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Monitoring Nonlinear and Non-Gaussian Processes
Using Gaussian Mixture Model-Based Weighted

Kernel Independent Component Analysis
Lianfang Cai, Xuemin Tian, and Sheng Chen, Fellow, IEEE

Abstract— A kernel independent component analysis (KICA)
is widely regarded as an effective approach for nonlinear and
non-Gaussian process monitoring. However, the KICA-based
monitoring methods treat every KIC equally and cannot highlight
the useful KICs associated with fault information. Consequently,
fault information may not be explored effectively, which may
result in degraded fault detection performance. To overcome this
problem, we propose a new nonlinear and non-Gaussian process
monitoring method using Gaussian mixture model (GMM)-based
weighted KICA (WKICA). In particular, in WKICA, GMM is
first adopted to estimate the probabilities of the KICs extracted
by KICA. The significant KICs embodying the dominant process
variation are then discriminated based on the estimated probabil-
ities and assigned with larger weights to capture the significant
information during online fault detection. A nonlinear contri-
bution plots method is also developed based on the idea of a
sensitivity analysis to help identifying the fault variables after
a fault is detected. Simulation studies conducted on a simple
four-variable nonlinear system and the Tennessee Eastman
benchmark process demonstrate the superiority of the proposed
method over the conventional KICA-based method.

Index Terms— Contribution plots, fault detection, fault
identification, Gaussian mixture model (GMM), kernel indepen-
dent component analysis (KICA), process monitoring.

I. INTRODUCTION

MODERN industrial processes are large scale and highly
complex. Efficient and reliable process monitoring

plays a key role in ensuring process safety and product quality.
With wide applications of distributed control systems and
measurement technology, large amounts of data are collected
in today’s process industry, which facilitate rapid development
of data-driven multivariate statistical methods [1]–[7] for
process monitoring. A principal component analysis (PCA),
as a classical multivariate statistical method, has gained
much attention from both academia and industry [8], [9].
It projects the original high-dimensional process variables
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onto a low-dimensional space that retains most of the original
variance to obtain a smaller set of the uncorrelated latent
variables called PCs. Many extensions [10]–[12] of PCA have
been developed to improve process monitoring performance
by taking different process characteristics into consideration.
However, PCA only considers the second-order statistic and
cannot make use of the higher order statistical information in
non-Gaussian process data [13], [14]. Since process data are
usually non-Gaussian distributed as a result of nonlinearity,
operating condition shifts, or other reasons [15], this
limitation of PCA may result in inadequate feature extraction
in non-Gaussian processes. Moreover, in PCA-based fault
detection, the assumption that the process data obey a
multivariate Gaussian distribution is required for determining
the confidence limits of the Hotelling’s T -squared (T 2) and
corresponding squared prediction error (SPE) monitoring
statistics. Since the confidence limits derived based on the
Gaussian assumption are inappropriate for monitoring non-
Gaussian processes, the resulting fault indications from the
constructed T 2 and SPE monitoring charts may be misleading.

More recently, independent component analysis (ICA),
as a newly emerging multivariate statistical approach, has
exhibited tremendous potential for non-Gaussian process
monitoring [4], [5], [16], [17]. In comparison with PCA, ICA
can effectively utilize the higher order information in non-
Gaussian process data and extracts mutually independent latent
variables known as ICs from the original process variables.
Thus, ICs can reveal more useful information than PCs from
non-Gaussian data [13], which is usually the case for industrial
data. In this sense, ICA can be regarded as a useful extension
of PCA. Kano et al. [18] applied ICA to extract the ICs from
process data and monitored each IC for detecting abnormal
operating conditions. Their application results show the supe-
rior monitoring performance of ICA over PCA. To account for
process dynamic characteristics, Odiowei and Cao [19] pro-
posed a state-space ICA method, which adopts the canonical
variate analysis to construct a state space by performing the
dynamic whitening and, then, applies ICA in the obtained state
space to extract the ICs. For monitoring complex processes
with inherent system uncertainty and multiple operating con-
ditions, Rashid and Yu [20] developed an adaptive ICA method
based on the hidden Markov model.

Although ICA has demonstrated its effectiveness in
non-Gaussian process monitoring, it is a linear statistical
method, requiring the assumption that process data have
linear structure. However, in industrial environments, the
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collected process data are usually nonlinear. Therefore, ICA
may fail to conduct effective and adequate feature extraction
from nonlinear process data, which may lead to unsatisfactory
monitoring performance. Lee et al. [14] first introduced the
kernel ICA (KICA) of [21] to tackle the nonlinear process
monitoring problem, and demonstrated that the fault detection
performance achieved by KICA is better than that of ICA.
Essentially, KICA is an integration of kernel PCA (KPCA)
with ICA. Basically, it first projects the original nonlinear
process data onto a high-dimensional linear feature space,
executes the whitening operation in this linear feature space
using KPCA, and, then, employs ICA to extract the kernel
ICs (KICs) in the KPCA-whitened space. Because of the abil-
ity in dealing with nonlinear problems frequently encountered
in process monitoring, KICA has become a hot research topic
in recent years. Taking both the process nonlinearity and
multimodality into consideration, Zhang et al. [4] introduced
the Kronecker product to modify the monitoring matrices, and
proposed a multimode KICA method for process monitoring.
Fan et al. [22] proposed a filtering KICA-PCA method to
improve the process monitoring performance, which applies
genetic algorithm to determine the kernel parameter and
adopts the exponentially weighted moving average technique
to filter the monitoring statistics. To solve the monitoring
problem of nonlinear batch processes, Tian et al. [23] proposed
a multiway KICA method, which unfolds the three-way data
set into the two-way one and, then, selects representative
feature samples to construct the KICA monitoring model.

It can be seen that KICA has been utilized as an effective
means for nonlinear and non-Gaussian process monitoring.
However, the current KICA-based monitoring methods sel-
dom investigate the significance of different KICs to process
monitoring. Since individual KICs have different degrees of
importance, in terms of revealing the process information, how
to appropriately make use of the extracted KICs according
to their related importance is vital for efficient and reliable
process monitoring. Unfortunately, the existing KICA-based
monitoring methods simply use the extracted KICs with equal
weights, and they fail to properly consider the different
importance degrees of the different KICs. Consequently, these
existing methods cannot give sufficient attention to the sig-
nificant KICs associated with useful fault information, which
will inevitably cause the undesirable effect that the fault
information may be submerged in the insignificant KICs. As a
result, the occurring fault may not be detected timely. The
main motivation of this paper is based on the fact that the
fault detection performance can be improved by emphasizing
the important KICs that effectively reflect the process state.
Another critical issue worthy noting is the fault identification
after a fault is detected. The existing KICA-based monitoring
methods generally take the fault detection as the primary
target, but they rarely pay sufficient attention to the fault iden-
tification. However, after fault detection, fault identification
is the crucial step to identify the fault variables, which is
vital for guiding the repair of the detected fault. Therefore,
in order to ensure the process return to the normal operating
state fast and efficient, it is necessary to develop an effective
nonlinear fault identification method naturally associated with

KICA-based process monitoring, which, however, remains to
be a challenging open problem.

Against this background, we propose a new monitoring
method for nonlinear and non-Gaussian processes using
a novel Gaussian mixture model (GMM)-based weighted
KICA (WKICA). As usual, nonlinear process data are
projected onto a high-dimensional linear feature space, and
the KICs are extracted in the feature space by KICA. However,
we employ the GMM [24] to estimate the probability of each
obtained KIC for measuring the individual KIC’s importance.
This enables us to assign different weight values to the
extracted KICs according to their measured importance for
highlighting the important process information when online
fault detection is implemented. A further contribution is to
propose a new nonlinear contribution plots method for the
challenging fault identification problem, which is developed
based on the idea of sensitivity analysis [25]. Two case
studies, involving a simple four-variable nonlinear system and
the Tennessee Eastman (TE) benchmark process, are used
to demonstrate the effectiveness of the proposed nonlinear
monitoring method.

II. CONVENTIONAL MONITORING METHOD USING KICA

KICA contains two essential steps: 1) projecting the nonlin-
ear process data onto a high-dimensional liner feature space
to obtain the feature data and whitening the feature data in
the feature space using KPCA and 2) performing ICA on
the whitened data in the KPCA-whitened space to extract the
KICs features.

In particular, denote xi ∈ R
m , 1 ≤ i ≤ n, as the normal

operating data with m process variables and n samples. The
nonlinear mapping φ(·) : R

m → F projects the nonlinear
data xi for 1 ≤ i ≤ n in the original variable space onto the
high-dimensional linear feature space F to obtain the high-
dimensional feature data φ(xi ) ∈ F , 1 ≤ i ≤ n. Further
denote � = [φ(x1) φ(x2) · · · φ(xn)] ∈ F ×R

n and perform
mean centering on � in the feature space to acquire the zero-
mean feature data �̄ = [φ̄(x1) φ̄(x2) · · · φ̄(xn)] ∈ F × R

n .
Then, KPCA can be adopted to conduct the whitening of �̄.

The covariance matrix C ∈ F × F of the data �̄ may be
estimated by C = (1/n)�̄�̄

T
. A straightforward idea would

be to find the eigenvectors of C for obtaining the PCs in
the feature space. However, the functional form of φ(·) is
unknown, which makes it infeasible by the eigendecompo-
sition of C directly. Hence, kernel trick is introduced to solve
this problem. Define a Gram kernel matrix K ∈ R

n×n as

K = �T �. (1)

The i th-row and j th-column elements of K can be written as

[K ]i, j = φT (xi )φ(x j ) = k(xi , x j ) (2)

where k(xi , x j ) is the kernel function. The choice of k(·, ·)
implicitly determines the nonlinear mapping φ(·) and the
corresponding high-dimensional feature space F . A widely
used kernel function is the Gaussian kernel given by

k(xi , x j ) = exp

(
−‖xi − x j‖2

c

)
(3)
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where c is the kernel width. By using kernel function k(·, ·),
the inner product of two high-dimensional feature data in the
feature space can be calculated in the input space, without
having to perform the nonlinear mapping φ(·) explicitly.

For the zero-mean feature data �̄, the corresponding
Gram kernel matrix K̄ ∈ R

n×n can be obtained based
on K by

K̄ = �̄
T
�̄ = K − 1n K − K1n + 1n K1n (4)

where 1n ∈ R
n×n denotes the matrix whose elements are all

equal to (1/n). Let λi ∈ R, 1 ≤ i ≤ n, be the eigenvalues of K̄
satisfying the condition λ1 ≥ λ2 ≥ · · · ≥ λn , and β i ∈ R

n

for 1 ≤ i ≤ n be the corresponding eigenvectors of K̄ . The
estimate of the covariance matrix C can be expressed as

C = (�̄H�−1/2)
�

n
(�̄H�−1/2)T (5)

where � = diag{λ1, λ2, . . . , λn} ∈ R
n×n denotes the diago-

nal matrix with λ1, λ2, . . . , λn as its diagonal elements and
H = [β1 β2 · · · βn] ∈ R

n×n . From (5), it can be
observed that the a largest eigenvalues of the matrix C are
(λ1/n), (λ2/n), . . . , (λa/n), and the corresponding eigenvec-
tor matrix V = [v1 v2 · · · va] ∈ F × R

a of C is as follows:
V = �̄Ha�

−1/2
a (6)

where �a = diag{λ1, λ2, . . . , λa} and Ha = [β1 β2 · · · βa]
∈ R

n×a . Then, the kernel whitening matrix QF ∈ R
a × F

can be obtained in the feature space F as

QF = diag

{
λ1

n
,
λ2

n
, . . . ,

λa

n

}−1/2

V T = √
n�−1

a HT
a �̄

T
.

(7)

With the kernel whitening matrix QF , the kernel whitened
data Z ∈ R

a×n can be deduced in the feature space as follows:
Z = [z1 z2 · · · zn] = QF �̄ = √

n�−1
a HT

a K̄ (8)

where the covariance matrix of the kernel whitened data Z is
the a × a identity matrix Ia .

After obtaining the kernel whitened data by KPCA in the
feature space, ICA is implemented on the kernel whitened data
to extract the KICs. The maximum non-Gaussianity criterion is
taken as the objective function of ICA, and the corresponding
optimization problem is formulated as follows [26]:
max

ui
J (ui ) = max

ui

(
E

{
G

(
uT

i z
)} − E{G(v)})2

s.t. E
{(

uT
i z

)2} = 1, uT
i ui = 1, and

uT
i ui−1 = uT

i ui−2 = · · · = uT
i u1 = 0 (9)

where z ∈ R
a denotes the vector of a whitened variables,

ui ∈ R
a denotes the i th maximum non-Gaussian direction

related to z, v denotes a Gaussian variable with zero mean
and unit variance, and E{·} denotes the expectation operator,
while G(·) is a nonquadratic function that can be chosen as
G(uT

i z) = − exp(−(uT
i z)2/2). The optimization algorithm for

solving the optimization problem (9), as detailed in [26], has
a fast convergence rate and can be carried out conveniently.
Denote U = [u1 u2 · · · ua]T . It can easily be verified that the

matrix U is an orthogonal matrix. Based on U , the samples
S ∈ R

a×n of the KICs can be extracted according to

S = [s1 s2 · · · sn] = U Z. (10)

Let the current process data collected online be xt ∈ R
m .

The current sample st ∈ R
a of the KICs can be extracted as

zt = QF φ̄(xt ) = √
n�−1

a HT
a �̄

T
φ̄(xt ) = √

n�−1
a HT

a k̄t

(11)

st = U zt (12)

where φ̄(xt ) ∈ F denotes the current zero-mean feature data
in the feature space, and zt ∈ R

a denotes the current value of
the whitened variable, while k̄t = kt − K11 − 1n kt + 1n K 11
with the vector 11 ∈ R

n whose elements are all equal to 1/n,
and kt = [k(x1, xt ) k(x2, xt ) · · · k(xn, xt )]T .

To conduct fault detection based on the extracted KICs by
KICA, two monitoring statistics are constructed [4], [14], [23]

I 2
t = (Ud zt )

T Ud zt = sT
d,t sd,t (13)

Qt = eT
t et = (

zt − UT
d Ud zt

)T (
zt − UT

d Ud zt
)

= (Ue zt )
T Ue zt = sT

e,t se,t (14)

where d < a is the number of the dominant KICs,
sd,t = [s1,t s2,t · · · sd,t ]T = Ud zt with sd,t ∈ R

d contains
the first d extracted KICs, called the dominant KICs at time t ,
and Ud ∈ R

d×a consists of the first d rows of U , while
et = zt − UT

d Ud zt with et ∈ R
a is the residual vector of the

KICA model, se,t = [sd+1,t sd+2,t · · · sa,t ]T = Ue zt with
se,t ∈ R

a−d contains the last a − d extracted KICs, called
the excluded KICs at time t , and Ue ∈ R

(a−d)×a consists of
the last a − d rows of U . The monitoring statistic I 2

t ∈ R is
applied to detect the systematic part of the variation within the
KICA model, while the monitoring statistic Qt ∈ R is used
to detect the nonsystematic part change in the residual of the
KICA model [6], [13]. We determine the hyperdimension a,
the number of dominant KICs d , and the kernel width c
according to the empirical rule suggested in [14].

III. PROPOSED NEW MONITORING METHOD

It is clear from (13) that in the existing KICA-based
monitoring method, each dominant KIC plays equal role in
constructing the monitoring statistic I 2

t . However, when a
particular fault occurs, there usually exist some KICs in the
set of dominant KICs that are specifically effective to detect
this fault, because they are sensitive to the occurring fault and
can react to it fast, while the other dominant KICs may have
slow reaction to the particular fault and are less beneficial
for discovering it. Moreover, different faults have different
relationships with the extracted KICs, and the relationships
between a specific fault and the KICs may also vary with
time. If all the dominant KICs are adopted to detect faults with
the same importance in the monitoring statistics at all time,
the significant fault information in part of the dominant KICs
may be suppressed or hidden by the information less relevant
to the fault containing in the remaining KICs. This can lead
to an unsatisfactory fault detection performance. Similarly, all
the excluded KICs in the monitoring statistic Qt of (14) are
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also treated to be equally important, which may reduce the
effectiveness of this monitoring statistic for fault detection.
Thus, when conducting online monitoring, an effective means
for improving fault detection performance is to emphasize
those KICs that contain useful fault information, while sup-
pressing the KICs with insignificant information, according to
the importance degrees of the KICs.

A. Fault Detection Based on WKICA

In order to make the useful fault information better reflected
in the monitoring statistics, we assign larger weight values to
the KICs that contain significant fault information, but smaller
weight values to the KICs that contain no or insignificant
fault information. With this weighting strategy, the two new
monitoring statistics can be constructed as follows:

W I 2
t = (Wd,t sd,t)

T Wd,t sd,t

with Wd,t = diag{w1,t , w2,t , . . . , wd,t } (15)

W Qt = (We,t se,t )
T We,t se,t

with We,t = diag{wd+1,t , wd+2,t , . . . , wa,t } (16)

where W I 2
t and W Qt are the improved versions of the moni-

toring statistics I 2
t and Qt given in (13) and (14), respectively,

while wi,t is the weight that is determined according to the
importance degree of the i th KIC at the time t .

To effectively measure the importance of the KICs at
any time t , a probability evaluation method based on GMM
is developed. In particular, the two-Gaussian mixture [24]
is adopted to fit the probability density function (pdf) of
each extracted non-Gaussian KIC. GMM as a general and
flexible density estimator is widely adopted for modeling non-
Gaussian distributions from the data sets of realistic industrial
processes [24], [27]–[30]. In particular, the GMM composed
of mixture of two Gaussians, widely used for modeling pdfs
in practice [24], [29], [30], offers a good tradeoff between
the complexity of estimating the parameters of the GMM
and the capability of the GMM for accurately modeling
underlying density. For the parameter estimation problem of
this two-Gaussian mixture, Santamaría et al. [24] specifi-
cally designed an improved expectation–maximization (EM)
algorithm.

Thus, for the i th extracted non-Gaussian KIC si , which
has zero mean and unit variance, we use the following
two-Gaussian mixture to fit the pdf of si:
pi (s) = ξi g0

(
s; σ 2

i,1

) + (1 − ξi )g0
(
s; σ 2

i,2

)
, 1 ≤ i ≤ a (17)

where g0(·; σ 2) denotes the zero-mean Gaussian pdf with
variance σ 2, while the two variances σ 2

i,1 and σ 2
i,2 as well

as the mixing proportion ξi satisfy the conditions{
0 < ξi < 1

ξiσ
2
i,1 + (1 − ξi )σ

2
i,2 = E

{
s2

i

} = 1.
(18)

The parameters ξi , σ 2
i,1, and σ 2

i,2 of this GMM are
estimated using the improved EM algorithm of [24].
Denote the normal operating training samples of the KICs
as S = [s1 s2 · · · sn] with st = [s1,t s2,t · · · sa,t ]T

for 1 ≤ t ≤ n. Then, the parameters of the two-Gaussian
mixture are estimated iteratively according to

ξi
∣∣l+1 = γ ξi

∣∣l + 1 − γ

n

n∑
t=1

�i,t

∣∣∣l (19)

with

�i,t

∣∣∣l = ξi
∣∣l g0

(
si,t ; σ 2

i,1

∣∣l)
ξi

∣∣l g0
(
si,t ; σ 2

i,1

∣∣l) + (
1 − ξi

∣∣l)g0
(
si,t ; σ 2

i,2

∣∣l) (20)

σ 2
i,1

∣∣l+1 = γ σ 2
i,1

∣∣l + (1 − γ )

∑n
t=1 s2

i,t �i,t
∣∣l

∑n
t=1 �i,t

∣∣∣l
(21)

σ 2
i,2

∣∣l+1 = 1 − ξi
∣∣l+1

σ 2
i,1

∣∣l+1

1 − ξi
∣∣l+1 (22)

where ( )|l+1 denotes the value after the (l + 1)th iteration,
while 0.8 < γ < 0.95 is a smoothing factor. In this paper, we
choose γ = 0.85. The iterative procedure is terminated when
both |ξi |l+1 − ξi |l | and |σ 2

i,1|l+1 − σ 2
i,1|l | are smaller than a

predefined threshold, e.g., 10−6.
After the pdf pi (s) of the i th extracted KIC is esti-

mated, the probability of the i th KIC falling into the interval
[si,t − δ/2, si,t + δ/2) can be calculated according to

fi (si,t ) =
∫ si,t +δ/2

si,t −δ/2
pi (s)ds

= ξi

⎛
⎝∫ st,i +δ/2

σi,1

−∞
g0(x; 1)dx −

∫ st,i −δ/2
σi,1

−∞
g0(x; 1)dx

⎞
⎠

+ (1 − ξi )

⎛
⎝∫ st,i +δ/2

σi,2

−∞
g0(x; 1)dx

−
∫ st,i −δ/2

σi,2

−∞
g0(x; 1)dx

⎞
⎠ (23)

where δ is a small positive constant, which may be set to 0.1
without loss of generality, and the integral

∫ x̄
−∞ g0(x; 1)dx is

the value of the zero-mean unit-variance Gaussian cumulative
distribution function (cdf) at the point x̄ . The lookup table
of the standard Gaussian cdf can be stored, and the task
of online computing fi (st,i ) becomes the one that simply
retrieves the four points of the standard Gaussian cdf from the
lookup table. The value of fi (si,t ) is a quantitative measure of
the process operating state associated with si at the time t .
As the correlation usually exists in the samples of si , the
mean of the probabilities fi (si,t ), fi (si,t−1), . . . , fi (si,t−q+1)
over q samples can be calculated according to

f̄i,t = 1

q

q−1∑
j=0

fi (si,t− j ) (24)

to better capture the process operating information associated
with si . Hence, f̄i,t measures the importance of the KIC si at
the time t in revealing the useful fault information.
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According to f̄i,t , the following rule is used to determine
the weights in (15) and (16) at time t :

wi,t =
{

η, if f̄i,t > f̄i,lim

1 − η, if f̄i,t ≤ f̄i,lim
(25)

where 0 < η < 0.5 is a prespecified value, and f̄i,lim is a
probability threshold for determining whether the KIC si is
important for reflecting the useful process information at the
time t . If f̄i,t > f̄i,lim, the sample si,t is considered to be within
the normal operating region and contains no fault information.
Then, a smaller weight value η is given to the sample si,t to
suppress the irrelevant information provided by si,t . On the
other hand, the condition f̄i,t ≤ f̄i,lim suggests that the
sample si,t may be abnormal and contains fault information.
Thus, a larger weight value 1−η is assigned to si,t to highlight
the significant fault information.

An empirical method for choosing the value of η is provided
here. As the false alarm rate, defined as the percentage of the
false alarming samples in all the normal-operation samples, is
vital for measuring the reliability of fault detection [4], [5],
[8], [14], it is taken as the evaluation index for choosing an
appropriate value of η. In particular, it is suggested to set the
value of η to 0.3 initially and to check whether the false alarm
rate of the normal-operation validating data is in the acceptable
confidence range. If the false alarm rate is exceeding the
confidence limit, the value of η is increased or reduced by 	η
sequentially in the range of 0 < η < 0.5 until a modest false
alarm rate is achieved.

The probability threshold f̄i,lim is another important para-
meter that must be chosen appropriately. As the samples
{si,t }n

t=1 under the normal operating condition have affluent
information for describing the normal operating region asso-
ciated with the i th KIC si , the corresponding probabilities
{ f̄i,t }n

t=q can be used to help choosing an appropriate value
for f̄i,lim. In particular, for the given α confidence limit,
(n − q + 1)(1 − α) is rounded toward the nearest integer,
denoted by r , and then, the r th lowest value of { f̄i,t }n

t=q is
chosen as the probability threshold f̄i,lim.

In order to apply W I 2
t and W Qt for determining whether

the process is in the normal operating state or not, i.e., for fault
detection, the corresponding confidence limits must be set.
As no prior knowledge is available regarding the distributions
of the KICs extracted by KICA in the built monitoring statis-
tics, both the α confidence limit W I 2

lim,α for the monitoring
statistic W I 2

t and the α confidence limit W Qlim,α for the
monitoring statistic W Qt are determined by the well-known
kernel density estimation (KDE) method [4], [5], [13], [14].

The proposed fault detection strategy using the GMM-based
WKICA includes the following offline modeling stage.

1) Collect the data from the process under normal operating
conditions, and divide the process data into the training
data set and the validating data set.

2) Based on the training data, construct the KICA model
to obtain the training samples of the KICs.

3) Fit the pdf of each KIC by using the GMM (17) and
estimate the GMM parameters based on the training
samples of each KIC using (19)–(22).

4) Calculate the probabilities of the training samples of
each KIC using (23) and (24), and determine the prob-
ability threshold for each KIC.

5) Set the value of η in (25) to 0.3 initially.
6) Obtain the weight values for the training samples of each

KIC using (25).
7) Use the obtained weight values in (15) and (16) to

calculate the two monitoring statistics for the training
data and determine the corresponding α confidence
limits using the KDE method.

8) Based on the validating data, use the built KICA model
to obtain the validating samples of the KICs.

9) Calculate the probabilities of the validating samples of
each KIC using (23) and (24).

10) Obtain the weight values for the validating samples of
each KIC using (25).

11) Use the obtained weight values in (15) and (16) to
calculate the two monitoring statistics for the validating
data. Compare the calculated monitoring statistics with
their corresponding confidence limits to obtain their
associated false alarm rates.

12) For each monitoring statistic, if the corresponding false
alarm rate exceeds the prespecified reasonable confi-
dence range, the value of η is increased or reduced by
	η within the range of 0 < η < 0.5, and go back to
Step 6); otherwise, the modeling stage is completed.

The proposed fault detection strategy using the GMM-based
WKICA includes the following online fault detection stage.

1) Take the current data measurement from the process
under monitoring.

2) Use the built KICA model to obtain the current samples
of the KICs.

3) Calculate the probability of the current sample of each
KIC using (23) and (24).

4) Obtain the weight value for the current sample of each
KIC using (25).

5) Use the current weight values in (15) and (16) to
calculate the current two monitoring statistics.

6) For each current monitoring statistic, compare it with
its confidence limit. If the confidence limit is exceeded,
proceed to the next step; otherwise, go back to Step 1)
for the next measurement.

7) Check whether the confidence limit is exceeded consec-
utively for the predefined number of samples. If yes,
an abnormal process behavior is detected, and an alarm
should be given; otherwise, go back to Step 1) for the
next measurement.

In the above procedure, the training data, the validating data,
and the current monitoring process data are all normalized with
the means and variances of the process variables calculated
using the training data.

Remarks: Currently, there exist two fault detection
methods [17], [31] using the KDE-based weighted
KPCA (WKPCA) and the KDE-based weighted ICA (WICA),
respectively. In the WKPCA, the weight allocation is
conducted according to the importance of each KPC
evaluated according to the pdf of the corresponding KPC,
which is estimated using KDE. Similarly, the weight allocation
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TABLE I

COMPARISON OF THE ONLINE COMPUTATIONAL LOADS

in the WICA is conducted according to the importance of
each IC evaluated by the pdf of the corresponding IC, also
estimated by KDE. However, the WKPCA is only applicable
for handling Gaussian data with a nonlinear structure, while
the WICA is only suitable for dealing with non-Gaussian
data with a linear structure. By contrast, our proposed
WKICA is capable of effectively dealing with nonlinear and
non-Gaussian data, which are more common in real-world
industrial environments and more challenging.

Both the WKPCA and the WICA adopt KDE to esti-
mate pdf. KDE uses all the n training samples to estimate
the pdf of a new sample online. In general, the training data
size n should be sufficiently large in order to guarantee the
accuracy of density estimation. Thus, the complexity of online
calculating the corresponding probability weight values based
on the KDE approach may become unacceptably high. Various
sparse KDE methods [32]–[34] may be adopted instead to
provide sparse estimates of pdf in order to alleviate the
high online computation burden. From this viewpoint, our
GMM-based pdf estimation, which uses the two-Gaussian
mixture to estimate pdf, minimizes the online computational
complexity in a real-time fault detection application, while
having a desired capability of modeling non-Gaussian pdf.

1) Online Fault Detection Complexity: The online compu-
tational loads required by the KICA-based and WKICA-based
methods to calculate their corresponding monitoring statistics
are summarized in Table I, where it is seen that the online
computational load for W I 2

t and W Qt is slightly higher
(a multiplications more) than that of I 2

t and Qt . For the
WKICA-based method, additionally, the weights used in
W I 2

t and W Qt need to be determined online based on (23).
Since the values of standard Gaussian cdf are calculated offline
and stored in the memory space, the online computing of the
probabilities fi (si,t ) for 1 ≤ i ≤ a becomes retrieving the
values from the memory, which is extremely fast.

B. Fault Identification Based on Nonlinear Contribution Plots

After a fault is detected, it is the task of fault identification
to identify fault variables in order to find the root cause of the
fault. This task is very challenging, and a few existing works
discussed the methods of identifying faults. In particular, there
is hardly any fault identification research for the KICA-based
monitoring methods owing to the usage of implicit nonlinear
transformation. Based on the idea of a sensitivity analysis [25],
we develop a novel nonlinear contribution plots method for
fault identification. In particular, define

CW I 2
t

= ∂W I 2
t

∂xt
◦ xt (26)

CW Qt = ∂W Qt

∂xt
◦ xt (27)

where CW I 2
t

∈ R
m and CW Qt ∈ R

m represent the process
variables’ contributions to W I 2

t and W Qt , respectively, while
◦ denotes the Hadamard product. The explicit expressions
of CW I 2

t
and CW Qt are given in the Appendix.

First, it is the absolute value of each process variable’s
contribution that reflects the influence of a process variable
to W I 2

t and W Qt [10], while its sign is unimportant. Second,
the contributions of different process variables have different
means and variances. Therefore, normalization is necessary
to achieve accurate and reliable fault identification results.
We suggest to use the mean and variance of each process
variable’s contribution sequence under the normal operating
condition to scale the current contribution of each process
variable in online operation. Third, process variables’ contri-
butions are frequently affected by many uncertainties, such as
disturbances or measurement noises. The average contribution
over a period of L fault samples provides a more robust
and accurate indication. Based on the above analysis, the
fault identification procedure using the proposed nonlinear
contribution plots method can now be summarized as follows.

1) Calculate the process variables’ contribution series
{CW I 2

t
}n
t=1 and {CW Qt }n

t=1 based on the normal oper-
ating data, and compute the mean and variance of each
process variable’s contribution.

2) Suppose that a fault is detected by the monitoring
statistics W I 2

t and W Qt at sample times t1 and t2,
respectively. Let tmin = min{t1, t2}.

3) Calculate the process variables’ contribution series
{CW I 2

t
}tmin+L−1
t=tmin

and {CW Qt }tmin+L−1
t=tmin

, and scale them
with the means and variances obtained in Step 1).
Denote the absolute values of the normalized contribu-
tion series by {|C̄W I 2

t
|}tmin+L−1

t=tmin
and {|C̄W Qt |}tmin+L−1

t=tmin
.

4) The means of {|C̄W I 2
t
|}tmin+L−1

t=tmin
provide the contribu-

tions of the process variables to the monitoring statistic
W I 2

t , while the means of {|C̄W Qt |}tmin+L−1
t=tmin

provide the
contributions of the process variables to the monitoring
statistic W Qt .

IV. SIMULATION STUDIES

The performance of the proposed GMM-based WKICA
monitoring scheme was compared with that of the conven-
tional KICA method in the two case studies.

A. Four-Variable System

A nonlinear and non-Gaussian process was simulated by the
following four-variable nonlinear system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1

2
b

x2 = −2b2 + 0.2

x3 = 1

5
exp(b + 1) − 0.56

x4 = ln(b2 + 1)

4 ln(2)
+ 1

2
b

(28)

where x = [x1 x2 x3 x4]T ∈ R
4 contained the four nonlinear

and non-Gaussian output variables measured for fault detection
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Fig. 1. (a) I 2
t monitoring chart and (b) Qt monitoring chart of the

KICA method for the four-variable system under fault pattern 1.
Dashed line: 99% confidence limit for the corresponding monitoring statistic.

and fault identification, while b = 0.3b0 and b0 was the
non-Gaussian input variable whose pdf was given by

p(b0) = ξg0
(
b0; σ 2

1

) + (1 − ξ)g0
(
b0; σ 2

2

)
(29)

with ξ = 0.2, σ 2
1 = 0.09, and σ 2

2 = 1.2275. 1500 samples
collected under the normal operating condition were divided
into the training set of 1000 samples and the validation set of
500 samples. The following two fault cases were investigated.

1) Fault 1: A step change in the process variable x4 with
the step changing value of −0.15.

2) Fault 2: A ramp change in the process variable x1 with
the ramp changing rate of 0.0005.

For each fault pattern, 1000 samples were generated with the
fault introduced at the 101th sample.

The fault detection performance was measured by the fault
detection time and fault detection rate. To decrease the risk
of false alarm, a fault is detected only when eight consecutive
monitoring statistic values exceed the confidence limit, and the
fault detection time is then defined as the first sample at which
the confidence limit is exceeded. The fault detection rate is
defined as the ratio of the fault samples whose monitoring
statistic values exceed the confidence limit to all the fault
samples [7], [10], [14], [16], [19]. The hyperdimension a,
the number of dominant KICs d , and the kernel width c
were found according to the empirical rule suggested in [14].
In particular, a was determined as the number of the eigen-
values of the matrix K̄ , which satisfies the condition

λi
/ n∑

j=1

λ j > 0.0001, i ∈ {1, 2, . . . , n}. (30)

Fig. 2. (a) W I 2
t monitoring chart and (b) W Qt monitoring chart of

the WKICA method for the four-variable system under fault pattern 1.
Dashed line: 99% confidence limit for the corresponding monitoring statistic.

For both the conventional KICA and proposed
WKICA methods, by setting c to 8000, a became close
to the number of the measured output variables m, and thus,
a = 4 was chosen. The value of d = 2 was determined
according to the cutoff method using the average eigenvalue
of {λi }n

i=1. Thus, the first two KICs s1 and s2 were used in the
I 2
t and W I 2

t monitoring statistics, while the other two KICs
s3 and s4 were used in the Qt and W Qt monitoring statistics.
The α = 99% confidence limit was adopted as the alarming
threshold. For the both monitoring statistics W I 2

t and W Qt

of the WKICA-based method, the parameter η in (25) was
set to 0.3, and the corresponding false alarm rates calculated
based on the validation data set of the normal operation1 are
shown in Table II. It can be seen that the false alarm rates of
each monitoring method are all lower than 1% and, thus, are
acceptable for the given 99% confidence limit. This suggests
that η = 0.3 is appropriate for both W I 2

t and W Qt in this
case, and there is no need to search for other values for η.

The fault detection results for the first fault pattern using
the two monitoring methods are shown in Figs. 1 and 2,
respectively, where the values of a monitoring statistic are
plotted by solid line, while the corresponding confidence
limit is depicted by dashed line. All the monitoring statistic
values are normalized by the corresponding confidence limit.
It can be seen from Fig. 1(a) that after the occurrence of the

1Under the normal operating case, there is no fault occurring. The WKICA
method will not find any KIC associated with fault information, and conse-
quently, it will automatically assign the equal low weight η to all the extracted
KICs, i.e., it will use an equal weighting strategy similar to the KICA method.
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TABLE II

FALSE ALARM RATES (%) ASSOCIATED WITH THE TWO MONITORING
STATISTICS OF EACH METHOD FOR THE VALIDATION DATA SET OF THE

FOUR-VARIABLE SYSTEM, GIVEN THE 99% CONFIDENCE LIMIT

Fig. 3. (a) I 2
t monitoring chart and (b) Qt monitoring chart of

the KICA method for the four-variable system under fault pattern 2.
Dashed line: 99% confidence limit for the corresponding monitoring statistic.

fault at the 101th sample, the values of the I 2
t monitoring

statistic are much lower than the corresponding confidence
limit for most of the fault samples, and the I 2

t monitoring
statistic fails to detect this fault with a fault detection rate
of only 0.89%. By contrast, as shown in Fig. 2(a), the W I 2

t
monitoring statistic can effectively detect this fault at the
104th sample with a fault detection rate of 99.67%. Although
both the Qt and W Qt monitoring charts can detect this
fault immediately with a 100% fault detection rate, the W Qt

monitoring statistic exceeds its confidence limit with much
larger margin than the Qt monitoring statistic, indicating
that the W Qt monitoring statistic is much more reliable in
detecting this fault.

The fault detection performances of the two monitoring
methods under fault pattern 2 are shown in Figs. 3 and 4,
respectively. Clearly, the WKICA method has a superior fault
detection performance over the KICA method for this fault
pattern. In particular, the two monitoring charts of the WKICA
method are able to detect the occurrence of the fault much
earlier than the two corresponding monitoring charts of the
KICA method. Moreover, the W I 2

t monitoring chart attains

Fig. 4. (a) W I 2
t monitoring chart and (b) W Qt monitoring chart of

the WKICA method for the four-variable system under fault pattern 2.
Dashed line: 99% confidence limit for the corresponding monitoring statistic.

a 70% fault detection rate, compared with the 30% fault
detection rate of the I 2

t monitoring chart, while the W Qt

monitoring chart achieves a 89.67% fault detection rate, in
comparison with the 72.89% fault detection rate of the Qt

monitoring chart.
Fig. 5 plots the estimated probabilities f̄i,t , averaged over

q = 8 samples, of the KICs’ samples si,t for 1 ≤ i ≤ 4,
where the blue solid curve denotes the estimated probabilities
of the KICs’ samples from the training data, and the magenta
dotted-dashed curve represents the estimated probabilities
of the KICs’ samples from fault pattern 2 data, while the
red dashed line is the probability threshold f̄i,lim for the
corresponding KIC. From Fig. 5, it can be seen that almost
all the estimated probabilities of the KICs’ samples for the
training data set are above the corresponding probability
thresholds, indicating that the KICs’ samples are not
associated with a fault, and therefore, the corresponding
weights for the KICs’ samples in constructing the two
monitoring charts take a lower value of η according to (25).
By contrast, the magenta dotted-dashed curves in Fig. 5
indicate that the estimated probabilities of the different
KICs’ samples fall below the corresponding probability
thresholds after certain different sample numbers, which are
the times that the four KICs can effectively reveal the fault
information. In particular, in the monitoring statistic W I 2

t ,
the dominant KICs s1 and s2 can reflect the occurring fault
information from the 171th and 124th samples, respectively,
while in the monitoring statistic W Qt , the excluded
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Fig. 5. Estimated f̄i,t for the samples of si . (a) i = 1, (b) i = 2, (c) i = 3,
and (d) i = 4 for the training data (blue solid curve) and the data of fault
pattern 2 (magenta dotted-dashed curve). Dashed line: probability threshold
for the corresponding KIC.

KICs s3 and s4 can reveal the occurring fault information
from the 155th and 180th samples, respectively. Accordingly,
a higher weight 1 − η is assigned to the corresponding KICs’
samples according to their online estimated probabilities.

After a fault is detected, it is important to identify the fault
variables that cause the abnormal condition. The nonlinear

Fig. 6. Fault identification results using our nonlinear contribution plots
method for the four-variable system under fault pattern 1. (a) Process
variables’ contributions to W I 2

t . (b) Process variables’ contributions to W Qt .

fault identification is an unsolved open problem, especially
for the nonlinear ICA-based monitoring methods with a kernel
technique. Here, we demonstrate the potential of our proposed
nonlinear contribution plots method in fault identification. For
fault pattern 1, the W I 2

t and W Qt monitoring charts detected
the fault at the 104th and 101th samples, respectively. Accord-
ingly, we set tmin = 101 and averaged the contribution values
over L = 2 fault samples. The fault identification results using
the proposed contribution plots method are shown in Fig. 6,
where it can be clearly seen that the fourth process variable
has the largest contribution values to both W I 2

t and W Qt . This
indicates that x4 is the most likely process variable that causes
the occurring fault. With this vital information, an engineer
with the knowledge of the plant may then be able to identify
the root cause of the occurring fault.

For fault pattern 2, the W I 2
t and W Qt monitoring statistics

indicated a fault at the 388th and 191th samples, respec-
tively. Thus, we set tmin = 191, and again chose L = 2.
The corresponding fault identification results obtained by our
contribution plots method are demonstrated in Fig. 7. It can
be clearly seen that the largest contributions in the both
contribution plots come from the first process variable, and
therefore, x1 is correctly located as the fault variable.

B. Tennessee Eastman Industrial Process

The TE industrial process [35] is a well-known benchmark
process for testing process monitoring methods [1], [5],
[7]–[10], [14], [17], [19], [20], [22]. The flowchart of the
TE process is shown in Fig. 8, which consists of five major
units, a reactor, a stripper, a condenser, a compressor, and a
separator. There are totally 52 measured process variables for
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Fig. 7. Fault identification results using our nonlinear contribution plots
method for the four-variable system under fault pattern 2. (a) Process
variables’ contributions to W I 2

t . (b) Process variables’ contributions to W Qt .

Fig. 8. Flowchart of the TE industrial process.

monitoring this process, including 11 manipulated variables,
22 continuous process measurements, and 19 composition
measurements. All the measured process variables are
listed in Table III. A simulator for the TE process coded
by FORTRAN is provided by http://brahms.scs.uiuc.edu.
It allows 21 preprogrammed process faults, which are listed
in Table IV. Each fault pattern contains 960 samples with
a sampling interval of 3 min, and the corresponding fault
is introduced at the 160th sample. The TE simulator also
produces two normal operating data sets with 480 samples
and 960 samples, respectively.

The normal operating data set with 960 samples was
used for training, while the other normal operating data
set with 480 samples was adopted as the validating set
for testing the false alarm rate of the built model. The
hyperdimension a, the number of the dominant KICs d ,
and the kernel width parameter c were determined based
on the same empirical method used for the first case study,

TABLE III

MEASURED PROCESS VARIABLES OF THE TE PROCESS

TABLE IV

FAULT PATTERNS OF THE TE PROCESS

yielding c = 6000, a = 54, and d = 42. Thus, the
first 42 KICs si , 1 ≤ i ≤ 42, were used in constructing the
I 2
t and W I 2

t monitoring charts, while the last 12 KICs si ,
43 ≤ i ≤ 52, were used in computing the Qt and W Qt

monitoring statistics. Again the α = 99% confidence limit was
adopted as the alarm threshold. For the both W I 2

t and W Qt
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TABLE V

FALSE ALARM RATES (%) ASSOCIATED WITH THE TWO MONITORING
STATISTICS OF EACH METHOD FOR THE TE PROCESS,

GIVEN THE 99% CONFIDENCE LIMIT

Fig. 9. (a) I 2
t monitoring chart and (b) Qt monitoring chart of the KICA

method for the TE process under fault pattern 4. Dashed line: 99% confidence
limit for the corresponding monitoring statistic.

monitoring statistics, the parameter η was set to 0.3, and
the estimated probabilities were averaged over q = 8 KICs’
samples. The false alarm rates of W I 2

t and W Qt calculated
based on the validating data are listed in Table V, together
with the false alarm rates of the KICA method. Given the
99% confidence limit, the false alarm rates of the both
monitoring methods can be regarded as within the acceptable
confidence range. This suggested that η = 0.3 is appropriate
for both W I 2

t and W Qt .
The monitoring results under fault pattern 4 are given

in Figs. 9 and 10, respectively, for the conventional KICA
method and the proposed WKICA method. Comparing
Fig. 9(a) with Fig. 10(a), it can be seen that after the fault
occurred at the 160th sample, the I 2

t monitoring statistic’s
values do not increase, but fluctuate around the confidence
limit, while almost all the W I 2

t monitoring statistic’s values
increase to well above the confidence limit. Thus, the W I 2

t
monitoring chart can detect this fault much more confidently
and reliably than the I 2

t monitoring chart. Similarly, observe
from Figs. 9(b) and 10(b) that, although both the Qt and W Qt

monitoring charts can detect the fault at the 163rd sample

Fig. 10. (a) W I 2
t monitoring chart and (b) W Qt monitoring chart

of the WKICA method for the TE process under fault pattern 4.
Dashed line: 99% confidence limit for the corresponding monitoring statistic.

with fault detection rates close to 100%, the W Qt monitoring
statistic exceeds its confidence limit with much larger margin
than the Qt monitoring statistic, indicating that the W Qt

monitoring statistic provides a more reliable detection of this
fault.

The fault detection performances of our WKICA method
are compared with those of the KICA method for the
18 representative fault patterns of the TE process in
Tables VI and VII, respectively, in terms of a fault detection
time and a fault detection rate. Fault patterns 3, 9, and 15
have been testified to be extremely difficult for the data-
driven monitoring methods due to the reason that there are
no observable changes in the mean or the variance of these
fault data sets [35]. Therefore, we excluded these three fault
patterns in our investigation. From Table VI, it is seen that the
both methods achieve similar fault detection times for most
of the 18 fault patterns, but there are three fault patterns for
which the monitoring charts of our WKICA method detect the
occurrence of fault much earlier than the monitoring charts
of the KICA method. A fault detection time does not tell
how reliable the detection is, and for measuring the reliability
of fault detection, we need to turn to a fault detection rate.
Observe from Table VII that the WKICA method achieves
better fault detection rates than the KICA method for one
third of the fault patterns, while for the other two thirds of the
fault patterns, both the methods attain the similar performance.
It can be seen that the proposed WKICA-based method is
more powerful than the KICA-based method, particularly for
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TABLE VI

FAULT DETECTION TIMES (SAMPLE NUMBER) ACHIEVED BY THE
KICA-BASED AND WKICA-BASED METHODS FOR 18 FAULT

PATTERNS OF THE TE PROCESS

TABLE VII

FAULT DETECTION RATES (%) ACHIEVED BY THE KICA-BASED
AND WKICA-BASED METHODS FOR 18 FAULT PATTERNS

OF THE TE PROCESS

detecting complex faults, including fault patterns 10, 11, 16,
17, 19, 20, and 21.

The potential of the proposed nonlinear contribution plots
method for fault identification was then demonstrated using
fault patterns 6 and 11. For fault pattern 6, both W I 2

t and W Qt

detect the fault at the 161th sample. Hence, we set tmin = 161,
while L was set to 2. Fig. 11 shows the fault identification
results for fault pattern 6, where it can be clear seen that the
1st and 44th process variables have the highest contributions
to this fault. Fault pattern 6 is a step-type fault, which is
caused by the component A feed loss in the stream 1, as shown
in Table IV. Referring to the process variable description of
the TE process given in Table III, the 1st variable is the
component A feed in the stream 1 and the 44th variable is
the component A feed flow valve in the stream 1. Thus, the
contribution plots of Fig. 11 correctly identify the two process
variables that are closely associated with the occurring fault,

Fig. 11. Fault identification results using our nonlinear contribution plots
method for the TE process under fault pattern 6. (a) Process variables’
contributions to W I 2

t . (b) Process variables’ contributions to W Qt .

Fig. 12. Fault identification results using our nonlinear contribution plots
method for the TE process under fault pattern 11. (a) Process variables’
contributions to W I 2

t . (b) Process variables’ contributions to W Qt .

and therefore, they provide the direct and effective guidance
for locating the fault source.

For fault pattern 11, both the W I 2
t and W Qt monitoring

statistics detect the fault at the 171th sample. Thus, we set
tmin = 171, and chose again L = 2. The fault identification
results are shown in Fig. 12, where it can be observed that the
two largest contributions in the both contribution plots come
from the 9th and 51th process variables. The 9th variable is
the reactor temperature and the 51th variable is the reactor
cooling water flow valve. Actually, fault pattern 11 is caused
by the random variation of the reactor cooling water inlet tem-
perature, according to the fault description given in Table III.
However, the reactor cooling water inlet temperature is not
contained in the set of the TE process’s monitored variables.
From the underlying TE process knowledge, it can be easily
found that the reactor cooling water inlet temperature is closely
connected with the reactor temperature and the reactor cooling
water flow valve. Thus, by indicating that the 9th and 51th
process variables are the main contributors to the occurring
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fault, the contribution plots of Fig. 12 provide the plant
operator who has the underlying plant knowledge with the
valuable information to locate the root of the fault.

V. CONCLUSION

A monitoring method for nonlinear and non-Gaussian
processes has been proposed using the novel GMM-based
WKICA approach. In our WKICA method, KICA is used
to extract the KICs from the process data. However, unlike
the existing KICA method, the pdfs of the extracted KICs
are estimated using the two-Gaussian mixture, to provide
the estimated probabilities of the KICs’ samples online for
highlighting significant fault information and suppressing the
information irrelevant to the occurring fault. Simulation results
obtained on the four-variable nonlinear and non-Gaussian
system and the TE benchmark process have demonstrated
that the proposed GMM-based WKICA method outperforms
the existing state-of-the-art KICA method, in terms of a
false detection time and a fault detection rate. We have also
investigated the challenging problem of fault identification
for kernel-based methods, and have proposed a nonlinear
contribution plots method. The potential of this contribu-
tion plots method in identifying the underlying fault vari-
ables has been demonstrated in the two case studies. As a
concluding remark, we point out that the determination of
the optimal kernel width for nonlinear process monitoring
and fault identification is two open problems. Further works
are warranted to provide theoretical direction and practical
implementation.

APPENDIX

Noting sd,t = Ud
√

n�−1
a HT

a k̄t , the monitoring statistic
W I 2

t can be expressed as

W I 2
t = k̄

T
t M1 k̄t (31)

where

M1 = n Ha�
−1
a UT

d diag
{
w2

1,t , . . . , w
2
d,t

}
Ud�−1

a HT
a . (32)

Similarly, since se,t = Ue
√

n�−1
a HT

a k̄t , we have

W Qt = k̄
T
t M2 k̄t (33)

where

M2 = n Ha�−1
a UT

e diag
{
w2

d+1,t , . . . , w
2
a,t

}
Ue�

−1
a HT

a . (34)

By substituting (31) into (26), we obtain

CW I 2
t

=
⎛
⎝

⎛
⎝

[
∂W I 2

t

∂ k̄t
· · · ∂W I 2

t

∂ k̄t

]T

◦
[

∂ k̄t

∂x1,t
· · · ∂ k̄t

∂xm,t

]T
⎞
⎠ × onen

⎞
⎠ ◦ xt

=
⎛
⎝

⎛
⎝[2M1 k̄t · · · 2M1 k̄t ]T

◦
[

∂ k̄t

∂x1,t
· · · ∂ k̄t

∂xm,t

]T
⎞
⎠ × onen

⎞
⎠ ◦ xt (35)

where onen denotes the n × 1 column vector whose elements
are all equal to one, while xt = [x1,t x2,t · · · xm,t ]T is the
current process variable vector.

Similarly, substituting (33) into (27) leads to

CW Qt =
⎛
⎝

⎛
⎝[2M2 k̄t · · · 2M2 k̄t ]T

◦
[

∂ k̄t

∂x1,t
· · · ∂ k̄t

∂xm,t

]T
⎞
⎠ × onen

⎞
⎠ ◦ xt . (36)

The derivatives (∂ k̄t/∂x j,t), 1 ≤ j ≤ m, are given by

∂ k̄t

∂x j,t
= ∂(kt − K11 − 1n kt + 1n K 11)

∂x j,t

= (In − 1n)
∂kt

∂x j,t
(37)

in which

∂kt

∂x j,t
=

[
exp

(
−‖x1 − xt‖2

c

)(−2

c

)
(x j,t − x j,1)

· · · exp

(
−‖xn − xt‖2

c

) (−2

c

)
(x j,t − x j,n)

]T

.

(38)
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