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[terative Frequency-Domain Decision Feedback
Equalization of Hammerstein Channels
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Abstract— Complex-valued (CV) B-spline neural network
approach offers a highly effective means for identifying and
inverting practical Hammerstein systems. Compared with its
conventional CV polynomial-based counterpart, a CV B-spline
neural network has superior performance in identifying and
inverting CV Hammerstein systems, while imposing a similar
complexity. This paper reviews the optimality of the CV B-spline
neural network approach. Advantages of B-spline neural network
approach as compared with the polynomial based modeling
approach are extensively discussed, and the effectiveness of the
CV neural network-based approach is demonstrated in a real-
world application. More specifically, we evaluate the compar-
ative performance of the CV B-spline and polynomial-based
approaches for the nonlinear iterative frequency-domain decision
feedback equalization (NIFDDFE) of single-carrier Hammerstein
channels. Our results confirm the superior performance of the
CV B-spline-based NIFDDFE over its CV polynomial-based
counterpart.

Index Terms— Complex-valued (CV) polynomial model,
CV B-spline neural network, identification and inversion of
Hammerstein channels, nonlinear iterative frequency-domain
decision feedback equalization (NIFDDFE).

I. INTRODUCTION
N MANY real-world applications, the underlying sys-
tem that generates complex-valued (CV) signals can be
modeled by the CV Hammerstein model. The system is
gray-box, as its structure is known to be consisting of an
unknown static nonlinearity followed by an unknown linear
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dynamic model. A well-known example of CV Hammerstein
systems is the single-carrier (SC) block transmission commu-
nication channel with nonlinear high-power amplifier (HPA)
at transmitter, whereby the CV static nonlinearity of the
Hammerstein system is constituted by the nonlinear trans-
mit HPA, and its linear dynamic subsystem is the dispersive
channel, which can usually be modeled as a finite-duration
impulse response (FIR) filter. Effective identification and
inversion of CV Hammerstein systems is, therefore, crucial
in these practical applications.

The CV B-spline neural network has widely been used
as an effective means for identification and inversion of CV
Hammerstein systems [1]-[3]. Compared with its conventional
polynomial-based counterpart, B-spline models are proved to
have the optimal stability or numerical robustness [4]-[6],
and achieve superior performance in challenging practical
applications [1]-[3], while maintaining a similar computa-
tional complexity. In this paper, we review the CV B-spline
neural network model as an effective means for identifying
and inverting practical Hammerstein systems. In particular,
we analyze its optimal robustness property and provide the
computational complexity required for calculating the output
of a B-spline model, which turns out to be slightly higher than
that of the conventional polynomial model, and the both the
models have the same order of complexity.

Our main contribution is, however, the derivation of a
new CV B-spline neural network-based design for the non-
linear iterative frequency-domain decision feedback equaliza-
tion (NIFDDFE) of SC Hammerstein communication systems.
Effective identification and inverting algorithms are provided
for the SC Hammerstein channel based on the CV B-spline
neural network approach. We use this challenging real-world
application to evaluate the comparative performance of the
CV B-spline neural network-based NIFDDFE and its CV
polynomial-based NIFDDFE counterpart. The results obtained
clearly demonstrate that our B-spline-based NIFDDFE has a
superior performance over the polynomial-based NIFDDFE.
Our novel application, therefore, reinforces the CV B-spline
neural network as a versatile and effective means for solving
real-world applications where the underlying systems can be
represented by CV Hammerstein models.

2162-237X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Throughout this contribution, a CV number x € C is
represented either by x = xg + jx; or by x = |x|exp(j/").
The transpose and conjugate transpose operators are denoted
by ()T and ( ), respectively, while ( )~! stands for the
inverse operation and ( )* denotes the conjugate operation.
Furthermore, the expectation operator is denoted by E{ }.

II. NIFDDFE FOR HAMMERSTEIN CHANNELS

To illustrate the necessity for identifying and inverting
CV Hammerstein systems, we begin by introducing our
challenging application scenario, the SC block transmission
communication system [7]-[10], where each transmit block
consists of N data symbols with M-quadrature amplitude
modulation (QAM) expressed as

x =[x x1---xn—11” (1)

where xi, 0 < k < N — 1, takes the values from the M-QAM
symbol set

X={dQl — VM — )+j-dQ2q — VM — 1), 1<l, g <M}
(2)

with 2d denoting the minimum distance between symbol
points. Adding the cyclic prefix (CP) of length N, to x yields

- T.T
X = [X-Negp X—Ngp+1 - X—1]x"] (3)

with x p = xy_ for 1 < k < Ncp. The signal block x is
amplified by the HPA to yield the transmitted signal block

W = [W-N, W-Np+1 " w-r|w’ " 4)
where w = [wg w1 ---wy_1]7 and
wr = ¥ (xe), —Nep = k<N-1 (5)

in which W () represents the CV static nonlinearity of HPA and
w— = wyn—k for 1 <k < Ncp. Typical HPA in the transmitter
is the solid-state power amplifier [11]-[13], whose nonlinearity
W () is constituted by the HPA’s amplitude response A(r) and
phase response Y'(r) given by

8al

Ar) = - ©)
(1 n (%)Zﬂa)wa
. a¢r41
Y(r) = 71 N (ﬁ)qz (7

where r denotes the amplitude of the input to HPA, g, is the
small gain signal, S, is the smoothness factor, and Agy is

System schematic of the NIFDDFE for SC Hammerstein communication systems with the nonlinear HPA ¥ at transmitter.

the saturation level, while the phase response parameters .
Bss q1, and g are adjusted to match the specific amplifier’s
characteristics. We adopt the following parameter set defined
in the standardization [12], [13]:

%a =19, fa =081, Ag = 1.4
ag = —48000, By =0.123, ¢; =38, g2 =3.7. (8)

Given the input x; = |xk|ejﬁk, the output of the HPA is
wp = A(|xk|)ei(1‘k+vr(\m)). 9)

The operating status of the HPA is specified by the output
back-off (OBO), which is defined as the ratio of the maxi-
mum output power Pp.x of the HPA to the average output
power Pyop of the HPA output signal, given by

max

P
OBO = 10 - logy .

aop

(10)

The smaller the OBO is, the more the HPA is operating into
the nonlinear saturation region.

The amplified signal block w is transmitted through the
channel whose channel impulse response (CIR) coefficient
vector is

h=1lhohy.. hp, 1" (11

where L denotes the CIR length. Note that the CP must be
chosen to be N¢p > Lcir. We can always assume that g = 1,
because if this is not the case, hy can be absorbed into the
CV nonlinearity ¥( ), and the CIR coefficients are rescaled
as hj/ho for 0 < i < L. The combined transmission
channel and transmitter, as shown in Fig. 1, is a Hammerstein
system containing the nonlinearity W ( ) defined by (6) and (7)
followed by the FIR filter with the CIR (11).
At the receiver, after CP removal, the channel-impaired
received signals y; are given by
Leir
Vo= D hiwei+e, 0<k<N-—1
i=0

12)

in which wig—; = wnyr—i for k < i, where e¢; is the
additive white Gaussian noise (AWGN) with E{|ex|?} = 202.
Our NIFDDEFE receiver is shown in Fig. 1. First, passing
y = [yo yvi---yn—1]17 through the N-point fast Fourier
transform (FFT) processor yields the frequency-domain (FD)
received signal block ¥ = [Y Y1 ---Yy_1]7 with elements
N—1
Y, = Zykefj%, 0<n<N-1.
k=0

13)
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Due to the well-known circular property of CP [7]-[10]

Y, =H,W,+5,, 0<n<N-1 (14)

in which =), is the FD representation of the AWGN with

E{|5,1*} = 202, and W = [Wy W;---Wy_1]T is the
N-point FFT of w, that is
N—-1 ok
Wn=2wke_JN, 0<n<N-1 (15)
k=0

with E{|W,|?} = NE{|lwi|*} = No?2, while the FD channel
transfer function coefficients H,, 0 < n < N — 1, are the
N-point FFT of h given by

Leir

i2mwin
H, = ZhwiJ N,
i=0

Our new NIFDDFE involves an iterative detection procedure
with the iteration index [ > 1. Typically, three to four
iterations are sufficient. In particular, let the FD feedfor-
ward and feedback equalizers coefﬁcients at the /th itera-
tion by {C(l) }N —» and {B(l)}n _o » respectively. Furthermore,
denote the estimate of {W,,}N 01 at the previous iteration be

{W(l 1)},’:’: ! Then the “soft” estimate of W, is given by

0<n<N-1. (16)

wh =cVy, + BOWED, 0<n<N-1. (17
Passing VT/,EZ) for 0 < n < N — 1 through the N-point
inverse FFT processor yields the soft estimate of the time-

domain (TD) transmitted signals {wk},iv:_o1 as

1 2mnk
~(1 (1 jzrn
U)](() = N E ng)ej N,

n=0

0<k<N-—1. (18

For the convenience of discussion, assume that the nonlinearity
Y( ) of the transmitter HPA and its inversion ¥~ 1( ) are
both known at the receiver. The soft estimate {xkl) | of the
transmitted data symbols can be calculated accordmg to

f,fl) 0<k<N-1.

= v '@, (19)

By quantizing x( ),

{A(l)}N 1

we obtain the hard-decision estimate
of the transmitted data block. Further distorting

{xkl)},iv 01 by W () yields the TD estimate {w( )}k _o » Which is

transformed by the N-point FFT to produce the FD estimate
{W(l)} | to be used in the next iteration.

If the HPA is linear, and hence w; = xj, we have
the existing linear iterative FD decision feedback equaliza—
tion (LIFDDFE), for which {C{"}"= and (B}~ can
be obtained by minimizing the mean square error but the
computation is quite involved [8]. Extending this LIFDDFE
design to our new NIFDDFE also yields poor performance.
However, we find that the extension of the low-complexity
simplified LIFDDFE design of [10] to our NIFDDFE works
well with some modifications. We now present how to calcu-
late {C, l)} and {B,ﬁ”}j;’;ol for our new NIFDDFE.
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At the first iteration [ = 1, W,SO) = 0 and B,gl) = 0 for

0<n <N —1, and we have

0<n<N-1 (20)

which is identical to the nonlinear FD equalization (NFDE)
solution of [3]. For the iterations / > 2, we have

o _ _ (1— )’)H*
C)) =C, = 0O<n<N-1 (21)
SNRoL + B P e | Hyl?
BV =B, =—(C,H,—1), 0<n<N-1 (22)
with
N—1 2
1 H,
R DI s oo BCE
N < SNRo,L + f Pe.pre| Hyl
== (24)
r= l+ow’

For the LIFDDFE, the work [10] finds that the performance
is insensitive to the predefined signal-to-noise ratio (SNR)
value SNRre and the predefined symbol error probabil-
ity P pre. In particular, SNRI;:) = 0.1 and Ppre = 0.1
yield excellent results. In our NIFDDFE, we also find that
SNR>! = 0.1 and Pepre = 0.1 are appropriate. In the

pre
LIFDDEFE case, i.e., wy = xi, f is a parameter depending
on the modulation scheme for x;. In particular, f = 2, 2/5,
and 2/21 for 4-QAM, 16-QAM, and 64-QAM, respectively.
In our NIFDDFE, w; is a nonlinearly distorted x; and the
severity of this nonlinear distortion depends on the OBO of
the transmitter HPA. Intuitively, f should be smaller than the
linear case and how small S is also depends on the value
of OBO. For 64-QAM with OBO = 3 dB, we find that
£ = 0.01 is appropriate, i.e., ten times smaller than the linear
case. With OBO = 5 dB, an appropriate value is f = 0.05,
i.e., only two times smaller than the linear case. This makes
sense, as with OBO = 5 dB, the HPA is operating closer
to the linear region than the case of OBO = 3 dB. Another
modification made is in the feedback coefficients B, of (22).
In the LIFDDFE design [10], B, = —(C,H, — 7). But
we find that with B, of (22), the performance is better for
the NIFDDFE.

III. CV B-SPLINE AND POLYNOMIAL
IMPLEMENTATIONS OF NIFDDFE

It can be seen that implementing the NIFDDFE requires
to identifying and inverting the Hammerstein channel that
consists of the unknown static nonlinearity ¥ ( ) followed by
the FIR filter with the unknown CIR vector h.

A. CV B-Spline and Polynomial Models for ¥ ()

1) CV B-Spline Neural Network: The CV B-spline neural
network approach [1]-[3] offers an effective means for identi-
fying and inverting this Hammerstein channel. We first point
out that ¥ ( ) meets the following conditions.

1) W( ) is a one-to-one mapping, i.e., a continuous and

invertible function.
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Fig. 2. De Boor recursion: P, =4, Ny =5, Upin = U3, and Umax = Us.

2) xp and x; are upper and lower bounded by some known
finite real values, where x = xp + jx; denotes the CV
input to W( ), and the distributions of xz and x; are
identical.

According to property 2), we have Upin < x5 < Upnax,
where Upin and Upax are the known finite real values, while
x5 denotes either xg or xy, i.e., the subscript s is either R or /.
To use a B-spline neural network for modeling W( ), a set
of Ny univariate B-spline basis functions on x; is parametrized
by the piecewise polynomial degree P, and a knot sequence
of (Ny + P, + 1) knot values {Uy, Uy, ..., Uyn,+p,} With

Uy<Up <---
< <Uy, <Upn41 =

<Up,2 <Up,~1 = Unin < Up,

Umax < Un;42 < -+ < UNgtp,.

(25)

At each end, there are P, — 1 "external" knots that are outside
the input region and one boundary knot. As a result, the
number of "internal" knots is Ny + 1 — P,. Given the set
of predetermined knots (25), the set of Ny B-spline basis
functions can be formed by using the De Boor recursion [14],
yielding for 1 <[ < Ny + P,

1, ifU_1 <xg <U
BV (xy) = [ b=

. (26)
0, otherwise

aswellasfor/=1,...,Ng+P,—pand p=1,..., P,

(5.p) XYs — Uit s.p-1)
B (x)=—— " B (xs)
! ’ Upti—1 — Uiy ! *
Up+l = Xs 1 (s.p—1)
ZpH T (x5). 27)
UP-H _ Ul 1+1 s

De Boor recursion is shown in Fig. 2.
Using the tensor product between the two sets of univariate

B-spline basis functions [15], B(R P”)(xR) for 1 <1 < Np

and B,S,I P")(x1) for 1 <m < Ny, a set of new B-spline basis

(Po)

functions Bl,m

(x) can be formed and used in the CV B-spline
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neural network, giving rise to
Nr Nj

o =TFs()=> > B0k,

=1 m=1
Nr Nj
R,P, A
=2 2 B e B o,

=1 m=1
where Hlf;m = HlmR +j0 lm1 € C, 1 <1l < Ng and

1 <m < Ny, are the CV weights. Denote
B pB B B T
0p = [91,1 91,2"'91,m "'HNR,NI]

where Np = NgN;. The task of identifying the nonlinearity
W () is turned into one of estimating 0p.

2) CV Polynomial Model: Similarly for the conventional
polynomial modeling with polynomial degree P,, let us define
the set of P, + 1 polynomial basis functions as

P(S)(XS) = 'xl7

(28)

e CNs (29)

0<I<P, (30)

Then, using the tensor product between the two sets of uni-
variate polynomial basis functions, P )(xR) for0 <l <P,
and P,f,l)(x[) for 0 <m < P,, a set of new polynomial basis
functions Py, (x) = PZ(R)(xR)P,f,I)(xI) for 0 <I,m < P, can
be formed, giving rise to the CV polynomial model

P, P,
=>"> P},

1=0 m=0
P, P,
=> > PGP0l 31)
[=0 m=0
where ‘91{) = eleR +ij6 lm; e C,0<Il,m < P,, are the

CV weights. Define
0p = [(90{’0 90},)1 .

where Np = (14 P,)?. The task of identifying the nonlinearity
Y () becomes one of estimating 6p.

oF,---0F »]" e (32)

B. Model Structure Parameters

1) Polynomial Model: For the conventional polynomial
model, there is only one model structure parameter, and
choosing the polynomial degree P, = 4 is sufficient for most
practical applications.

2) B-Spline Model: For the B-spline neural network,
choosing P, = 4 is also sufficient for most applications.
In our application, the knot sequence is symmetric and
Umin = —Umax. Given the required average transmitted signal
power, the peak amplitude in the symbol set (2) is known, and
hence Upax is known. Ng = Ny = Ny = 6 to 10 is sufficient
for accurately modeling on the finite interval [Umin, Umax]-
The Ny + 1 — P, internal knots may be uniformly spaced in
the interval [Unin, Umax]. Note that there exist no data for
Xg < Unin and xg > Upnax in identification, but it is desired
that the B-spline model has certain extrapolating capability
outside the interval [Umin, Umax]. The external knots can be
set empirically to meet the required extrapolation capability.
However, the precise choice of these external knots does not
really matter, in terms of modeling accuracy.
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TABLE I
COMPLEXITY OF POLYNOMIAL MODEL (31) FOR P, =4

Computation Multiplications ~ Additions
Two sets of 1-D basis functions 2x4 0
Output of (31) 3 x 25 2x24
Total 83 48

Fig. 3. Complexity of B-spline model with P, = 4 using De Boor recursion,
where {a, b} beside a node indicates that it requires a additions and b
multiplications to compute the basis function value at this node. The case
of m = Ng + 1 is identical to (b).

C. Complexity Analysis

1) Complexity of Polynomial Model (31): Complexity
analysis of the CV polynomial model is straightforward, and
the computational complexity of computing the polynomial
model (31) is obviously on the order of (14 P,)?, denoted as
O((P,+1)?). As an example, the computational requirements
for P, = 4 are listed in Table 1.

2) Complexity of B-Spline Model (28): Comparing the
B-spline modeling of (26)—(28) with the polynomial modeling
of (30) and (31) and noting that Np can be significantly
larger than Np, it would appear that the complexity of the
CV B-spline model would be significantly higher than that of
the CV polynomial model. This is in fact not the case, and the
complexity of the CV B-spline modeling also depends only on
P, and not on the number of basis functions N;.

Given x5 € [Unin, Umaxl, there are only P, + 1 basis func-
tions with nonzero values at most. Fig. 3 shows the complexity
of generating the B-spline basis function set for P, = 4,
which shows that the total requirements are 26 additions
and 38 multiplications at most. Thus, in the tensor-product
B-spline model (28), there are only (P, 4+ 1)? nonzero basis
functions at most for any given input, which is comparable
with the tensor-product polynomial model (31) with (P, + 1)?
nonzero basis functions. The upper bound and lower bound

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 12, DECEMBER 2017

TABLE 1I
COMPLEXITY OF B-SPLINE MODEL (28) FOR P, =4

Computation [ Multiplications ~ Additions
Upper bound:
Two sets of 1-D basis functions 2 x 38 2 X 26
Output of (28) 3 x 25 2x 24
Total 151 100
Lower bound:
Two sets of 1-D basis functions 2 X 36 2 X 25
Output of (28) 3 x 16 2x 15
Total 120 80

computational requirements for the CV B-spline modeling
with P, = 4 are listed in Table II, where it can be seen that
the complexity of the B-spline modeling is no more than twice
of the polynomial modeling. Therefore, the computational
complexity of computing the B-spline model (28) is still on
the order of O((P, + 1)?).

D. Optimal Robustness Property of B-Spline Model

A critical aspect to consider in a model representation
is its stability with respect to perturbation of the model
parameters, because in identification, the data are inevitably
noisy, which will perturb the model parameters away from
their true values. A significant advantage of the B-spline model
over the polynomial model is its superior numerical stability.
B-spline functions are optimally stable bases [4]-[6], and this
optimality is due to the convexity of its model bases, i.e., they
are all positive and sum up to one. In contrast, the polynomial
model is far inferior in terms of numerical stability.

Let us first analyze this aspect theoretically. Assume that the
real-valued true system can be represented by the polynomial
model of degree P, exactly as

P,

i

Vs = Z ajxg
i=0

as well as by the following B-spline model exactly:

Nj
Vs = Zbi B,-(S’PO)(XS)

i=1
where ys, x; € R. Because of the noisy identification data,
the estimated model coefficients are perturbed from their true
values to @; = a; + ¢; for the polynomial model and to
E- = b; + ¢; for the B-spline model. Assume that all the
estimation noises &; are bounded by |¢;| < emax. The upper
bound of |y; — V| for the B-spline model can be worked out
to be

Ny N
e~ Po N >P0
[ys —¥s| = E biB,'(s’ )(xs) - E biB,-(s )(xs)
i=1 i=1

Ny
< €max zBi(S’PO)(xs) = &max-
i=1
Observe that the upper bound of the B-spline model output
perturbation only depends on the upper bound of the per-
turbation noise, it does not depend on the input value xj,
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Fig. 4. (a) Polynomial model with UDRN perturbation noises drawn from

[—0.0001, 0.0001]. (b) B-spline model with UDRN perturbation noises drawn
from [—0.0001, 0.0001]. (c) B-spline model with UDRN perturbation noises
drawn from [—0.001, 0.001]. (d) B-spline model with UDRN perturbation
noises drawn from [—0.01, 0.01]. Cited from [16].

the number of basis functions Ny, or the polynomial degree P,,.
Hence, the B-spline model enjoys the maximum numerical
robustness, and this optimal robustness property is well known.
In contrast, the upper bound of |y; — Vy| for the polynomial
model can be worked out to be

Po Po Po
E aixy — E aix! E X,
i=0 i=0 i=0

Observe that the upper bound of the polynomial model output
perturbation depends not only on the upper bound of the
perturbation noise but also on the input value x; and the
polynomial degree P,. The higher the polynomial degree P,
the more serious the polynomial model may be perturbed,
a well-known drawback of using polynomial modeling.

We use the simple example of [16] to demonstrate the
excellent numerical stability of the B-spline model over the
polynomial model in Fig. 4. Fig. 4(a) shows a quadratic
polynomial function y; = O.Oles2 — 0.02x5 + 0.1 defined
over x; € [0, 20] in solid curve. With the knot sequence
{—5, —4,0, 20, 24, 25}, this function is modeled as a quadratic
B-spline model of y; = O.14Bl(s’2)(xs) — 0.10355’2)()%) +
O.14B§S’2)(xs), which is shown in Fig. 4(b) in solid curve.
We draw three noises from a uniformly distributed random
number (UDRN) in [—0.0001, 0.0001], and add them to the
three parameters in the two models, respectively. Fig. 4(a) and
(b) shows the ten sets of the perturbed functions in dashed
curve generated by perturbing the two models’ parameters.

Iys—}}lz < €max

2877

It can be clearly seen from Fig. 4(a) that the polynomial model
is seriously perturbed, but there is no noticeable change at
all in Fig. 4(b) for the B-spline model. Next we draw three
perturbation noises from a UDRN in [—0.001, 0.001], and
add them to the three parameters of the B-spline model. Again,
the B-spline model is hardly affected, as shown in Fig. 4(c).
We then draw three perturbation noises from a UDRN in
[—0.01, 0.01] to add to the three B-spline parameters, and
the results obtained are shown in Fig. 4(d). Observe from
Fig. 4(a) and (d) that, despite the fact that the strength of the
perturbation noise added to the B-spline model coefficients
is 100 times larger than that added to the polynomial model
coefficients, the B-spline model is still much less seriously
perturbed than the polynomial model.

E. Identifying Hammerstein Channel

We will present the identification of the Hammerstein chan-
nel using the CV B-spline neural network approach, since the
identification algorithm is identical using the CV polynomial
modeling approach. Therefore, we drop the subscript p and
superscript ? from the B-spline model.

Given a block of N training data, {xi, yk}lly:_ol, the identifi-
cation task is to obtain the estimates of & and # by minimizing
the cost function

N—-1 N-1
_ 1 ~ 12 _ 1 ~ 2
Jh0) == > el =5 > Rl 33)
k=0 k=0

subject to the constraint of 4o = 1, in which the prediction of
Yk 1s given by

Leir Lir Nr Ny
Py P P,
Vo= D hilei =D hi > > B ) (34)
i=0 i=0 =1 m=1
where x;_; = xny4k—i if k < i. The cost function (33) is

convex with respect to h when fixing 6, and convex with
respect to @ given h. According to [17] and [18], the estimates
of @ and h are unbiased, irrespective to the algorithm used
to minimize the cost function (33). In [16], an alternating
least squares (ALS) procedure was proposed, which guarantees
to find the unique optimal solution of # and h in only a
few iterations. We adopt this ALS procedure in our current
application. This ALS procedure is summarized below.
Initialization: Define the amalgamated parameter vector

0=1[07 h07 n07 . ny 071" e CLrtDNs - (35)
Further define the regression matrix P € RN*(LartNg
¢’ (0) " (=1 " (—Leir) ]
P=| Tk TG ¢7 (k — La)
(TN 1) $T(V-2) - TN~ 1 Lap)
(36)
with ¢(k) = [p1,1(k) P1.2(k) - Prm(K) - Png.n, ()17,

in which ¢ ,(k) = B () for 1 < I < Ng and

1 < m < Nj. The regularized least squares (LS) estimate
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of wis®@ = (PTP+pI)~'PTy, where I denotes the identity
matrix of appropriate dimension and p is a small positive
constant, e.g., p = 107>, The first Np elements of & provide
an initial estimate for @, which is denoted as 9. Note that
0© is an unbiased estimate for 6 for sufficiently small p.

ALS Estimation Procedure: For 1 < 1t < 1pa, €.2.,
Tmax = 4, perform the following.

1) Given 9\(”1), calculate the LS estimate 7). In partic-
ular, define the regression matrix Q € CN*(Leir+1)

{50 1/5_1 o @_Lcir
Q=| wp W Wk—Lir (37
WN-1 WN-2 WN—1—Lg;
in which
Nr Ny
D =P =2 > B 0d " (38
=1 m=1
The LS estimate 77 is readily given by
~( _
i = (0"0)" 0"y (39)
RO =07 /by, 0 <i < L. (40)

2) Given ﬁ(’), calculate the LS estimate (7). Specifically
introduce

Zﬁ‘”B“’”)(xk ;) e C.
i=0

(pl,m(k) (41)

Further define the regression matrix
= [¢(0) (1)

with (k)= [p1,1() 91.2(6) -+~ 01 (k) -~ v, (0]
The LS estimate (%) is given by 000 = (SHS)"1sHy.

Clearly, this ALS procedure guarantees to converge to the
joint unbiased estimate of & and @ that is the unique minimum
solution of the cost function (33). This is simply because given
the unbiased estimate 8"~ of @, the LS estimate /(7 is the
unbiased estimate of &, and given the unbiased estimate h(T),
the LS estimate 8() is the unbiased estimate of 6.

Remark 1: Because the B-spline modeling has the optimal
robustness property as discussed in Section III-D, we expect
that the CV B-spline-based estimate 7 p(x) is a more accurate
estimate of the true HPA’s nonlinearity W (x) than the CV
polynomial-based estimate Pp (x). This will be verified in our
comparative performance evaluation.

o(N —1)]" eV Ve (42)

F. Inverting HPA’s Nonlinearity

1) CV B-Spline Inverting Model: We utilize another
B-spline neural network to model the inverse mapping of the
HPA’s CV nonlinearity defined by
¥ (we) = (wr).

X = (43)
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Define two knot sequences similar to (25) for wgr and wy,
respectively. We can construct the inverting B-spline model

Nr Nj
= > > BEP (wr) B (waf, @4

=1 m=1

where B(R P")(w ) and B(I P")(w[) are similarly calculated
based on the De Boor recursion (26) and (27), while
T eCNs,

(45)

_ (B _B B B
op =[ay) 01y 0y, Oy N,

Inverting the HPA’s nonlinearity becomes the problem of
estimating «p.

2) CV Polynomial Inverting Model: By defining the two sets
of polynomial basis functions similar to (30) for wg and wy,
respectively, we can construct the inverting polynomial model

X = 6P(w§ op)
P

=> Z PR wr) P (wp)af, (46)
1=0 m=0
where
aP:[a(ioa(il---afm---ago’Pu]TE(CNP. (47)

Inverting the HPA’s nonlinearity is turned into the problem of
estimating ap.

3) Estimation Algorithm: To estimate ap or ap needs the
input—output training data {wg, x¢}, but wy is unavailable. We
adopt the same pseudotraining data approach of [2] and [3], by
replacing wy with its estimate wg = Yg (xx) or wg = ¥p (xx)
based on the identified HPA’s nonlinearity @B( ) or “’I\lp( ).

Again we present the estimation algorithm for the
CV B-spline inverting model (44) and drop the subscript p
and superscript 2, since the estimation algorithm for the CV
polynomial inverting model is exactly the same. Over the
pseudotraining data set {@k,xk},]{\:ol, the regression matrix
B € RV*N8 can be formed as

Po Py Py
~ ’( ) B{,z)( 1) B&R’N,(wl)
B‘Pﬂ’(w ) B P (@) B\, @n-1)
(48)

and the LS solution is given by & = (BT B)"'BT x.

Remark 2: Because the pseudotraining input data {@k},iv:_ol
are highly noisy, which will seriously affect the polynomial
model but not the B-spline model as analyzed in Section III-D,
the CV polynomial inverting model (46) will be a far less
accurate estimate of the true HPA’s inversion ¥~!( ), com-
pared with the CV B-spline inverting model (44). This will
be confirmed by our comparative performance evaluation
presented in Section IV.
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TABLE III

CHANNEL USING THE CV B-SPLINE NEURAL NETWORK APPROACH

IDENTIFICATION RESULTS AVERAGED OVER 100 RUNS FOR THE CIR COEFFICIENT VECTOR i OF THE HAMMERSTEIN

Tap True E./N, =5dB E./N, =10dB
No. parameter average estimate | standard deviation average estimate | standard deviation
OBO = 3dB

ho 1 1 1

hi | —0.3732 —j0.6123 | —0.3732 —j0.6122 | 9.152e-4, 1.021e-3 | —0.3732 —j0.6123 | 5.147e-4, 5.744e-4
ha 0.3584 4+j0.3676 0.3586 +j0.3676 | 9.702e-4, 8.555e-4 0.3585 +j0.3676 | 5.455e-4, 4.812¢-4
hs 0.3052 +j0.2053 0.3052 +j0.2052 | 9.278e-4, 8.596e-4 0.3052 +j0.2052 | 5.219e-4, 4.834e-4
ha 0.2300 +j0.1287 0.2300 +j0.1286 | 7.806e-4, 8.650e-4 0.2300 +j0.1286 | 4.391e-4, 4.865¢e-4
hs 0.7071 +j0.7071 0.7070 +j0.7069 | 1.161e-3, 1.178e-3 0.7071 +j0.7070 | 6.530e-4, 6.627e-4
he 0.6123 —j0.3732 0.6122 —j0.3733 | 1.051e-3, 1.115e-3 0.6122 —j0.3732 | 5913e-4, 6.271e-4
h7 | —0.3584 4j0.3676 | —0.3583 4j0.3675 | 9.100e-4, 1.056e-3 | —0.3584 4+ j0.3675 | 5.119e-4, 5.939¢-4
hs | —0.2053 —j0.3052 | —0.2054 —j0.3051 | 9.343e-4, 9.233e-4 | —0.2053 —j0.3051 | 5.253e-4, 5.193¢-4
hg 0.1287 —j0.2300 0.1287 —j0.2299 | 8.017e-4, 8.728e-4 0.1287 —j0.2299 | 4.508e-4, 4.908e-4

OBO =5dB

ho 1 1 1

hi | —0.3732 —j0.6123 | —0.3731 —j0.6122 | 7.385e-4, 8.198e-4 | —0.3732 —j0.6123 | 4.154e-4, 4.611e-4
ha 0.3584 +j0.3676 0.3586 +j0.3675 | 7.687e-4, 6.87%¢-4 0.3585 +j0.3675 | 4.322e-4, 3.869¢-4
h3 0.3052 +j0.2053 0.3052 +j0.2052 | 7.505e-4, 6.757e-4 0.3052 +j0.2053 | 4.221e-4, 3.799¢-4
ha 0.2300 +j0.1287 0.2300 +j0.1286 | 6.253e-4, 6.947e-4 0.2300 +j0.1287 | 3.517e-4, 3.907¢e-4
hs 0.7071 +j0.7071 0.7071 +)0.7069 | 9.318e-4, 9.480e-4 0.7071 +j0.7070 | 5.239e-4, 5.332e-4
he 0.6123 —j0.3732 0.6121 —j0.3732 | 8.424e-4, 8.854e-4 0.6122 —j0.3732 | 4.739e-4, 4.978e-4
h7 | —0.3584 4j0.3676 | —0.3583 4+j0.3675 | 7.471e-4, 8.454e-4 | —0.3584 4+ 0.3675 | 4.202e-4, 4.754e-4
hs | —0.2053 —j0.3052 | —0.2053 —j0.3052 | 7.568e-4, 7.381e-4 | —0.2053 —j0.3052 | 4.256e-4, 4.151e-4
ho 0.1287 — j0.2300 0.1287 —j0.2299 | 6.476e-4, 6.922e-4 0.1287 —j0.2299 | 3.641e-4, 3.892¢-4

TABLE IV
KNOT SEQUENCES FOR B-SPLINE MODEL AND INVERSE MODEL

Knot sequence for xp and x

-10.0, -9.0, -1.0, -0.9, -0.06, -0.04, 0.0, 0.04, 0.06, 0.9, 1.0, 9.0, 10.0
Knot sequence for wr and wy

-20.0, -18.0, -3.0, -1.4, -0.8, -0.4, 0.0, 0.4, 0.8, 1.4, 3.0, 18.0, 20.0

IV. COMPARATIVE PERFORMANCE EVALUATION

We evaluated the comparative performance of the
CV B-spline-based NIFDDFE and the CV polynomial-based
NIFDDEE for a 64-QAM Hammerstein channel, in which the
HPA was described by (6) and (7) with the parameter set
given in (8). The dispersive channel had 10 taps (L¢ir = 9)
whose CIR coefficients are given in Table III. The size of the
transmitted data block was N = 2048. The system’s SNR was
defined as SNR = E,/N,, where E, was the average power
of the input signal x; to the HPA and N, = 2062.

For the CV B-spline neural network-based approach, the
piecewise quartic polynomial of P, = 4 was chosen,
and the number of B-spline basis functions was set to
Nr = N; = 8, while the knot sequences adopted by the
two CV B-spline neural networks for identifying and inverting
the HPA’s nonlinearity are listed in Table IV. For the CV
polynomial modeling-based approach, we set the polynomial
degree to P, = 4. All the estimation results were obtained by
averaging over 100 random runs.

The effectiveness of the CV B-spline neural network-based
approach to identify this Hammerstein channel is demonstrated
in Table III as well as in Figs. 5 and 6. It can be seen from
Table III that the identification of the CIR tap vector in the
Hammerstein channel was achieved with high precision even
under the adverse operational condition of OBO = 3 dB and

1.2 . .
true HPA ———
1 | B-spline estimate

0.8

0.6

0.4

Output amplitude

0.2

0
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-0.04
-0.06
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-0.1
-0.12
-0.14
-0.16
-0.18

™

true HPA ———
B-spline estimate

Output phase Shift (rad)

0 0.02 0.04 0.06 0.08 0.1
Input amplitude

0.12 0.14

Fig. 5. Comparison of the HPA’s nonlinearity ¥ ( ) and its B-spline estimate
Wp () averaged over 100 runs, under OBO = 3 dB and Ex/N, =5 dB.

E./N, = 5 dB. Note that under the HPA operational condition
of OBO = 5 dB, the peak amplitude of |x;| was less than 0.09,
while under the condition of OBO = 3 dB, the peak amplitude
of |xx| was less than 0.14. The results of Figs. 5 and 6
clearly demonstrate the capability of the proposed CV B-spline
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TABLE V

IDENTIFICATION RESULTS AVERAGED OVER 100 RUNS FOR THE CIR COEFFICIENT VECTOR i OF THE HAMMERSTEIN
CHANNEL USING THE CV POLYNOMIAL MODELING APPROACH

0 0.02 0.04 0.

06 0.08 0.1 0.12

Input amplitude

Fig. 7.

Tap True E./N, =5dB E./N, =10dB
No. parameter average estimate | standard deviation average estimate | standard deviation
OBO = 3dB
ho 1 1 1
hi | —0.3732 —j0.6123 | —0.3735 —j0.6120 | 9.176e-4, 1.027e-3 | —0.3735 —j0.6120 | 5.160e-4, 5.778e-4
ho 0.3584 4+j0.3676 0.3596 +j0.3680 | 9.723e-4, 8.540e-4 0.3595 +j0.3680 | 5.468e-4, 4.805¢-4
h3 0.3052 +]0.2053 0.3052 +j0.2058 | 9.262e-4, 8.591e-4 0.3053 +j0.2059 | 5.209e-4, 4.831e-4
ha 0.2300 4 j0.1287 0.2310 +j0.1277 | 7.786e-4, 8.603e-4 0.2310 4+ j0.1277 | 4.379e-4, 4.837e-4
hs 0.7071 +j0.7071 0.7072 +j0.7066 | 1.165¢-3, 1.187¢-3 0.7072 +j0.7067 | 6.552e-4, 6.677e-4
he 0.6123 —j0.3732 0.6118 —j0.3721 | 1.052e¢-3, 1.116e-3 0.6118 —j0.3721 | 5.920e-4, 6.278e-4
h7 | —0.3584 4j0.3676 | —0.3582 4 j0.3689 | 9.077e-4, 1.055e-3 | —0.3582 4 0.3689 | 5.105e-4, 5.930e-4
hs | —0.2053 —j0.3052 | —0.2064 —j0.3052 | 9.327e-4, 9.284e-4 | —0.2063 —j0.3052 | 5.245¢-4, 5.221e-4
ho 0.1287 —j0.2300 0.1284 —j0.2291 | 8.057e-4, 8.615e-4 0.1284 —j0.2292 | 4.531e-4, 4.844e-4
OBO =5dB
ho 1 1 1
hi | —0.3732 —j0.6123 | —0.3740 —j0.6121 | 7.360e-4, 8.281e-4 | —0.3741 —j0.6121 | 4.138e-4, 4.657e-4
ha 0.3584 +j0.3676 0.3595 +j0.3681 | 7.778e-4, 6.846e-4 0.3594 +j0.3681 | 4.374e-4, 3.851e-4
h3 0.3052 +j0.2053 0.3058 +j0.2058 | 7.471e-4, 6.809e-4 0.3058 +j0.2058 | 4.202e-4, 3.829¢-4
ha 0.2300 +j0.1287 0.2310 +j0.1271 | 6.298e-4, 6.991e-4 0.2310 +j0.1272 | 3.542e-4, 3.931e-4
hs 0.7071 +j0.7071 0.7074 +)0.7074 | 9.378e-4, 9.594e-4 0.7074 +)0.7074 | 5.273e-4, 5.396¢-4
he 0.6123 —j0.3732 0.6124 —j0.3729 | 8.423e-4, 8.941e-4 0.6125 —j0.3729 | 4.737e-4, 5.028e-4
h7 | —0.3584 4j0.3676 | —0.3583 4 j0.3686 | 7.338e-4, 8.443e-4 | —0.3584 4 j0.3686 | 4.127e-4, 4.748¢e-4
hs | —0.2053 —j0.3052 | —0.2056 —j0.3056 | 7.538e-4, 7.359¢-4 | —0.2056 —j0.3056 | 4.239¢-4, 4.138¢e-4
ho 0.1287 — j0.2300 0.1285 —j0.2297 | 6.469e-4, 6.860e-4 0.1285 —j0.2297 | 3.638e-4, 3.858e-4
1.2 T T 1.2 : T HPA ; —
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Fig. 6. Comparison of the HPA’s nonlinearity ¥'( ) and its B-spline estimate
Wp () averaged over 100 runs, under OBO =5 dB and Ey /N, = 10 dB.

neural network to accurately model the HPA’s nonlinearity,
within the HPA’s operational input range. As a comparison,
the results obtained by applying the CV polynomial-based
modeling approach to identify this Hammerstein channel are

Comparison of the HPA’s nonlinearity W( ) and its polyno-
mial estimate qu( ) averaged over 100 runs, under OBO 3 dB and
Ex/N, =5 dB.

shown in Table V as well as in Figs. 7 and 8. Table V indicates
that the linear subsystem of this Hammerstein channel is also
identified with high precision by the CV polynomial-based
approach, which is expected. By comparing Figs. 7 and 8 with
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Fig. 8. Comparison of the HPA’s nonlinearity W( ) and its polyno-
mial estimate Wp( ) averaged over 100 runs, under OBO = 5 dB and
Ex/N, =10 dB.

Figs. 5 and 6, it can be seen that the CV HPA’s nonlinearity
identified by the polynomial-based approach is less accurate
than the B-spline based approach within the HPA’s operational
input range, which confirms the analysis in Section III-D.

The combined responses of the HPA’s true nonlinearity and
its estimated inversion obtained by the CV B-spline inverting
scheme under the two operating conditions are shown in
Figs. 9 and 10. The results clearly show the capability of the
CV B-spline neural network to accurately model the inversion
of the HPA’s nonlinearity based only on the pseudotrain-
ing data. More specifically, the results of Figs. 9 and 10
clearly indicate that the combined response of the true HPA’s
nonlinearity W ( ) and its estimated inversion 0 p( ) satisfies
Dp(¥ (x)) ~ x that is, the magnitude of the combined
response is Iag(‘l’ (x))| & |x| and the phase shift of the com-
bined response is approximately zero. In other words, [0 s()
is an accurate inversion of W( ). This clearly demonstrates
the optimal robustness property of the B-spline modeling
presented in Section III-D. In contrast, the combined responses
of the HPA’s true nonlinearity and its estimated polynomial
inversion depicted in Figs. 11 and 12 under the two HPA
operating conditions unmistakably show that the polynomial-
based inversion estimate ® p() is much less accurate than the
B-spline based estimate. Evidently, the polynomial modeling
is much more sensitive to the noise contained in the pseudo-
training input {wy}.

The bit error rate (BER) performance of the B-spline-based
NIFDDFE constructed using the estimated CIR, HPA, and
HPA’s inversion is shown in Fig. 13 under the two HPA
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Fig. 9. Combined response of the true HPA and its estimated B-spline
inversion averaged over 100 runs, under OBO =3 dB and E,/N, = 5 dB.
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Fig. 10. Combined response of the true HPA and its estimated B-spline
inversion averaged over 100 runs, under OBO =5 dB and Eyx/N, = 10 dB.

operating conditions. From Fig. 13, it can be seen that four
iterations are sufficient for the NIFDDFE. Since the first
iteration of the NIFDDFE is identical to the NFDE solution
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Fig. 11. Combined response of the true HPA and its estimated polynomial
inversion averaged over 100 runs, under OBO =3 dB and Ey/N, =5 dB.
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Fig. 12.  Combined response of the true HPA and its estimated polynomial
inversion averaged over 100 runs, under OBO =5 dB and Eyx/N, = 10 dB.

without using decision feedback [3], the results of Fig. 10 con-
firm that the NIFDDFE significantly outperforms the NFDE.
The BER performance of the polynomial-based NIFDDFE
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Fig. 13. BER performance of the B-spline-based NIFDDFE under the
two HPA operating conditions of OBO = 3 dB and OBO =5 dB.
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Fig. 14. BER performance comparison of the B-spline-based NIFDDFE and
the polynomial-based NIFDDFE.

again constructed using the estimated CIR, HPA, and HPA’s
inversion are shown in Fig. 14, in comparison with the results
of the B-spline-based NIFDDFE. The results of Fig. 14 clearly
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demonstrates that the B-spline-based NIFDDFE significantly
outperforms the polynomial-based NIFDDFE. In particular,
when the HPA is operating in the severe nonlinear region,
the polynomial-based NIFDDFE exhibits a high error floor,
but this is not the case for the B-spline-based NIFDDFE.

V. CONCLUSION

This paper has evaluated comparative performance of
the CV B-spline neural network and polynomial modeling
approaches applied to the state-of-the-art iterative FD decision
feedback equalization of Hammerstein communication chan-
nels with the nonlinear HPA at the transmitter. The optimal
robustness of the B-spline modeling has been reviewed and
it has been shown that the CV B-spline modeling approach
has a comparable computational complexity with the conven-
tional CV polynomial modeling approach. Simulation results
obtained have verified that the CV B-spline-based NIFDDFE
significantly outperforms the CV polynomial-based NIFDDFE
design of comparable complexity. Our conclusions have thus
demonstrated that the CV B-spline neural network approach
offers a highly effective and accurate means for identifying
and inverting Hammerstein systems.
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