 

111. THE RADIAL BASIS FUNCTION NETWORK 

Consider the RBF network [7]-[9], which is a two-layered 
processing structure depicted in Fig. 4. The hidden layer 
consists of an array of computing units. Each unit contained 
a parameter vector called a center, and the unit calculates a 
squared distance between the center and the network input 
vector. The squared distance is then divided by a parameter 
called a width and the result is passed through a nonlinear 
function. The second layer is essentially a linear combiner 

TABLE I 
INPUT AND DESIRED CHANNEL STATES. H ( z )  = 0.5 + l.Oz-’, 

m = 2 AND r = 1 

No. s ( t )  s ( t  - 1) s ( t  - 2) C(t) Q(t - 1) 

1 1 1 1 1.5 1.5 

3 -1 1 1 0.5 1.5 
4 - 1  1 -1 0.5 -0.5 
5 1 -1 1 -0.5 0.5 
6 1 -1 - 1  -0.5 -1.5 
7 -1 - 1  1 -1.5 0.5 
8 -1 - 1  -1 -1.5 -1.5 

2 1 1 - 1  1.5 -0.5 
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Fig. 3. Desired states, data clusters, and optimal decision boundary, 

H ( r )  = 0.5 + l.Oz-’, SNR = 10 dB and 1000 samples of y ( t ) .  

with a set of connection weights. The overall response of the 
RBF network is a mapping fT  

n 

f 4 Y )  = W i 4 ( l l Y  - GllZ/P2) (11) 
i = l  

where n is the number of computing units, c, are the RBF 
centers, pi are the widths of the units and wi are the weights. 

Comparing the network response (1 1) with the optimal 
equalizer filter (7), it is obvious that they have the same 
structure. The RBF network is therefore an ideal processing 
means to implement the optimal Bayesian equalizer. Given 
channel statistics, it is known exactly how to specify all the 
parameters of the RBF network. The number of the hidden 
units n is equal to the number of the desired channel states 
and the RBF centers are placed at these desired states. The 
nonlinear function 4 is obviously chosen as the following 
exponential function 

4(Y) = exP(-Y) (12) 

and all the widths have a same value p,  which is twice as 
large as the noise variance. Each hidden unit then implements 
a component conditional density function in (7) and, when the 

7 



CHEN et al. : CHANNEL EQUALIZATION USING FUNCTION NETWORKS 

Linear 
Combiner 

Hidden 
Layer 

Yl ." YRI 

Fig. 4. Schematic of radial basis function network. 

weights are further set to the corresponding coefficients in (7), 
the RBF network realizes precisely the Bayesian equalizer. 
For the case of equiprobable symbols, the network can be 
simplified considerably by fixing half of the weights to 1 and 
the other half to -1. In this case the second layer becomes 
a summer. 

Whether a RBF network can realize optimal equalizer 
solution depends crucially on whether the centers can be 
positioned correctly at the desired channel states. The width 
p is a less influential parameter. It is not too difficult to 
see that p need not be accurately set to 2a2. As far as the 
decision boundary is concerned, the influence of p on the 
hidden units cancel out each other to a certain extent. This 
is important because in practice only an estimate of the noise 
variance is available. Ideally n should be equal to n,, and 
this requires a correct estimation of the channel order n h .  If 
the estimate A h  is larger than the true value nh, more centers 
than really required will be employed. Apart from introducing 
unnecessary computations, this will not affect the performance 
of the RBF network. For example, if Ah = n h  + 1, the number 
of centers is twice as many as the desired channel states, and 
a pair of two centers will converge to each desired state. This 
still results in the optimal equalization solution. If however 
Ah is smaller than nh, less centers than the desired states will 
be used and some performance loss can be expected. These 
discussions will be further illustrated later using simulation. 

IV. SUPERVISED LEARNING 

In reality the channel transfer function is unavailable. An 
efficient learning strategy is necessary in order for a RBF 
network to learn the optimal equalizer solution. In the case 
of equiprobable symbols, the weights of the network can be 
fixed and learning involves finding the desired channel states 
so that the centers of the network can be positioned at these 
states. Denote the n, combinations of s ( t )  as si, 1 5 i 5 n,. 
During the training period, transmitted symbols are known 
to the equalizer. At each sample t ,  it can be inferred from 
s ( t )  which member of the desired states occurs. Furthermore, 

573 

TABLE I1 
COMPLEXITY OF SUPERVISED CLUSTERING (13) FOR m-INPUTS 

AND n-U"s RBF NETWORK 

m multiplications 
m divisions 

m + 1 additions 

TABLE I11 
COMPLEXITY OF SUPERVISED LMS (15) FOR m-INPUTS 

AND  UNITS RBF NETWORK 

n x m + 2n + 1 multiplications 
n divisions 

2n x m + n additions 
n evaluations of exp(-y) 

as mentioned previously, noisy observations form Gaussian 
clusters centered at the desired states. This suggests that 
a supervised &-means clustering procedure can effectively 
filter out the noise so that the RBF centers converge to the 
desired states. The computational procedure of this clustering 
algorithm is summarized as follows: 

if (s(t) == si){ 
~ ( t )  = counteri * c;(t - 1) + y(t); 

counter; = counteri + 1; 
c;(t) = c;(t)/counteri; 

1 (13) 

Because of the underlying data structure, a rapid convergence 
of this supervised clustering procedure is guaranteed. The com- 
putational requirement of this supervised clustering algorithm 
is given in Table 11. For nonstationary channels, the following 
adaptive version of (13) is preferred: 

where gc is the learning rate for centers. This version of 
the supervised clustering algorithm is simpler than (13). It 
should be emphasized that the algorithm (13) or (14) is all 
that is required to train a RBF network in the case of equi- 
probable symbols. 

If the assumption of equiprobable symbols is violated, it 
is advisable to adjust the weights of the network so that 
the network can learn the general equalizer solution (7). The 
adaptation of the weights is achieved using the following 
supervised least mean square (LMS) algorithm: 

m 

where gw is the learning rate for weights. The computational 
complexity of this LMS algorithm is listed in Table 111. The 
properties of the LMS algorithm are well understood (121. 
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Knowledge of the noise variance g," and the channel order 
n h  are required to specify the network structure and simple 
techniques can be employed to provide their estimates. If the 
centers are positioned correctly at the desired channel states 
and the ith desired state appears at sample t ,  it is easy to verify 
that the noise variance is given by 

this unsupervised clustering is as follows: 

d i ( t )  = ~ly(t) - s(t - 
IC = arg[min{di(t), 
Ck(t) = C k ( t  - 1) + gc(y(t) - C k ( t  - 1))  
G ( t )  = ~ ( t  - l), 

1 I i I n 
I 5 i 5 n}] 

1 5 i 5 n, and i # IC 

d = E[l lY(t )  - G1I2/4  (16) 

where k, the expectation Operator. This suggests a simp1e 
estimator for the noise variance. If s ( t )  = s; at t ,  the noise 
variance estimate is adjusted according to 

If it is also necessary to adapt the weights during data 
transmission, a decision-directed LMS algorithm can be in- 
corporated into the adaptive algorithm. The decision-directed 
LMS algorithm is identical to the LMS algorithm (15) except 
that the error signal ~ ( t )  is derived as the difference between 
the estimated symbol S(t - T )  and the network response. 

= ( ( t  - ')'-,"(' - '1 + IIY(t) - G(t)l12/m)/t* (17) For the equalization application, the unsupervised cluster- _ _  
ing algorithm (21) is unnecessarily complex and a decision- 
directed version of the supervised clustering algorithm (14) 
provides a simpler alternative. The basic idea is to infer the 

Under the assumptions introduced in Section I, the autocorre- 
lations of y(t) satisfy 

Note that ynh # 0 if ho # 0. The channel order n h  can 
therefore be inferred from the autocorrelations of y(t). This 
involves the calculation of the normalized sample autocorre- 
lations of y(t) 

\ t=1 

(19) 

where N is the number of samples, and jj is the sample mean 
of Y(t)  

N 

3 = N-l  y(t). (20) 
t= l  

A Tq is regarded as significant if it is outside the 95% 
confidence bands ~ k 1 . 9 6 N - ' / ~ .  The last significant sample 
autocorrelation provides an estimate i ih  for the channel order. 

V. DECISION-DIRECTED LEARNING 

state membership using estimated symbols. Because of the 
decision delay T ,  at sample t ,  the algorithm actually determines 
the state membership at t - T and the computational procedure 
of this decision-directed clustering algorithm is as follows: 

if (s( t  - T )  == si){ 

1 (22) 

s(t) = G ( t  - 1) + gc * (Y(t  - .) - G(t  - 1)); 

where 

k ( t  - T )  = [ i ( t  - ~ ) . . . i ( t  - T - m + 1 - nh)]?  (23) 

After the initial training and in normal operation, the equal- 
izer decisions are correct with high probability. This ensures 
that inferring state memberships from estimated symbols are 
correct often enough to allow a rapid convergence of the 
centers to the channel states. This algorithm is all required 
to track variations in the channel characteristics during data 
transmission in the case of equiprobable symbols. 

VI. A COMPARISON WITH OTHER NONLINEAR EQUALIZERS 
The approach reported in this study represents a radically 

new thinking to adaptive equalizer design. Traditional adaptive 
algorithms for equalizers are based on the criterion of minimiz- 

For time-varying channels, the channel states also become 
time-varying. A RBF network must have ability to 
cope with this situation. ~~~i~~ data transmission, supervised 

ing the mean square error between the desired filter output and 
the actual filter output, that is, these learning algorithms adjust 
the filter parameters to achieve a minimum of the criterion 

learning no longer applies and adaptation has to rely on 
unsupervised or decision-directed learning. The unsupervised 
6-means clustering procedure is often employed as a part of 
the general learning algorithm to adjust RBF centers [13], [14]. 
This involves computing the squared distance between the cen- 
ters and the network input vector, selecting a minimum squared 
distance and moving the corresponding center closer to the 
input vector. This unsupervised clustering scheme can also be 
used in the current application for the RBF network to track 
time-varying channel states. The computational procedure of 

The ultimate performance criterion for an equalizer is however 
bit error rate and there exists no clear relationship between the 
mean square error criterion (24) and the bit error rate criterion. 
The optimal Bayesian equalizer (7) or (9) will not necessarily 
produce a good mean square error performance and yet it 
provides the minimum average bit error rate achievable under 
the general structure of Fig. 2. The two nonlinear equalizers 
proposed in [5] and [6] rely on the mean square error criterion 
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(24) for training. Because the multilayer perception is highly 
nonlinear in the parameters, its error surface (24) is very com- 
plicated. Therefore, training times for multilayer perceptron 
equalizers are typically very long and the adaptive algorithm 
may become trapped at bad local minima. An alternative 
nonlinear equalizer approximates the Bayesian solution (7) 
using a polynomial filter [6]. The polynomial equalizer suffers 
a drawback of exponentially increasing filter dimension. A 
consequence of this is that the autocorrelation matrix of the 
input vector to the adaptive algorithm often becomes very 
ill-conditioned and has a large eigenvalue spreading ratio. 
Therefore, it is necessary to pass the output of the polynomial 
filter through a sigmoid function in order to alleviate this 
numerical difficulty. The training of the RBF network as an 
equalizer is based on the method that exploits the underlying 
data generating mechanism. The channel outputs form clusters 
in the observation space. The clustering algorithm positions 
the network centers at the means of data clusters efficiently. 
This approach is obviously guaranteed to converge rapidly and 
it is directly linked to the bit error rate performance since 
the trained RBF network will realize explicitly the Bayesian 
solution. 

It is interesting to compare the two different strategies 
employed by the RBF network and those equalizers requiring 
a channel estimator. The MLSE identifies the channel model 
directly while the RBF equalizer identifies the end-results of 
the channel. This has an important implication for channels 
involving nonlinear distortion. When nonlinear distortion is 
taken into account, the general channel model can be defined 
as 

where f h  is some nonlinear function and 0 is a channel 
parameter vector. The identification of this nonlinear channel 
model requires to specify the nonlinear structure as well as 
to estimate the channel parameters, which is a very diffi- 
cult task particularly in the context of real-time adaptation. 
The present approach avoids all these difficulties and it can 
straightforwardly be applied to the equalization involving 
nonlinear channels. Because the clustering algorithm always 
converges to the set of the desired channel states, the RBF 
network can achieve the full Bayesian performance regardless 
whether the channel is linear or nonlinear. Difficulties in on- 
line identification of a nonlinear channel model, on the other 
hand, should not be underestimated. Even when the nonlinear 
form fh is given, it is not always possible to identify all 
the parameters in the model unless the system input signal 
is persistently exciting [15]. For a linear channel model, 
persistent excitation means that s( t) should contain sufficient 
frequency components. Since s ( t )  is generally white, it is an 
ideal input signal for identifying the linear channel model (1). 
For a nonlinear channel model, however, persistent excitation 
requires an additional condition that s ( t )  should cover a 
sufficient range of amplitudes. The binary nature of s ( t )  
therefore represents a worst scenario and, as a consequence, 
parameters in some nonlinear channel models may not be 
identifiable. This can be demonstrated by considering the 

3 

2 

1 
h 

rl 

Y L o  
h 

-1 

-2 

-3 
-3  -2 -1 0 1 2 3 

Y (t) 

Fig. 5. Comparison of decision boundaries. Dotted optimal, solid: RBF 
network, +: centers, H ( z )  = 0.5 + l.Oz-', SNR = 10 dB, m = 2, T = 1, 
p = 202, and Ah = 1. 

following nonlinear channel model 
2 

+ 2 hZli2i3S(t - 21)s(t - 2 2 ) s ( t  - 23) 

+ e ( t ) .  (26) 

The input vector to the adaptive channel estimator consists 
of 19 monomials s ( t  - il), s( t  - i l ) s ( t  - i 2 )  and s ( t  - il) . 
s ( t - i 2 ) 5 ( t - i 3 ) .  The rank of the 19x 19 autocorrelation matrix 
of the estimator input vector, however, is only 8. It is therefore 
impossible to identify all the 19 parameters in (26). 

WI. SIMULATION STUDY 

In all the results, s ( t )  was an equiprobable random number 
taking values from {fl}. Therefore the weights of the RBF 
network were fixed and learning only involved supervised 
or decision-directed clustering to position the centers at the 
desired channel states. 

For the same system shown in Fig. 3, 160 samples of 
training data were used to train the RBF network using (13). 
Initially correct estimates of the channel order and the noise 
variance were assumed, giving rise to p = 20: and Ah = 1. 
The trained RBF network produced the decision boundary 
shown in Fig. 5. It is seen that convergence of the RBF center 
to the desired channel states was achieved and the supervised 
clustering algorithm performed well even though the noise 
level was very high. For better signal to noise ratio (SNR) 
conditions, training samples can be reduced. 

I 
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The influence of the width p was next investigated. The 
width p was set to 40: and a:, respectively. The first case 
represented an estimate of the noise variance that was twice 
as large as the true value and, in the second case, the 
estimate was only half of the true noise variance. These two 
RBF networks were trained and they produced the decision 
boundaries which were practically the same as that obtained 
using the true noise variance shown in Fig. 5. This confirms 
that the performance of RBF equalizers is relatively insensitive 
to the width p. Obviously the width p has no effect on 
the supervised clustering learning for centers. The simple 
variance estimator (17) was also incorporated into the training 
procedure to estimate the noise variance. After 160 samples of 
training it produced 6; = 0.105 compared with the true value 
0," = 0.125. This estimate was apparently accurate enough for 
the RBF network to realize the optimal decision boundary. 

The channel (10) used in the previous simulation has an 
order n h  = 1. Assume that it was wrongly estimated as 
f i h  = 2. This resulted in 16 centers compared with 8 desired 
channel states. The positions of these 16 centers obtained 
after 160 samples of supervised clustering learning are plotted 
in Fig. 6. As expected, two centers converged to a desired 
state and the optimality of the RBF equalizer was maintained. 
Another channel 

H ( z )  = 1.0 + 0.8z-l + 0.5.Y2 (27) 

was used to test the case of f i h  < n h .  Again a poor SNR 
of 10 dB was chosen and 160 samples were used in training. 
This was a channel of order n h  = 2. Suppose that an incorrect 
estimate f i h  = 1 was provided. This gave rise to a RBF 
network with 8 centers compared with 16 desired channel 
states. Also a wrong estimate of the noise variance was used 
by setting p = 40:. The result obtained is shown in Fig. 7. 
It is interesting to see that each center converged to the mean 
of two desired states. Judging from the decision boundaries 
depicted in Fig. 7, only a small performance loss occurred in 
this case. The estimator (17) produced 6: = 0.281 compared 
with the true noise variance 62 = 0.189. This estimate is more 
accurate than the actual one used in the network. 

A third channel with a more realistic equalizer order was 
used to study the performance of the RBF network under a 
variety of SNR's. The channel transfer function was given by 

H ( z )  = 0.3482 + 0.87042-1 + 0 . 3 4 8 2 ~ ~ ~ .  (28) 

The equalizer order and delay were chosen as m = 4 and 
T = 1, respectively. Correct estimates of the channel order and 
the noise variance were assumed. This gave rise to a network 
of 64 centers. 640 samples of training data were used in the 
supervised clustering procedure (13). Bit error rates of the 
optimal Bayesian equalizer and the trained RBF network are 
depicted in Fig. 8, where it is seen that the RBF equalizer 
achieved the optimal performance. The performance of the 
order-4 Wiener filter is also plotted in Fig. 8 as a comparison. 
The performance of the Wiener filter is the best that a LTE 
can hope to realize. For this example, order 4 is also the best 
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Fig. 6. Comparison of decision boundaries. Dotted: optimal, solid: RBF 
network, +: centers, H ( z )  = 0.5 + l.Oz-', SNR = 10 dB, m = 2, T = 1, 
p = 2 4 ,  and f i h  = 2. 
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Fig. 7. Comparison of decision boundaries. Dotted: optimal, solid: RBF 
network, +: centers, "(22 = 1.0 + 0 . 8 ~ ~ '  + 0.5z-*, SNR = 10 dB, 
m = 2, T = 0 ,  p = 40,, and f i h  = 1. 

choice for the Wiener filter. Higher order Wiener filters cannot 
improve performance and may even worsen the results due 
to the noise enhancement, as can be seen from Fig. 9. At 
the error probability of the RBF equalizer reported a 
4.4 dB improvement in SNR over the Wiener filter. Note that 
for SNR > 15 dB, less than 300 samples are sufficient to train 
the network. The noise variances were also estimated using 
(17) and the results are summarized in Table IV. When the 
width was set to p = 262, an identical performance to the 
case of p = 2 4  was produced by the RBF network. 

The ability of the RBF network to cope with nonlin- 
ear distortion was demonstrated using the following non- 

1 



CHEN et al.: CHANNEL EQUALIZATION USING FUNCTION NETWORKS 

I 

0 ,  I I I I 

-1 

- z 
Y - -2 
.- 
n 
n (0 

0 L 

L 
0 
L 
L w 

0 

0 

-3 

- 
- 4  - 
-5 

- 

- 

- 

- 

- 

Hiener filter +- 
RBF t 

optimal 8- 

-6 L I I I I 

0 5 10 15 20 25 
Signal to Noise  Ratio IdB) 

Fig. 8. Comparison of performance. H ( z )  = 0.3482 + 0 . 8 7 0 4 ~ ~ '  + 
0 . 3 4 8 2 ~ - ~ ,  m = 4 and T = 1. 

0 1 2 3 4 5 6 7 8 9  
Wiener Filter Order 
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TABLE IV 
TRUE NOISE VARIANCES AND ESTIMATED NOISE VARIANCES 

C T ~  0.3162 0.1778 0.1000 0.0562 0.0316 0.0178 0.0100 
&,2 0.2319 0.1304 0.0733 0.0412 0.0232 0.0131 0.0073 

linear channel 

} (29) 
y(t) = ~ ( t )  + 0.2z2(t) - 0.1Z3(t) + e ( t )  

X ( Z ) / S ( Z )  = 0.3482 + 0 . 8 7 0 4 ~ ~ ~  + 0 . 3 4 8 2 ~ - ~ .  

Fig. 10 shows the performance curves of the optimal Bayesian 
equalizer with m = 4 and r = 1 and the order-4 Wiener 
filter with T = 1. The supervised clustering algorithm (13) 
was used to train a RBF equalizer of 64 centers with a 
training sequence of 320 samples. The trained RBF equalizer 
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Fig. 10. Comparison of performance. Nonlinear channel (29), m = 4 and 

7 = 1. 

produced a performance curve closely matched to that of the 
Bayesian equalizer. 

For all the above examples, a combined learning of super- 
vised clustering and LMS was also performed to train the 
centers and the weights simultaneously. The performances 
obtained were identical to the results reported here. This is 
not surprising and it confirms that for equiprobable symbols 
the training of centers is sufficient for the network to realize 
the optimal equalizer solution. 

A further example demonstrated the tracking performance 
of the RBF network using the decision-directed clustering 
algorithm (22). The channel was time-varying with a 
transfer function 

H ( z )  = 1.0 + (0.2 + 0.0015t)z-' (30) 

and the noise variance was chosen as O.Ol(1.0 + (0.2 + 
0.0015t)2) to provide a constant SNR of 20 dB. Correct 
estimates of uf and T L ~  were assumed. The center trajectories 
obtained using the decision-directed clustering algorithm with 
a learning rate gc = 0.2 are plotted in Fig. 11. It is clear from 
Fig. 11 that good tracking was achieved. 

Finally, autocorrelations of channel observations were 
computed using (19) for several channels and the results 
are given in Fig. 12. For all these four examples, channel 
orders were correctly revealed from their normalized sample 
autocorrelations. 

VIII. CONCLUDING REMARKS 
A practical application of the RBF network to the equaliza- 

tion of digital communications channels has been reported. 
A main contribution of this study is the derivation of the 
structural equivalence between the optimal Bayesian solution 
of the symbol-decision equalizer and the IU3F network. This 
explains clearly why neural network equalizers outperform the 
traditional linear equalizer and it highlights the advantages of 
the RBF equalizer over othei nonlinear equalizers. It has been 
demonstrated that the training of the RBF network to realize 
the optimal equalizer solution can be achieved efficiently using 
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Fig. 12. Autocorrelations of channel observations. - . - 95% confidence 
band, SNR = 10 dB and 200 samples of observations. 

the supervised clustering algorithm. For nonstationary chan- 
nels, a decision-directed version of the clustering algorithm can 
be employed to provide tracking ability for the RBF network 
during data transmission. 

A useful technique to improve equalization performance 
is to use the decision feedback [4]. After the submission 
of this paper, some new results have been obtained by in- 
corporating the decision feedback into the RBF network to 
improve performance and to minimize processing complexity 
[ 161. For some communications systems, digital symbols, and 
channels are represented in complex-valued forms. Research 
has been continuing into complex-valued neural network struc- 
tures involving complex signals (e.g., [17], [MI). The results 
presented in this study can readily be extended to the general 
case of complex-valued symbols and channels by employing 
the complex-valued RBF network of [MI. 
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