
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2025 1393

Multi-User Oriented Data Sharing Scheme for
Internet of Medical Things Based on Dual

Cryptography Mechanism
Guiping Zheng , Bei Gong , Muhammad Waqas , Senior Member, IEEE,

Iftekhar Ahmad , Senior Member, IEEE, Hisham Alasmary , Member, IEEE, and Sheng Chen , Life Fellow, IEEE

Abstract—Encrypted sharing of Internet of Medical Things
(IoMT) data is essential for facilitating collaboration, safeguarding
patient privacy, and advancing clinical research. However, exist-
ing encryption schemes face numerous challenges in multi-user
environments. Traditional proxy re-encryption requires exclusive
ciphertext for each user, which is evidently unsuitable for IoMT’s
multi-user scenarios. Meanwhile, attribute-based encryption pro-
vides flexible data access control, but its complex computations
and high resource demands limit its use in large-scale IoMT en-
vironments. Additionally, challenges like single-point failure and
redundant backups emerge in ciphertext storage. To address these
challenges, we propose a dual-cryptography mechanism integrat-
ing enhanced proxy re-encryption and attribute-based encryption.
Our scheme enables unified ciphertext access for authorized users
while applying attribute encryption exclusively to small data keys.
To mitigate potential data loss from storage server failures, we
propose a decentralized ciphertext storage and recovery mecha-
nism with verifiable secret sharing. Furthermore, we implement
decentralized ciphertext storage using verifiable secret sharing, en-
suring recoverability from server failures. Formal analysis proves
confidentiality under the random oracle model. Experimental re-
sults demonstrate high security strength, computational efficiency,
and robustness. The solution prevents single-point failures, resists
collusion attacks, and maintains traceability through blockchain-
integrated audit trails.

Received 19 May 2024; revised 11 August 2025; accepted 5 October 2025.
Date of publication 8 October 2025; date of current version 10 December
2025. The authors extend their appreciation to the Deanship of Scientific
Research at King Khalid University for funding this work through Large Groups
Project under Grant RGP.2/637/46. The authors extend their appreciation to the
Deanship of Scientific Research at King Khalid University for funding this
work through Large Groups Project under Grant RGP.2/637/46. This work was
supported in part by the National Key Research and Development Program
of China under Grant 2019YFB2102303 and in part by the National Natural
Science Foundation of China under Grant 61971014 and Grant 11675199.
Recommended for acceptance by Y. Wang. (Corresponding author: Muhammad
Waqas.)

Guiping Zheng and Bei Gong are with the College of Computer Sci-
ence, Beijing University of Technology, Beijing 100124, China (e-mail:
zhenggp@emails.bjut.edu.cn; gongbei@bjut.edu.cn).

Muhammad Waqas is with the School of Computing and Mathematical
Sciences, Faculty of Engineering and Science, University of Greenwich, SE10
9LS London, U.K., and also with the School of Engineering, Edith Cowan
University, Perth 6007 WA, Australia (e-mail: engr.waqas2079@gmail.com).

Iftekhar Ahmad is with the School of Engineering, Edith Cowan University,
Perth 6007 WA, Australia (e-mail: i.ahamad@ecu.edu.au).

Hisham Alasmary is with the Department of Computer Science, King Khalid
University, Abha 62521, Saudi Arabia (e-mail: alasmary@kku.edu.sa).

Sheng Chen is with the School of Electronics and Computer Science, Univer-
sity of Southampton, SO17 1BJ Southampton, U.K., and also with the Faculty
of Information Science and Engineering, Ocean University of China, Qingdao
266100, China (e-mail: sqc@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/TSUSC.2025.3619389

Index Terms—Data encryption, data sharing, decentralized
storage, Internet of Medical Things, privacy protection.

I. INTRODUCTION

THE Internet of Medical Things (IoMT) is an extension
of Internet of Things (IoT) technology applied in medical

scenarios [1], [2]. It involves connecting various sensors and
medical terminals to collect, transmit, process, and analyze med-
ical data, aiming to enhance the efficiency of medical services
and hospital operational management capabilities [5]. In IoMT,
patients’ personal health data, medical records, etc., are digitized
and stored in cloud servers for access and analysis by doctors,
patients, and other healthcare practitioners [6], [7]. This model of
data sharing brings great convenience to the healthcare field [3],
[4]. However, with the popularity of terminal devices and the
increase in data volume, IoMT data faces challenges in privacy
protection [8], [9]. Medical data contains a large amount of
sensitive information, such as personal identity data, financial
data, communication data, medical health data, etc. Once leaked
or tampered with, it can cause serious harm to patients’ privacy
and rights. Therefore, ensuring the integrity, confidentiality, and
availability of data during the sharing process is crucial [10]. In
this context, the encryption process and storage stage become
key components of data security sharing, directly affecting the
security of data transmission and storage, as well as healthcare
information privacy protection and compliance. To ensure the
confidentiality and integrity of data during transmission, Raghav
et al. [11] and Muthukumaran et al. [12] proposed data security
sharing schemes based on proxy re-encryption (PRE) mecha-
nisms. The basic principle is for a third-party proxy to convert
data owner’s ciphertext into user’s ciphertext. However, in IoMT
data sharing, which involves numerous doctors, patients, and
other healthcare professionals, their schemes require providing
exclusive transformed ciphertext for each user [13], [14]. This
increases system overhead and also fails to achieve fine-grained
access control. To tackle this issue, Das et al. [15] proposed an
Ciphertext-policy attribute-based encryption (CP-ABE) scheme
for healthcare data sharing, achieving flexible and fine-grained
data access control suitable for multi-user scenarios. Neverthe-
less, the computational complexity of this scheme increases
system burden, especially in large-scale IoMT environments.
Additionally, changes in user attributes require extra mecha-
nisms to maintain data accessibility [16].

2377-3782 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0001-5239-5150
https://orcid.org/0000-0003-3188-3531
https://orcid.org/0000-0003-0814-7544
https://orcid.org/0000-0003-4441-9631
https://orcid.org/0000-0002-6482-3968
https://orcid.org/0000-0001-6882-600X
mailto:zhenggp@emails.bjut.edu.cn
mailto:gongbei@bjut.edu.cn
mailto:engr.waqas2079@gmail.com
mailto:i.ahamad@ecu.edu.au
mailto:alasmary@kku.edu.sa
mailto:sqc@ecs.soton.ac.uk

1394 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2025

Moreover, ensuring the secure storage of encrypted data is an
indispensable aspect of data privacy [17], [18], [19]. Centralized
storage poses risks of single point of failure leading to data
leakage and loss, while backup storage incurs additional costs.
Therefore, Wang et al. [20] proposed a privacy-preserving cloud
storage scheme based on fog computing. They utilized the
Hash-Solomon encoding algorithm for data grouping, storing a
portion of the data locally or on fog servers and the remainder on
cloud servers. This setup prevents cloud servers from accessing
all data, thus protecting data owners’ privacy. However, in this
scheme, if a storage server is tampered with or damaged, data
cannot be promptly recovered. For instance, in cases of cloud
server failures or data loss, some data may remain unrecoverable,
leading to significant losses. In response to these challenges,
we focus on researching the issues of secure data transmission
and storage in multi-user scenarios of IoMT, aiming to provide
more reliable guarantees for secure sharing of data. Our main
contributions are as follows.

1) Leveraging the characteristics of PRE and CP-ABE, we
propose a dual-cipher mechanism for multi-user data shar-
ing. We improve the PRE scheme to enables all users
to access shared data using a unified ciphertext and key.
Concurrently, we employ CP-ABE to encrypt the small
amounts of keys, enabling fine-grained access control.
Even if user attributes change, it does not affect the ci-
phertext generated by PRE. Furthermore, after permission
validation, decryption keys are encrypted using CP-ABE,
eliminating the need for separate attribute revocation
mechanisms.

2) We introduce a decentralized ciphertext storage and recov-
ery mechanism based on Shamir secret sharing [21]. This
approach distributes ciphertext fragments across multiple
servers, enabling data recovery during server failures and
preventing single points of failure.

3) To streamline permission determination, we implement
a data sharing chain and attribute change chain. When
user attributes change, the attribute change chain enforces
constrains, while new attribute sets undergo validation to
prevent unauthorized access. All data sharing activities are
immutably recorded on the data sharing chain.

4) We formally verify the scheme’s correctness and prove
its confidentiality under the random oracle model. The
scheme not only prevents single point of failure in storage
servers, but also implements fine-grained access control
for dynamic multi-users, resists conspiracy attacks, and
realizes data access traceability. Performance evaluations
confirm the scheme’s suitability for resource-constrained
IoMT environments.

The remaining sections of this paper are structured as fol-
lows. Section II discusses the existing related work. Section III
introduces the preliminaries used in our scheme. Section IV
presents our proposed IoMT data sharing architecture and secu-
rity model. The details of the scheme are described in Section V.
The correctness proofs and security analysis of the scheme
are presented in Section VI. The performance of the scheme
is evaluated in Section VII. Finally, we conclude our work in
Section VIII.

II. RELATED WORK

We review the related work from two aspects, data encryption
sharing strategies and data sharing storage models.

A. Data Encryption Sharing Strategies

Mohammadali and Haghighi [22] presented a smart grid
data aggregation scheme with multi-dimension and fault toler-
ance, supporting multi-category aggregation and batch authen-
tication. Su et al. [23] introduced LCEDA, a lightweight and
communication-efficient smart grid data aggregation scheme
enabling efficient shield value sharing update and dynamic
registration and revocation of smart meters, with freely formed
aggregation zones for low communication and computational
costs. Subsequently, Su et al. [24] proposed a scalable cen-
tralized data aggregation scheme using edge node aggregation
groups for correct, secure, and efficient aggregation, leveraging
symmetric encryption and online/offline signature for reduced
online computation. Additionally, Guo et al. [25] introduced
accountable proxy re-encryption to address proxy misbehavior
without focusing on data visitor authentication and authoriza-
tion, offering insights for efficient data sharing. Pei et al. [26]
proposed a IoMT data security sharing scheme based on proxy
re-encryption mechanism, which ensures the integrity of ci-
phertext through ciphertext verification mechanism to prevent
tampering. However, these schemes do not focus on the use of
shared data and ignore the importance of fine-grained control in
data sharing.

CP-ABE is well-suited for fine-grained access control in
data sharing [33]. Therefore, most researchers have considered
secure data storage and privacy sharing using CP-ABE [27],
[28], [29], [30], [31], [32]. For example, Xue et al. [34] in-
troduced a CP-ABE data sharing scheme to counter economic
denial of sustainability (EDoS) attacks, employing fine-grained
access control policies and ciphertext randomization to regulate
data downloads and prevent resource abuse. Zhang et al. [35]
employed CP-ABE for confidentiality and fine-grained access
control of shared telematics data in cloud and fog, introducing
auditable user revocation for dynamic vehicle groups, and en-
hancing efficiency and correctness through online/offline and
verifiable outsourcing techniques, though data integrity and
traceability sharing were not addressed. Yang et al. [36] pro-
posed an efficient and secure data sharing scheme for cloud
storage. The scheme was implemented based on a multi-trusted
third-party attribute encryption algorithm, which is also effective
against collusion attacks. Vaanchig et al. [37] proposed a scalable
and fine-grained cloud storage access control that supports effec-
tive user revocation policies. Zhang et al. [38] proposed an effi-
cient attribute-based data sharing scheme with enhanced policy
hiding and policy updating, addressing collusion issues between
revoked users and the cloud by protecting user privacy through
hiding sensitive attribute values in access policies. Muhammad
et al. [39] proposed a secure data aggregation collection and
transmission scheme, providing anonymity for patients’ mobile
devices and intermediate fog nodes. Ren et al. [40] introduced
a certificateless autonomous path proxy re-encryption (CLAP-
PRE) scheme utilizing multilinear maps, enabling fine-grained

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: MULTI-USER ORIENTED DATA SHARING SCHEME FOR INTERNET 1395

access control to delegation paths in e-health systems, ensuring
the security and privacy of patient health data shared with
doctors. While the aforementioned schemes can achieve fine-
grained access to data users, they impose heavy computation
loads. Moreover, once a data user gains access to the data, it can
have unlimited access to the data, which can be serious security
risk for the complex environment of IoMT [41], [42].

Professor Jiguo Li’s research team has made a series of
groundbreaking advancements in the field of ABE, covering
a complete technological chain from foundational architecture
innovation to application scenario expansion. The team inno-
vatively proposed a multi-authority ABE scheme supporting
verifiable data deletion [43], which employs Merkle hash trees
to achieve data deletion proofs, addressing the key escrow
problem in traditional single-authority schemes while proving
security under the DBDH assumption. The team’s research
system demonstrates a clear trajectory of technological evolu-
tion: in foundational architectures, they developed a Registered
ABE framework [44] to eliminate key escrow risks entirely; in
privacy preservation, they successively proposed a policy-hiding
scheme with structural traceability [45] and a flexible encryp-
tion framework for multi-group scenarios [46]; in dynamic
management, they constructed an efficient scheme integrating
revocation mechanisms and integrity verification [47]. These
achievements collectively form a comprehensive ABE technol-
ogy ecosystem applicable to cloud storage, IoT, medical data,
and other scenarios.

B. Data Sharing Storage Models

Sun et al. [48] proposed a secure data sharing model for
smart terminals, utilizing self-authentication and blockchain
for integrity verification and traceability, but doesn’t address
resource limitations or ensure safe data transmission to the
cloud server. Ning et al. [49] proposed an encryption scheme
by limiting the maximum number of times that a user can access
privileges within a specified time. This achieves fine-grained
access control and addresses the problem of granting unlimited
access privileges to a user once the user’s attribute set satisfies
a given ciphertext access policy. Wang et al. [50] proposed a
secure data sharing encryption scheme for cloud computing by
introducing the concept of weighted attribute and enhancing the
expression of attribute, which not only extends the expression
of attribute from binary to arbitrary state but also reduces the
complexity of access policy. However, Lan et al. [51] proved
that this scheme is insecure in that users can obtain higher-level
decryption privileges by tampering with their own attribute
weights. Kumar et al. [52] addressed critical issues in medical
data processing such as authentication, scheduling, redundant
data removal, and data access time by introducing a solution
based on Bloom filters. Jiang and Guo [53] proposed a se-
cure cloud storage scheme utilizing conditional proxy broadcast
re-encryption for dynamic user management without changing
encryption keys, streamlining sharing while ensuring data pri-
vacy. However, these schemes do not address the issue of data
corruption and loss due to a single point of failure in the storage
server.

Wang et al. [54] proposed an efficient, revocable, and search-
able privacy protection scheme using CP-ABE for mobile cloud
storage. The scheme supports attribute revocation and out-
sources decryption to alleviate user-side computational burden,
but requires verification of the outsourcing service provider’s
credibility and security to mitigate the risk of data leakage. Seth
et al. [55] realized secure data storage in the cloud based on
an integrated encryption technique. By devising a procedure
for the secure distribution of cloud data, it provides reliability
guarantee to customers and motivates them to store the infor-
mation in confidential records. Islam et al. [56] introduced a
lightweight image encryption technique based on substitution
permutation networks, safeguarding the privacy of medical data
through the generation of transformation magic blocks by sub-
systems and subsequent permutation processes. However, the
complexity introduced by substitution permutation networks
and their associated transformation magic blocks may escalate
implementation and maintenance costs. Pu et al. [57] proposed a
privacy-preserving edge data sharing scheme with data recover-
able and attribute revocation. In this scheme, a blockchain-base
attribute revocation chain was proposed to implement attribute
revocation in CP-ABE, and a secret sharing scheme was intro-
duced to assist data recovery. To cope with the case of a single
server being hijacked, the efficient detection mechanism and
key update strategy were proposed to ensure the security of the
whole system. However, the data provider and the data consumer
use the same encryption and decryption scheme, which is more
suitable for data sharing based on edge servers, and is not suitable
for data sharing in IoMT [58].

III. PRELIMINARIES

This section introduces the necessary preliminaries.

A. Bilinear Mapping

Let G1 and G2 be two multiplication cyclic groups of order
q, namely, |G1| = |G2| = q, and g be the generating element of
G1. Bilinear mapping e : G1 ×G1 → G2 satisfies the following
properties.

1) Bilinearity: For any x, y ∈ G1 and any a, b ∈ Zq,
e(xa, yb) = e(x, y)ab.

2) Non-degeneracy. e(g, g) �= 1.
3) Computability. For any x, y ∈ G1, there exists an efficient

algorithm to compute e(x, y).

B. DBDH Assumption

1) Decisional Bilinear Diffie-Hellman (DBDH) Problem:
Give multiplicative groups G1 and G2 of order p, and let g
be the generating element of G1. Randomly choose a1, a2, a3∈
Zp, T ∈G2, and use algorithm Φ to determine whether T ==
e(g, g)a1a2a3 holds. If it does, output 1; otherwise, output 0. The
advantage AdvDBDH

Φ of algorithm Φ is:

AdvDBDH
Φ =

∣∣∣Pr [Φ (g, ga1 , ga2 , ga3 , e(g, g)a1a2a3) = 1]

− Pr [Φ (g, ga1 , ga2 , ga3 , T) = 1]
∣∣∣. (1)

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

1396 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2025

Fig. 1. The system model of the IoMT data sharing.

2) DBDH Assumption: The DBDH assumption is said to
hold in groups G1 and G2 if for any probabilistic polynomial-
time algorithm Φ, the advantage AdvDBDH

Φ is negligible.

C. Cipher Policy Attribute-Based Encryption

CP-ABE is an access policy based attribute-based encryption
scheme. It allows data owner to define the access policy, and
only users who comply with the access policy can access the
encrypted data. The formal definition of CP-ABE includes the
following components [59].

1) Parameter Setting Algorithm SetupCP−ABE: It gen-
erates the system master key MK and public parameters
paramCP−ABE .

2) Key Generation Algorithm KeyGenerationCP−ABE

(MK,AS): It uses the system master key MK and the user’s
attribute set AS to generate the attribute key skAS for the user.

3) Data Encryption Algorithm EncryptCP−ABE

(paramCP−ABE ,M,Λ): It inputs the public parameters
paramCP−ABE , the plaintext M to be encrypted and the
access structure Λ, and outputs the ciphertext CT .

4) Ciphertext Decryption Algorithm DecryptCP−ABE

(paramCP−ABE , CT, skAS): It inputs the public parameters
paramCP−ABE , the ciphertext CT to be decrypted and the
attribute key skAS based on the attribute set AS. If AS satisfies
Λ, the plaintext M is outputted.

IV. SYSTEM OVERVIEW

We begin by presenting the system model of the IoMT data
sharing scheme. Subsequently, we provide a formal definition
of the scheme, followed by a description of the security model.

A. System Model

As shown in Fig. 1, the IoMT data sharing system model
primarily consists of the following 5 entities.

1) Data Collection Terminal DCT : It can be wearable de-
vice, medical sensor, and smart medical equipment, among
others, with small computing and storage capabilities. It is
responsible for collecting physiological data from patients or

users, such as heart rate, body temperature, blood pressure,
etc. It performs personalized encryption on the collected raw
data and then uploads the result to the Edge Computing
Layer.

2) Edge Computing LayerECL: It is located near the health-
care data collection devices. In real life, it plays the role of
a local medical institution and is trustworthy. ECL consists
of small edge servers, denoted as ECServer, with robust
computational and storage resources. The ECServer is re-
sponsible for managing access control policies, customizing
access permissions based on specific application requirements,
data sensitivity, and other factors. Due to the large number of
DCT , resource constraints, and strong decentralization, it is
difficult to update the key. Therefore, ECL is primarily used
for normalizing personalized terminal ciphertext into uniformly
encrypted shared ciphertext using a unified key. The resulting
ciphertext is then uploaded to the Data Management Layer. This
allows for key updates to be performed only on the re-encryption
key during key updates.

3) Data Management Layer DML: This entity realizes
healthcare data storage and management. It comprises multi-
ple servers, denoted as DMServer, with ample storage and
computing resources. This layer serves as a crucial platform for
IoMT data owners and users to store and share data. It assists
data owners in storing their shared data and provides services
to data users, facilitating access to authorized data. However,
DMServer are honest but curious and may be interested in
the stored data. That is, it may try to gain as much private
information as possible from the information they observe,
potentially seeking unlawful gains by selling or leaking the data
to unauthorized parties.

4) Data Requester DR: It is the initiator of data sharing
services, and represents users in different roles such as doctors,
pharmaceutical experts, and data analysts. Each DR has a set
of attributes, and DR with legitimate permissions accesses
healthcare data by requesting data from DML.

5) Trusted Key Management Layer TKML: As a fully
trusted entity, TKML is responsible for key management and
registering other entities in the system. In the event of attribute
changes for a DR, TKML takes charge of regenerating and
distributing a new key for the DR.

The process of data sharing is illustrated in Fig. 1, which
can be divided into three main parts: data encryption process-
ing, ciphertext distributed storage, and data sharing access. We
describe this process in the context of IoMT data sharing.

In the data encryption stage, DCT comprises various devices:
(1) Wearable devices (2) Medical sensors (3) Smart medical
equipment. These devices collect patients’ physiological and
health data. The DCT performs preliminary encryption on the
collected raw healthcare data and uploads the results to the
nearbyECServerwithin theECL. TheECServer, which can
be seen as a local clinic or healthcare facility, devises specific
access policies and re-encrypts the data previously encrypted by
DCT .

In the second stage, the ciphertext distributed storage stage,
the re-encrypted data is uploaded to the DML, where the
ciphertext is stored in distributed DMServer.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: MULTI-USER ORIENTED DATA SHARING SCHEME FOR INTERNET 1397

Finally, in the data sharing access stage, the DR, who could
be a user such as a doctor, pharmacy specialist, or data analyst,
requests access to the data. DML verifies whether the DR has
the necessary permission for data access. If the DR passes the
authentication, it can access and decrypt the requested shared
data.

Hence, the data flow from collection to sharing and reaching
the data requester involves several steps: ‘DCT → ECL →
DML→DR’. Here, DR represents the group requesting data
access, indicating that the same data is transmitted multiple times
during the previous flow, but transmitted to DR multiple times.
Our focus is on securely sharing IoMT data with data requesters,
while protecting the healthcare data shared by data owners from
being accessed by illegal entities and being decrypted or revealed
by unauthorized entities during the storage and sharing.

B. Formal Definition of the Scheme

By leveraging the features of proxy re-encryption and
attribute-based encryption, we design a multi-user-oriented
IoMT data sharing scheme, which incorporates dual crypto-
graphic mechanisms to enable efficient data mining, sharing,
and application. The scheme is formally defined as follows.

1) Setup1(1
λ): It generates the system parameters param

for the IoMT data sharing system.
2) KeyGen(param): It contains KeyGen1(param) and

KeyGen2(param), which are used to generate the public-
private key pair for DCT and the specific public-private key
pair, respectively.

3) ReKeyGen(skDCT i
, pkpeculiar): It generates the re-

encryption key.
4) ReKeyUpdate(skDCT i

, param): It updates the specific
public-private key pair and re-encryption key.

5) EncryptDCT (pki,m): DCT uses its public key to per-
sonalize the collected raw data m to obtain the personalized
ciphertext.

6) ReEncryptECL(ReKeyi→p, PCi): ECServer in
ECL re-encrypts the personalized ciphertext to obtain the
normalized ciphertext.

7) Distributed Trusted Storage of Ciphertext: DML slices
the normalized ciphertext and distributes the fragments to other
DMServer, so that each DMServer stores only one piece of
ciphertext, forming distributed trusted storage of ciphertext.

8) Secure Data Access for DR: According to the sharing
request of DR, DML completes the verification of DR, the
retrieval and aggregation of ciphertext with the assistance of
TKML, and finally DR completes the decryption of ciphertext
to realize the secure sharing of healthcare data.

C. Security Model

The confidentiality of data includes the confidentiality of
personalized terminal encryption and the confidentiality of nor-
malized re-encryption, defined as the chosen plaintext security
of personalized terminal encryption and the chosen plaintext
security of normalized re-encryption, respectively.

1) The Chosen Plaintext Security of Personalized Terminal
Encryption: For an arbitrary personalized terminal encryption

algorithm Φ, the choice of plaintext security for Φ is described
by constructing the game between challenger C and adversary
A. The game consists of the following phases.

1.1) Initialization phase: Challenger C runs Setup1, obtains
the system parameters param, and returns the system parame-
ters to adversary A.

1.2) Query phase 1: Adversary A can execute the following
queries.
� qkc(i). Query whose key has not been compromised. Chal-

lenger C runs KeyGen1, obtains (ski, pki), and returns
pki to adversary A.

� qknc(i). Query with compromised key. Challenger C runs
KeyGen1, obtains (ski, pki), and returns ski and pki to
adversary A.

1.3) Challenge phase: Adversary A selects two messages
m0,m1 of the same length to challenger C. Challenger C se-
lects b ∈ {0, 1} randomly, encrypts the message mb into chal-
lenge ciphertext PC∗ according to the encryption algorithm
EncryptDCT , and returns the challenge ciphertext PC∗ to
adversary A.

1.4) Query phase 2: Adversary A executes the same query as
in query phase 1.

1.5) Guessing phase: Adversary A makes a guess on b and
outputs b′ ∈ {0, 1}. If b′ = b, adversary A is said to have won
the game.

The advantage of adversary A in winning the game is denoted
as AdvA = |Pr[b′ = b]− 1

2 |. If no polynomial time algorithm
can break the personalized terminal encryption algorithm Φ
with advantage AdvA, Φ is considered secure under the chosen-
plaintext attack.

2) The Chosen Plaintext Security of Normalized Re-
Encryption: For an arbitrary normalized re-encryption algo-
rithm Φ, the choice of plaintext security for Φ is described by
constructing the game between challenger C and adversary A.
The game consists of the following phases.

2.1) Initialization phase: Challenger C runs Setup1, obtains
the system parameters param, and returns the system parame-
ters to adversary A.

2.2) Query phase 1: Adversary A can execute the following
queries.
� qkc(i). Query whose key has not been compromised. Chal-

lenger C runs KeyGen1, obtains (ski, pki), and returns
pki to adversary A.

� qknc(i). Query with compromised key. Challenger C runs
KeyGen1, obtains (ski, pki), and returns ski and pki to
adversary A.

� qrkc(pki, pkj). Query for re-encryption key. Challenger
C runs ReKeyGen, obtains the re-encryption key
ReKeyi→j , and returns ReKeyi→j to adversary A.

2.3) Challenge phase: Adversary A selects two messages
m0,m1 of the same length to challenger C. Challenger C se-
lects b ∈ {0, 1} randomly, encrypts the message mb into chal-
lenge ciphertext UC∗ according to the encryption algorithm
ReEncryptECL(ReKeyi→p, PCi), and returns the challenge
ciphertext UC∗ to adversary A.

2.4) Query phase 2: Adversary A executes the same query as
in query phase 1.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

1398 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2025

Fig. 2. Framework diagram of the proposed secure IoMT data sharing scheme.

2.5) Guessing phase: Adversary A makes a guess on b and
outputs b′ ∈ {0, 1}. If b′ = b, adversary A is said to have won
the game.

The advantage of adversary A in winning the game is denoted
as AdvA = |Pr[b′ = b]− 1

2 |. If no polynomial time algorithm
can break the normalized re-encryption algorithmΦwith advan-
tage AdvA, Φ is considered secure under the chosen-plaintext
attack.

V. DETAILS OF THE PROPOSED SCHEME

The framework of the proposed secure IoMT data sharing
scheme is depicted in Fig. 2, which consists of seven com-
ponents, namely, 1) System Initialization, 2) Key Generation
and Update, 3) Data Collection and Personalized Terminal En-
cryption, 4) Normalized Re-encryption, 5) Distributed Trusted
Storage of Ciphertext Data, 6) Data Security Sharing, and
7) Attribute Revocation. We now detail them one by one. The
commonly used symbols in the scheme are shown in Table I.

A. System Initialization

TKML needs to implement Setup1(1
λ) algorithm to pro-

vide a secure foundation for IoMT data sharing. Specifi-
cally, in the system initialization, TKML uses Setup1(1

λ)
to generate system parameters param for personalized termi-
nal encryption and normalized re-encryption. It sets the se-
curity parameter λ. For cyclic groups G1 and G2 of prime
order q, where q ≥ 2λ, and bilinear mapping e : G1 ×G1 →
G2, it randomly chooses g0, g1, g2, g3 ∈ G1, and computes
I0 = e(g0, g1) and I1 = e(g0, g3). The system parameters are
param = {g0, g1, g2, g3, I0, I1}.

In addition, TKML needs to run SetupCP−ABE algorithm
in attribute-based encryption to generate the required public-
private key and system parameters for the attribute-based en-
cryption phase.

TABLE I
SYMBOLS AND DESCRIPTIONS

B. Key Generation and Update

With system parameters param as input, TKML executes
KeyGen(param) to generate DCT ’s public-private key pair
and peculiar public-private key pair. This includes:
� UseKeyGen1(param) to generate public-private key pair
(skDTCi

, pkDTCi
), i = 1, . . . , n for DCT , where n is the

number of DCT involved in data sharing. It randomly
selects sk1DTCi

, sk2DTCi
∈ Zq as the private key skDTCi

of DTCi, i.e., skDTCi
= (sk1DTCi

, sk2DTCi
), calcu-

lates the public key pkDTCi
= (pk1DTCi

, pk2DTCi
) =

(g
sk1

DTCi
0 , g

sk2
DTCi

2) of DTCi, and distributes pkDTCi
to

DTCi.
� Use KeyGen2(param) to generate peculiar public-

private key pair (skpeculiar, pkpeculiar). It randomly
selects sk1peculiar, sk

2
peculiar ∈ Zq as skpeculiar, i.e.,

skpeculiar = (sk1peculiar, sk
2
peculiar), computes the

public key pkpeculiar = (pk1peculiar, pk
2
peculiar) =

(g
sk1

peculiar

0 , g
sk2

peculiar

2), and distributes pkpeculiar to
ECL.

TKMLusesReKeyGe(skDCT i
, pkpeculiar) to generate the

re-encryption key. Re-encryption is that ECServer in ECL
encrypts the data again on the basis of the terminal personalized
encryption. The re-encryption key ReKeyi→p is required to
be generated from the private key skDTCi

of DTCi and the
peculiar public key pkpeculiar. It computes the re-encryption key

ReKeyi→p = (g1g3pk
2
peculiar)

1

sk1
DCTi , and sends ReKeyi→p

to ECL.
ReKeyUpdate(skDCT i

, param) is used to update the pe-
culiar public-private key pair to (sknewpeculiar, pk

new
peculiar) and

the re-encryption key to ReKeynewi→p . This key update process
only needs to update the key in ECL and does not need to
update the key in DCT . The update steps are as follows. First
evenly select sk1_new

peculiar, sk
2_new
peculiar ∈ Zq as the new private

key sknewpeculiar = (sk1_new
peculiar, sk

2_new
peculiar), then compute the new

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: MULTI-USER ORIENTED DATA SHARING SCHEME FOR INTERNET 1399

peculiar public key pknewpeculiar = (pk1_new
peculiar, pk

2_new
peculiar) =

(g
sk1_new

peculiar

0 , g
sk2_new

peculiar

2), and finally compute the updated re-

encryption key ReKeynewi→p = (g1g3pk
2_new
peculiar)

1

sk1
DCTi .

C. Data Collection and Personalized Terminal Encryption

DCT is responsible for extracting keywords from the col-
lected plaintext data, performing preliminary personalized en-
cryption to obtain personalized ciphertext, and uploading the
keywords and personalized ciphertext to the nearest ECServer
in ECL based on the network topology.

Specifically, the IoMT data collection terminal DTCi ex-
tracts the keywords kws from the healthcare data m, which
are terms or phrases used to describe the content or subject
of the data, facilitating data retrieval by data requesters. As-
suming DTCi collects blood pressure information for user A,
such as “Blood Pressure: 100/70mmHg,” the corresponding
kws for this data could include: “User A, Blood Pressure” or
“DTCi, Blood Pressure”.DTCi then executes the personalized
terminal encryption algorithm EncryptDCT (pki,m) by using
its public key pki to personalize the collected data m into a
personalized ciphertext PCi. The process is as follows. DTCi

randomly selects ra ∈ Zq, obtains the personalized ciphertext
PCi = (C0, C1, C2, C3) by computing (2).

⎧⎪⎪⎨
⎪⎪⎩

C0 = mI0
ra ,

C1 = gra2 ,
C2 = I1

ra ,
C3 =

(
pk1DTCi

)ra .
(2)

After obtaining the personalized ciphertext PCi, DTCi up-
loads {kws, PCi} to the nearest ECServer in ECL based on
the network topology, denoted as ECServer0.

D. Normalized Re-Encryption

ECServer makes access control policies and performs nor-
malized re-encryption on the personalized encryption results.
After ECServer0 in ECL receives the key words and ci-
phertext of the data, the attribute-based access control pol-
icy of the data is formulated, and the access control tree
Tree is constructed based on this access control policy. Then
ECServer0 computes the hash value H(kws) of the key-
words kws and re-encrypts the personalized ciphertext PC
using the re-encryption key ReKeyi→p to obtain the normal-
ized ciphertext UC. This ciphertext can be decrypted by the
peculiar private key skpeculiar. More specifically, after receiv-
ing the personalized ciphertext PCi, ECServer0 uses the
re-encryption key ReKeyi→p generated by TKML to run the
re-encryption algorithm ReEncryptECL(ReKeyi→p, PCi) to
obtain the normalized ciphertext UC, by calculating (3), and
forming UC = (C ′0, C

′
1, C

′
2).⎧⎪⎨

⎪⎩
C ′0 = C0,
C ′1 = C1,

C ′2 =
e(C3,ReKeyi→p)

C2
.

(3)

When the data requester has the normalized ciphertext UC
and the peculiar private key skpeculiar, it can run the decryption
algorithm Decrypt(skpeculiar, UC) with the input of the nor-
malized ciphertextUC and the peculiar private key skpeculiar to
get the data by (4). The correctness proof of this data decryption
can be found in Subsection .

m =
C ′0 · e (g0, C ′1)sk

2
peculiar

C ′2
(4)

ECServer0 uploads H(kws), Tree and UC to the nearest
DMServer in DML, denoted as DMServer0.

E. Distributed Trusted Storage of Ciphertext Data

DMServer sets the threshold of data access times, splits
the normalized ciphertext, and distributes fragments to other
DMServers, so that each DMServer only stores one piece
of ciphertext. The purpose of setting the threshold is to prevent
the risk of users having unlimited access to data once autho-
rized. The size of the threshold can be determined based on,
factors such as data management policies, data privacy levels,
cost-effectiveness considerations. Splitting the ciphertext serves
the purpose of ensuring effective recovery of user-stored data in
case of a storage server failure, so as to prevent the user’s data
from being lost or corrupted. We now describe this distributed
storage.

After receiving the normalized ciphertext UC from ECL,
DMServer0 first sets the upper limit δ for the number of
accesses to this data, i.e., the same user can access this data
at most δ times. Then, the normalized ciphertext UC is stored
in each server of DML in a distributed manner, that is, UC is
distributed as a secret parameter to otherDMServers inDML.
The detailed steps are as follows.

Step 1: Polynomials construction. DMServer0 con-
structs two t-order polynomials f1(x) and f2(x). Specifi-
cally, the binary string corresponding to UC is cut into t
copies as the coefficients of f1(x), which are written in
the order of a0, a1, . . . , at−1, i.e., f1(x) = a0 + a1x+ · · ·+
at−1xt−1. Randomly choose b0, b1, . . . , bt−1 ∈ Zq to construct
f2(x) = b0 + b1x+ · · ·+ bt−1xt−1. DMServer0 computes
Vk = gak

0 gbk1 for other DMServers to verify that the ciphertext
fragmentation, where 0 ≤ k < t.

Step 2: Ciphertext splitting. DMServer0 chooses n nonzero
mutually unequal elementsx1, x2, . . . , xn ∈ Zq , computes yi =
(f1(xi), f2(xi)), 1 ≤ i ≤ n, and assigns (xi, yi, Vk) to the ith
DMServer in DML, denoted as DMServeri.

Step 3: Ciphertext verification. After receiving (xi, yi, Vk),
DMServeri verifies if gf1(xi)

0 g
f2(xi)
1 ==

∏t−1
k=0(Vk)

xi
k

holds.
Ciphertext fragment correctness can be proved in Subsection .
If it holds, the ciphertext fragment UCi = (xi, f1(xi)) is valid,
and DMServeri returns the message that the ciphertext frag-
ment was received to DMServer0 and stores UCi. Otherwise,
DMServeri requests DMServer0 to resend the correct frag-
ment of the ciphertext.

The structure stored in DMServeri is shown in Fig. 3. Each
DMServer in DML stores not only a unique ciphertext frag-
ment UCi but also the keywords hash H(kws) corresponding

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

1400 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2025

Fig. 3. Data storage structure of DMServeri in DML.

Fig. 4. The process of DR requesting shared data.

to the complete data, the access control structure Tree and the
access limit δ for data retrieval and verification.

To perform ciphertext recovery, it is sufficient to combine any
at least t ciphertext fragments UCi = (xi, f1(xi)) to construct
the following system of t linear equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

a0 + a1x1 + a2x1
2 + · · ·+ at−1x1

t−1 = f1 (x1) ,
a0 + a1x2 + a2x2

2 + · · ·+ at−1x2
t−1 = f1 (x2) ,

...
a0 + a1xt + a2xt

2 + · · ·+ at−1xt
t−1 = f1 (xt) .

(5)

By solving the above equations to obtain a0, a1, . . . , at−1, we
can get the complete ciphertext UC.

F. Data Security Sharing

DR retrieves the unique identifier, attribute set AS =
{att1, att2, . . . , attNas

}, and attribute key skAS from TKML.
When DR sends a data access request to its neighboring
DMServer inDML, theDMServer verifies whetherDR has
permission to access the requested data. If permission is granted,
the ciphertext fragments are retrieved and aggregated to form the
normalized ciphertext. Simultaneously, TKML is contacted to
encrypt the decryption key of the normalized ciphertext, based
on the attributes of DR. The resulting normalized ciphertext
and the encrypted decryption key are then transmitted to DR.
Subsequently, DR decrypts the received decryption key and
utilizes it to decrypt the normalized ciphertext, thereby obtaining
the plaintext data. Fig. 4 shows the data request process of
DR from the nearest server DMServer0 in DML. If related
conflicts or intentional denial of access requests are involved,
conflict resolution mechanisms and error handling mechanisms
can be introduced, which will not be studied in depth in this
paper. The specific steps are as follows.

Step 1: The DR sends a data request to DMServer0,
containing identity information, attribute hash HAS =
{H(att1), H(att2), . . . , H(attNas

)}, the hash value H(kws)
of the keywords kws for the data to be accessed. For the
authenticated DR, it includes the following three situations.
� DR exists in the attribute change chain: Use the latest set

of attributes in the attribute change chain as new HAS.
Then go to Step 2.

� DR does not exist in the attribute change chain, and
there are records of DR accessing the data in the data
sharing chain: When the number of accesses is less than
δ, DMServer0 agrees to let DR access the data, and
executes Step 3; Otherwise the access is directly denied.

� DR does not exist in the attribute change chain and the
data sharing chain: Go to Step 2.

Step 2: DMServer0 broadcasts message={H(ID),
HAS,H(kws)} to other servers DMServeri in DML. For
each ”DMServeri,” the following steps are taken:
� DMServeri looks up and retrieves the data fragments, ac-

cess count threshold, and the corresponding access control
tree based on the hash value of the keyword set H(kws).

� If the number of accesses is less than δ and the hash value of
the attribute set matches Tree successfully, DMServeri
approves DR’s data access and sends the data fragments
to ”DMServer0”. Otherwise, it rejects the data access
request from DR.

� When the number of votes exceeds half, DMServer0
agrees to let DR access the data and executes Step 3.

Step 3: DMServer0 sends the access control tree Tree and
the information of DR to TKML.

Step 4: Based on the AS of DR, TKML ex-
ecutes EncryptCP−ABE(paramCP−ABE , skpeculiar, T ree)
algorithm to encrypt skpeculiar of into the ciphertext KC, and
sends KC to DMServer0. Here, skpeculiar can decrypt UC.

Step 5: TKML encrypts this shared record based on its
own private key, generates signature, and sends the signature
to the blockchain composed of DMServeri in TKML and
DML. When DMServeri receives the message, it determines
whether the shared record comes from TKML by verifying the
signature. If so, store the record. That is, the data sharing record
is stored in the data sharing chain and cannot be tampered with
later, and the usage of the data can be tracked for further audit.

Step 6: DMServer0 selects t of these DMServers, con-
structs linear polynomial groups from the data fragments they
sent, and derives f1(x). DMServer0 uses the remaining ci-
phertext fragments to verify f1(x). The normalized ciphertext
UC is derived after the verification passes.

Step 7: DMServer0 sends the normalized cipher-
text UC and the encrypted key KC to DR. DR
decrypts KC using the attribute key skAS , and ex-
ecutes DecryptCP−ABE(paramCP−ABE ,KC, skAS) algo-
rithm to obtain the correct skpeculiar. Then DR exe-
cutes Decrypt(skpeculiar, UC) algorithm, and computes m =

C ′0·e(g0,C ′1)
sk2

peculiar

C ′2
, so that UC can be decrypted and plaintext

m can be obtained. The proof process that the plaintext obtained
by decryption is the original plaintext is in Subsection .

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: MULTI-USER ORIENTED DATA SHARING SCHEME FOR INTERNET 1401

Fig. 5. Access control tree based on attribute hash.

For ease of understanding the matching process between
the attribute set hash and the access control tree, we provide
illustrative examples. Let’s consider the current access control
tree Tree depicted in Fig. 5. In this representation, leaf nodes
denote the hash values of attributes, specifically H(a), H(b),
H(c), H(d), H(e), H(f), H(g). Non-leaf nodes represent the
minimum threshold values. Once the sum of its child nodes’
values exceeds or equals the minimum threshold, the node is
set to 1. This process is recursively applied upwards until it is
determined whether it satisfies the threshold at the root node. If
satisfied, it indicates that the attribute set of the corresponding
DR complies with the requirements of the given Tree.

Let DR1 have an attribute set {b, c, d, e, f} and DR2 have
an attribute set {a, c, e, f, g}. According to the aforementioned
conditions, DR1 satisfies the access structure depicted in Fig. 5,
while DR2 does not. Through this mechanism, DMServer
can rapidly ascertain whether DR possesses the authorization
to access the data.

G. Attribute Revocation

The algorithm 1 formalizes the process of managing attribute
changes for a DR and ensuring data access authorization based
on the latest attribute set hash.

When the attributes of DR change, the first step is for DR
to request the latest attribute key from TKML. Subsequently,
TKML adds an attribute change record for DR to the attribute
change chain, which is jointly maintained by TKML and
DMServer inDMC. This record contains identity information
ofDR, the latest attribute set hash, and the attribute change time.
After creating the record, TKML encrypts it with the private
key to form a signature and transmits this signature to the at-
tribute change chain. Upon receiving the signature,DMServer
in DML verifies its authenticity to ensure it originates from
TKML. If the verification is successful, DMServer stores
the attribute change record and maintains synchronization with
the attribute change chain managed by TKML.

When a DR with changed attributes requests shared data
from DMServer0 in DML, the server first looks up the latest
attribute set hash forDR in the attribute change chain. Following
this lookup, the latest attribute set hash is compared against the
access control structure to determine whether DR is authorized
to access the requested data.

Algorithm 1: Attribute Change Management and Data Ac-
cess Authorization.

1: ProcedureAttributeChange
2: Input: Attributes of DR
3: Output: Updated attribute change chain
4: key ← RequestLatestKey(DR)
5: record← CreateRecord(DR, key)
6: signature← Encrypt(record, privateKey)
7: SendToChain(signature)
8: verified← ChainVerifySignature(signature)
9: If verified then

10: ModifyChain(DR, record)
11: else
12: DenyModify()
13: ‘
14: procedureAuthorizeAccess
15: Input: DR, sharedData
16: Output: Access decision
17: latestHash← LookupHash(DR)
18: authorized←MatchHash(latestHash,

accessControl)
19: if authorized then
20: GrantAccess(sharedData)
21: else
22: DenyAccess()

VI. PROOF OF CORRECTNESS AND SECURITY ANALYSIS

A. The Correctness of the Data Sharing Model

1) Ciphertext Fragment Correctness Proof: In the dis-
tributed trusted storage phase of ciphertext data, DMServeri
receives the data fragment (xi, yi) sent by DMServer0 and
verifies gf1(xi)

0 g
f2(xi)
1 ==

∏t−1
k=0(Vk)

xi
k

holds or not to decide
whether the ciphertext fragment is valid or not. The correctness
proof is as follows:

g
f1(xi)
0 g

f2(xi)
1 =

(
ga0+a1xi+a2xi

2+···+at−1xi
t−1

0

)

×
(
gb0+b1xi+b2xi

2+···+bt−1xi
t−1

1

)

=
(
ga0
0 gb01

)(
ga1
0 gb11

)xi
(
ga2
0 gb21

)xi
2

· · ·
(
gat−1
0 gbt−11

)xi
t−1

= V0V
xi
1 V xi

2

2 · · ·V xi
t−1

t−1 =
∏t−1

k=0
(Vk)

xi
k

. (6)

2) Data Decryption Correctness Proof: When DR has
the normalized ciphertext UC and the peculiar private key
skpeculiar, it runs Decrypt(skpeculiar, UC) algorithm. The

data m is calculated as m =
C ′0e(g0,C

′
1)

sk2
peculiar

C ′2
, and the cor-

rectness proof is as follows:

C ′0e (g0, C
′
1)

sk2
peculiar

C ′2
=

mIra0 e (g0, g
ra
2)sk

2
peculiar

e
(
C3, ReKeyi→p

)
/C2

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

1402 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2025

=
mIra0 e (g0, g

ra
2)sk

2
peculiar

e

((
pk1DTCi

)ra
,
(
g1g3pk

2
peculiar

) 1

sk1
DCTi

)
/Ira1

=
mIra0 e (g0, g

ra
2)sk

2
peculiar

e

((
g
sk1

DTCi
0

)ra

,
(
g1g3pk

2
peculiar

) 1

sk1
DCTi

)
/e(g0, g3)ra

=
mIra0 e (g0, g

ra
2)sk

2
peculiar

e
(
g0,

(
g1g3pk

2
peculiar

))ra
/e(g0, g3)ra

=
mIra0 e (g0, g

ra
2)sk

2
peculiar

e(g0, g1)rae(g0, g3)rae
(
g0, pk

2
peculiar

)ra
/e(g0, g3)ra

=
mIra0 e(g0, g

ra
2)sk

2
peculiar

e(g0, g1)rae
(
g0, pk

2
peculiar

)ra =
mIra0 e(g0, g

ra
2)sk

2
peculiar

Ira0 e
(
g0, pk

2
peculiar

)ra

=
m · e (g0, gra2)sk

2
peculiar

e
(
g0, g

sk2
peculiar

2

)ra = m. (7)

B. The Security of the Data Sharing Model

1) Confidentiality of Data: The confidentiality of the data
sharing scheme involves the personalized terminal encryption
and the normalized re-encryption. Therefore, we prove that the
scheme can guarantee the confidentiality of data through the
security of personalized terminal encryption algorithm and the
security of normalized re-encryption algorithm, respectively.

Theorem 1: Under the DBDH assumption, the personalized
terminal encryption algorithm is consistent with the ciphertext
indistinguishability under the choice of plaintext attack.

Proof: If there is an adversary A who can break the per-
sonalized terminal encryption algorithm with a non-negligible
advantage AdvA, then construct a challenger C to solve the
DBDH problem with the advantage AdvA.

T1.1) Initialization phase: Randomly select u ∈ Zq, let g0 =
ga, g1 = gb, g2 = g, g3 = gu, I0 = e(ga, gb), I1 = e(ga, gu),
and output param = {g0, g1, g2, g3, I0, I1} as the system pa-
rameters.

T1.2) Query phase 1: Challenger C answers the query as
follows.
� qkc(i): Randomly choose sk1i , sk

2
i ∈ Zq . If it is the kth key

query, let i∗ = i, calculate pki∗ = (pk1i∗ = gsk
1
i∗ , pk2i∗ =

gsk
2
i∗), let sk∗i = (

sk1
i∗
a , sk2i∗), and return pki∗ to adver-

sary A. Otherwise, calculate pki = (pk1i = g
sk1

i
0 , pk2i =

g−11 gsk
2
i), let ski = (sk1i , sk

2
i − b), and return pki to ad-

versary A.
� qknc(i): Randomly choose sk1i , sk

2
i ∈ Zq , let ski =

(sk1i , sk
2
i), calculate pki = (pk1i = g

sk1
i

0 , pk2i = gsk
2
i),

and return (ski, pki) to adversary A.
T1.3) Challenge phase: When adversary A completes the

query of phase 1, it outputs m0,m1 and the target public
key pk∗. If pki∗ �= pk∗, challenger C outputs a random bit
and rejects the response of adversary A. Otherwise, challenger
C randomly chooses b ∈ {0, 1}, and calculates C0 = T ·mb,

C1 = gra2 = gc, C2 = Ira1 = e(ga, gc)u, C3 = (pk1DTCi
)ra =

(gc)sk
1
i∗ , where ra = c. Let adversary A perform qkc(i) at most

nqkc
times. Then the probability that challenger C guesses

correctly is at least 1
nqkc

.

T1.4) Query phase 2: Adversary A executes the same query
as in query phase 1.

T1.5) Output phase: Adversary A guesses b and outputs b′ ∈
{0, 1}. If b′ = b, challenger C outputs 1, otherwise outputs 0.

The probability that challenger C solves the DBDH problem
is at least AdvA

nqkc

. Therefore, under the DBDH assumption, the
personalized terminal encryption algorithm is indistinguishable
from ciphertext under chosen plaintext attack.

Theorem 2: Under the DBDH assumption, the normalized
re-encryption algorithm is consistent with the ciphertext indis-
tinguishability under the choice of plaintext attack.

Proof: If there is an adversary A who can break the normal-
ized re-encryption algorithm with a non-negligible advantage
AdvA, then construct a challenger C to solve the DBDH problem
with the advantage AdvA.

T2.1) Initialization phase: Randomly select u ∈ Zq , let g0 =
ga, g1 = gb, g2 = g, g3 = gu, I0 = e(ga, gb), I1 = e(ga, gu),
and output param = {g0, g1, g2, g3, I0, I1} as the system pa-
rameters.

T2.2) Query phase 1: Challenger C answered the query as
follows.
� qkc(i): Randomly choose sk1i , sk

2
i ∈ Zq . If it is the

kth key query, let i∗ = i, calculate pki∗ = (pk1i∗ =

g
sk1

i∗
0 , pk2i∗ = g−11 gsk

2
i∗), let ski∗ = (sk1i∗ , sk

2
i∗ − b), and

return pki∗ to adversary A. Otherwise, calculate pki =

(pk1i = gsk
1
i , pk2i = gsk

2
i), let ski = (sk

1
i

a , sk2i), and re-
turn pki to adversary A.

� qknc(i): Randomly choose sk1i , sk
2
i ∈ Zq , let ski =

(sk1i , sk
2
i), calculate pki = (pk1i = g

sk1
i

0 , pk2i = gsk
2
i),

and return (ski, pki) to adversary A.
� qrkc(pki, pkj): Given pki and pkj queried from qkc(i)

and qknc(i), challenger C runs ReKeyGen and returns
the output.

T2.3) Challenge phase: When adversary A completes the
query of phase 1, it outputs m0,m1 and the target public key
pk∗. If pki∗ �= pk∗, challenger C outputs a random bit and rejects
the response of adversary A. Otherwise, challenger C randomly
chooses b ∈ {0, 1}, and calculates C ′0 = T ·mb, C ′1 = gra2 =

gc,C ′2 = Ira0 e(g0, pk
2
i∗)

ra = e(ga, gc)pk
2
i∗ . Let adversary A per-

form qkc(i) query at most nqkc
times. Then the probability that

challenger C guesses correctly is at least 1
nqkc

.

T2.4) Query phase 2: Adversary A executes the same query
as in query phase 1.

T2.5) Output phase: Adversary A guesses b and outputs b′ ∈
{0, 1}. If b′ = b, challenger C outputs 1; otherwise outputs 0.

The probability that challenger C solves the DBDH problem
is at least AdvA

nqkc

. Therefore, under the DBDH assumption, the
normalized re-encryption algorithm is indistinguishable from
ciphertext under chosen plaintext attack.

2) Prevent Storage Server From Single Point of Failure: To
prevent the loss of shared data, we a distributed approach is used

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: MULTI-USER ORIENTED DATA SHARING SCHEME FOR INTERNET 1403

to store the data. ciphertext is cut into n pieces by constructing
t-order polynomials, and the ciphertext fragments are distributed
to servers. Each storage server in the data management center
stores only one unique fragment of the ciphertext and the hash
of the keywords used for fragment retrieval.

When the data requester accesses the data, the data shar-
ing is realized by retrieving and aggregating the data. In data
aggregation, we do not need to aggregate all the ciphertext
fragments but only need to combine any t of the data fragments
to recover the original ciphertext. After the aggregator receives
the ciphertext fragments, the remaining data fragments are used
for verification to prevent a single point from being hijacked or
data recovery errors. This approach not only greatly reduces the
storage overhead of each server, but also prevents a situation
where the ciphertext data cannot be recovered due to a failure
or attack on one of the servers.

3) Resistance to Collusion Attacks: Our scheme can combat
collusion attacks between storage servers in the data manage-
ment center to obtain the access to stored shared data, which
leads to data leakage. The ciphertext data in the data management
center is encrypted at the personalized terminal encryption by
DCT , and then normalized re-encryption by the edge computing
center. The ciphertext is cut inton pieces by constructing t-order
polynomials, and then the ciphertext fragments are distributed
to servers. Only one of the ciphertext fragments is stored in each
storage server of the data management center. It is impossible
to obtain the complete ciphertext data without collusion among
at least t storage servers.

Even in the extreme case where more than t storage servers
collude to obtain the complete ciphertext, the ciphertext still
needs to be decrypted by the specific key. The specific key is
encrypted by the key management center based on the attributes
of the data requester, and the storage server in the data man-
agement center cannot decrypt the plaintext of the shared data.
Therefore, the shared private data cannot be accessed through
the storage server of the data management center in our scheme.

4) Controlling Number of Accesses to Shared Data: To en-
sure that the data can be used reasonably and normally, the
data management center sets the threshold δ for access times
when the ciphertext data is received, and the same data can
only be accessed by the same data requestor δ times. Each
storage server in the data management center stores a ciphertext
fragment and the corresponding threshold of access times for
the ciphertext fragment. When a data requester makes a data
sharing request, DMServer in DML verifies if the number of
accesses exceeds δ. If it does, access is denied. This prevents
malicious users who have the corresponding permission from
accessing the data indefinitely, avoiding the risk of data leakage.
This prevents data requester from repeatedly making the data
sharing request, thereby occupying communication bandwidth
and wasting resources. This access control therefore prevents
malicious users who have the corresponding permission from
accessing the data indefinitely, avoiding the risk of data leakage.

5) Data Access Record Traceability: When the data re-
quester DR makes a data request, DMServer in DML needs
to verify whether DR has shared data access authority. When
the verification is passed, the key management center TKML
encrypts this data sharing record based on its own private key and

generates the associated signature. Other participants in the data
sharing chain determine whether the shared record comes from
TKML by verifying the signature. If so, the record is stored.
The data sharing records are stored in the data sharing chain,
enhancing the tamperability of the records. The blockchain
structure ensures that each data sharing record is linked to the
preceding one, forming a chain-like structure. Once a record
is written into the chain, tampering with any individual record
necessitates modifying all subsequent records, a formidable task
on a blockchain. This guarantees the tamperability of shared
record data. The data sharing chain records the access history of
the data, and each data sharing record is linked to the previous
record, making it easy to track data usage and enhancing the
traceability of data access.

6) Resistance to EDoS Attacks: Some malicious data re-
questers who do not have access to the shared data may try
to maliciously take up the communication overhead by con-
tinuously making data sharing requests and downloading large
amounts of data, which causes the data sharing system to fail
to function properly. The proposed IoMT data sharing system is
resistant to this type of attacks.

When DR makes a data request, TKML first needs to
determine whether there is a record of DR accessing this data
in the data sharing chain. If relevant records exist, it will further
determine whether DR has access permission according to the
data access threshold. If there is no access record, the storage
server of the data management center first judges whether the
attribute set of DR can construct a data access control tree,
and then decides whether it has access permission based on the
voting consensus mechanism. If the data access control tree
is not satisfied or the data access threshold is exceeded, the
requested data cannot be downloaded. Therefore, EDoS attacks
cannot be launched by continuously maliciously downloading
large amounts of data. If DR persistently sends numerous unau-
thorized data sharing requests, they will be blacklisted, resulting
in the rejection of all subsequent access requests. This proactive
measure effectively curtails resource wastage. To manage the
subsequent access requests efficiently, automated processes or
manual intervention can be implemented for periodic review
and potential removal of flagged entities, ensuring continuous
system security and resource optimization.

7) Forward and Backward Security: During the key gener-
ation phase, the scheme employs the key generation algorithm
KeyGen based on system parameters to generate public-private
key pairs of DCT and special public-private key pairs, en-
suring the randomness and security of the generated key. The
key generation process utilizes the discrete logarithm problem
within group theory as a security foundation, involving steps
such as randomly selecting private keys and computing public
keys. These steps, rooted in mathematical complexities, enhance
forward security by making it challenging for attackers to com-
promise keys during generation.

In the re-encryption process, ReKeyGen is utilized to gen-
erate re-encryption keys, ensuring the security of data during
transmission. Within the ReKeyGen process, public-private
key pairs and special public-private key pairs are employed to
guarantee the secure and reliable generation of re-encryption
keys. When updating the special public-private key pairs, the

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

1404 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2025

system enhances backward security by selecting new private
keys and recalculating new special public-private key pairs
and re-encryption keys. This updating process only affects the
keys in ECL, avoiding the need to update keys in DCT and
minimizing the impact of system updates on the overall system,
thereby enhancing backward security.

8) Resistance to Man-in-The-Middle Attacks: Our scheme
establishes a hierarchical security protection system through the
collaborative operation of CP-ABE and proxy re-encryption. For
access permission verification, the scheme adopts the CP-ABE,
embedding access control policies directly into the ciphertext
structure. This ensures that each legitimate user’s decryption key
is bound to their specific set of attributes. This design not only
achieves fine-grained data access control but, more importantly,
establishes an intrinsic correlation between the key and the user’s
identity, fundamentally eliminating the possibility of attack-
ers obtaining valid information through simple eavesdropping.
When a man-in-the-middle attempts to intercept communication
content, they first encounter this layer of attribute verification—
attackers lacking compliant attributes cannot effectively decrypt
the encrypted data even if they obtain it.

On the dynamic protection level, the scheme further en-
hances system security through a key management mechanism.
The periodic key update algorithm introduced in the proxy
re-encryption phase ensures the time-constrained validity of
encryption keys. The re-encryption key update algorithm in the
scheme can securely perform key rotation while maintaining
continuous system operation. This dynamic feature strictly lim-
its the validity window of decryption keys, even if attackers
obtain them through certain means during a specific period.
More critically, all data access behaviors are recorded on the
data-sharing blockchain, forming an immutable and complete
audit trail. The dual safeguards of attribute verification and
dynamic key management make man-in-the-middle attacks the-
oretically and practically insurmountable obstacles.

VII. PERFORMANCE EVALUATION

This section provides further performance evaluation for our
proposed data sharing scheme.

A. Functionality Comparison

Table II compares our proposed data sharing scheme with
several existing data sharing schemes, in terms of data sharing
functionality. It can be seen that our scheme provides the most
functionality, and it can implement dynamic multi-user fine-
grained access control, distributed secure storage and recovery
of ciphertext. Therefore, our scheme is more suitable for data
sharing in IoMT edge computing and storage systems.

B. Experimental Evaluation

The proposed scheme is implemented on a user terminal de-
vice. We invoke the Java Pairing-Based Cryptography(JPBC) Li-
brary 2.0.0 [60] to implement the basic cryptographic operations
in our scheme. In the experiment, we choose an elliptic curve
of Type A on a 512-bit finite prime field, and the order of the

TABLE II
FUNCTIONALITY COMPARISON

TABLE III
EXECUTION TIMES OF BASIC CRYPTOGRAPHY OPERATIONS

multiplicative cyclic group on the elliptic curve is 160-bit. The
hardware environment where the experimental program runs is
Intel(R) Core(TM) i5-6500 CPU, 3.20 GHz CPU frequency,
12.0 GB memory. We use IntelliJ IDEA 2020.1.2 compilation
tool on Windows 10 operating system for programming. The
execution times required for basic cryptographic operations in
this environment are listed in Table III.

Table IV compares the computational complexity of our pro-
posed scheme with those of the existing schemes [25], [35], [48],
[57], in terms of the computational overhead of each entity as
well as execution time. It can be seen that our scheme imposes
the lowest total execution time.

Next we carry out some experiments to evaluate the perfor-
mance of the proposed model, in terms of the time consumption
in the four phases of the encryption system, initialization, re-
encryption key generation, plaintext encryption and ciphertext
decryption as well as in the distributed storage.

1) Fixed Data Length: IoMT data are collected and uploaded
in real-time, and often the data uploaded to the server in real-time
is of the same type and the same length. Therefore, we set the
constant data length of 128 bytes and investigate the execution
time of each stage of the system as the number of data increases.
The results obtained are depicted in Fig. 6.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: MULTI-USER ORIENTED DATA SHARING SCHEME FOR INTERNET 1405

TABLE IV
COMPUTATION OVERHEADS OF FIVE SCHEMES IN TERMS OF NUMBERS OF CRYPTOGRAPHY OPERATIONS REQUIRED AND EXECUTION TIMES

Fig. 6. Relationship between system runtime and the number of data. Each data has the fixed length of 128 bytes.

The system initialization is executed only once. The time
consumption of each initialization does not have clear math-
ematical relationship with the amount of plaintext but is related
to the algorithm design and more importantly to the specific
experimental environment. In other words, the time consumption
of system initialization is random. During the experiments, to
test the runtime of the data encryption and decryption algorithms
more accurately, we generated the key pairs in the initialization
phase and hence the re-encryption key generation phase is also
executed only once. At each execution, since the environment
is not guaranteed to be exactly the same as the previous envi-
ronment, the runtime fluctuates. Fig. 6(a) and (b) plot the mean
runtime values and the associated standard deviations averaged
over multiple runs in system initialization and re-encryption key
generation phases, respectively. It can be seen that the time
consumptions of system initialization and re-encryption key
generation are random and do not depend on the number of
data packets.

Fig. 6(c) and (d) depict the time consumptions in the data
encryption and decryption phases, respectively, where it can
be seen that the runtime increases linearly with the number of
plaintext data. Our experimental results indicate that the encryp-
tion and decryption times of a single plaintext data are 33 ms
and 8 ms, respectively. By multiplying the number of plaintext
data with 33 ms and 8 ms, we obtain the theoretical runtimes
of encryption and decryption phases, respectively, plotted in
Fig. 6(c) and (d) as the red dashed lines. However, in practice,

it is found that the actual runtimes are better than the theoretical
ones. The reason is that we can pre-calculate the computations of
the bilinear pairs during the actual operation so that the number
of calculations of the bilinear pairs is reduced, which in turn
reduces the time consumption.

2) Varible Data Length: In some scenarios, healthcare data
are accumulated locally, and the data accumulated over a certain
period of time are then uploaded. This forms the data of different
sizes that need to be encrypted and decrypted. We set the data size
from 1 MB to 100 MB and perform the personalized terminal
encryption, normalized re-encryption and ciphertext decryption
operations, respectively, to obtain the results shown in Fig. 7.
Since the runtimes required in the system initialization and re-
encryption key generation phases are random and do not have a
clear relationship with the size of data, they are not included in
Fig. 7.

It can be seen from Fig. 7 that the runtimes of the
personalized terminal encryption and ciphertext decryption
increase linearly with the data size, while the runtime of the
normalized re-encryption phase is random. The reason is that
the personalized terminal encryption and ciphertext decryption
depend on the size of the plaintext data but the normalized
re-encryption does not have clear relationship with the data
size. For 1 MB of data, the runtimes required for personalized
encryption and ciphertext decryption are about 68 ms and 50 ms,
respectively. We add the theoretical runtimes of personalized
terminal encryption and ciphertext decryption based on the

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

1406 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2025

Fig. 7. Relationship between system running time and individual data size.

results of 1 MB data as the red dashed lines in Fig. 7(a) and (c),
respectively, where again it can be seen that the actual runtimes
are better than the theoretical ones.

We compared the re-encryption phase of our scheme with that
of CLAP-PRE [40], as illustrated in Fig. 7(b). It can be observed
that the required re-encryption computation time remains nearly
constant despite variations in plaintext data packet sizes, with
our scheme consuming approximately half the time compared
to CLAP-PRE. Since the re-encryption phase is independent of
plaintext data, the consumed time remains relatively constant.
Moreover, in designing the re-encryption phase, we aimed to
minimize computational complexity by employing simple trans-
formations, thereby avoiding multiple bilinear pairing opera-
tions as in CLAP-PRE.

In Fig. 7(d), the total encryption time in our scheme is com-
pared with the CP-ABE encryption method. It is evident that,
with an increase in data packet size, our scheme outperforms
CP-ABE significantly. This is attributed to the fact that CP-ABE
necessitates encrypting plaintext data based on access control
structures, making the encryption process more intricate. There-
fore, it is not well-suited for applications with substantial data
requirements. However, in our proposed scheme, we employ
attribute-based encryption for decryption keys associated with
smaller data volumes, leveraging the advantages of attribute-
based encryption algorithms.

3) Multi-Data Requester: In order to verify the efficiency of
our scheme in a multi-user scenario, we introduced a simulation
experiment featuring multiple data requesters interacting with
the data storage center. In these experiments, we maintained
a fixed packet size of 1 MB and measured the data encryption
time statistics, presenting the results in Fig. 8. Where A-PRE is a
data sharing scheme implemented using the proxy re-encryption
method, proposed in [25]. It can be seen that the time of data
encryption in our scheme remains almost the same as the number
of users increases, while A-PRE is increasing. It is important to
note that due to significant numerical differences, the encryption
time for our proposed solution may appear to be 0 ms; however,
the actual value is around 75 ms. This is because the proxy
re-encryption scheme needs to re-encrypt the data once for each
user if there are multiple data users when sharing the data,
resulting in a linear increase in the encryption time with the
number of users. Our scheme addresses this limitation of the
proxy re-encryption approach by normalizing the ciphertext to
the ciphertext decrypted by a unified key. This normalization en-
ables a unified encryption process for multiple users, decoupling

Fig. 8. Multi-user data encryption.

the data encryption time from the number of data requesters.
As a result, our scheme demonstrates resilience to variations
in the number of users, ensuring consistent data encryption
performance.

4) Performance of Distributed Trusted Storage: We carry out
some experiments to evaluate the proposed distributed trusted
storage. As explained in Subsection V-E, in our scheme, after the
data management center receives the ciphertext data uploaded
from the edge processing center, it splits the ciphertext into n
fragments by constructing t-order polynomials and distributes
the ciphertext fragments to other servers to realize the distributed
storage of data, where n is the number of servers and t is
also called the ciphertext reconstruction threshold. When a data
requester made a data sharing request, the data management
center uses the ciphertext recovery method of Subsection V-E
to reconstruct the ciphertext by combining t fragments of the
ciphertext.

Fig. 9 depicts the computation times required for cipher-
text splitting and reconstruction as the functions of the num-
ber of servers n. It can be seen that both the times required
for ciphertext splitting and ciphertext reconstruction increase
with n. The reason is that increasing the number of servers
is equivalent to increasing the number of fragments, which
increases the total number of polynomial coefficients to be
constructed, thereby increasing the required ciphertext splitting
and ciphertext reconstruction times. It can also be seen that the
required ciphertext splitting and ciphertext recovery times for
the threshold t = 2

3n are higher than the corresponding times for

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: MULTI-USER ORIENTED DATA SHARING SCHEME FOR INTERNET 1407

Fig. 9. Computation times for ciphertext splitting and reconstruction versus
number of servers given two values of ciphertext reconstruction threshold t.

the threshold t = 1
2n. The reason is that the larger the threshold

value, the more polynomial coefficients need to be constructed
and the more computation time is required. Moreover, under the
same condition, ciphertext splitting takes much more time than
ciphertext reconstruction.

5) Communication Cost: In our data sharing scheme, the
health data undergoes a process of collection, encryption, stor-
age, and then retrieval by authenticated data requesters. This
process involves two main data flows: first, the data collection
and storage phase ”DCT → ECServer→DMServer”, and
second, the data sharing phase ”DMServer → DR”. Let’s
analyze the data communication overhead in detail for each
step of these data flows. Among them, the length of identity
information is 128 bits, the length of keywords is 160 bits, the
length of hash digest is 160 bits, the length of ciphertext is 1024
bits, and the maximum length of access control tree structure is
320 bits.
DCT →ECServer: AfterDCT collects plaintext data with

keywords {kws}, it performs personalized encryption to obtain
PCi, then uploads {kws, PCi} to ECServer. Therefore, the
data transmission size is 160+1024=1184 bits.
ECServer → DMServer: ECServer constructs an access

control tree Tree, manages and encrypts the ciphertext to obtain
normalized ciphertext UC, then uploads {H(kws), Tree, UC}
to DMServer. Therefore, the transmission size for this part is
160+320+1024=1504 bits.

DMServer → DR: DR sends data request {Identity,
HAS, H(kws)} to DMServer. DMServer communicates
with TKML to verify DR’s information and generates
ciphertext for the decryption key if verification passes.
The messages exchanged between them are {Identity,
Tree} and {KC}. Finally, DMServer sends {UC, KC}
to DR. In this process, the total transmission size
is {128+160+160}+{128+320}+{1024}+{1024+1024}=3968
bits.

VIII. CONCLUSION

Medical data sharing is integral to collaborative medical
decision-making, research, and innovation. However, within the

context of IoMT, the sharing of sensitive information poses risks
of privacy breaches. To address this challenge, our research
has focused on employing a dual encryption mechanism that
combines proxy re-encryption and attribute-based encryption.
This approach enables fine-grained access control and simplifies
permission management. Additionally, we introduce a decen-
tralized ciphertext storage and recovery mechanism based on
Shamir secret sharing, enhancing data reliability and stabil-
ity. Utilizing data sharing chains and attribute change chains
streamlines the user permission determination process and en-
sures the security of shared records. Our proposed scheme
is validated for correctness and confidentiality under the ran-
dom oracle model, with performance evaluations demonstrating
its suitability and efficiency in IoMT environments. The dual
cryptographic mechanism proposed in the scheme is theoreti-
cally sound, but subsequent research and practical deployment
must prioritize resolving interoperability issues between differ-
ent healthcare institution information systems. Attribute-based
encryption requires a unified attribute namespace and policy
expression standards, which are currently lacking in the health-
care industry. The proxy re-encryption component necessitates
establishing a unified key management framework for cross-
institutional sharing, presenting significant challenges for imple-
mentation in distributed healthcare environments. Additionally,
compatibility considerations with emerging standards must be
addressed.

REFERENCES

[1] S. Messinis et al., “Enhancing internet of medical things security with
artificial intelligence: A comprehensive review,” Comput. Biol. Med.,
vol. 170, 2024, Art. no. 108036.

[2] V. Puri, A. Kataria, and V. Sharma, “Artificial intelligence-powered decen-
tralized framework for Internet of Things in healthcare 4.0,” Trans. Emerg.
Telecommun. Technol., vol. 35, no. 4, 2024, Art. no. e4245.

[3] X. Liu, P. Liu, B. Yang, and Y. Chen, “One multi-receiver certificateless
searchable public key encryption scheme for IoMT assisted by LLM,” J.
Inf. Secur. Appl., vol. 90, 2025, Art. no. 104011.

[4] G. Xu et al., “Anonymity-enhanced sequential multi-signer ring signature
for secure medical data sharing in IoMT,” IEEE Trans. Inf. Forensics
Secur., vol. 20, pp. 5647–5662, 2025.

[5] S. F. Ahmed et al., “Insights into internet of medical things (iomt): Data
fusion, security issues and potential solutions,” Inf. Fusion, vol. 102, 2024,
Art. no. 102060.

[6] S. Rani, S. Kumar, A. Kataria, and H. Min, “Smarthealth: An intelligent
framework to secure IoMT service applications using machine learning,”
ICT Exp., vol. 10, no. 2, pp. 425–430, 2024.

[7] B. Bhushan, A. Kumar, A. K. Agarwal, A. Kumar, P. Bhattacharya, and
A. Kumar, “Towards a secure and sustainable internet of medical things
(IoMT): Requirements, design challenges, security techniques, and future
trends,” Sustainability, vol. 15, no. 7, 2023, Art. no. 6177.

[8] O. J. Akindote et al., “Evaluating the effectiveness of it project manage-
ment in healthcare digitalization: A review,” Int. Med. Sci. Res. J., vol. 4,
no. 1, pp. 37–50, 2024.

[9] H. Jiang, P. Ji, T. Zhang, H. Cao, and D. Liu, “Two-factor authentication for
keyless entry system via finger-induced vibrations,” IEEE Trans. Mobile
Comput., vol. 23, no. 10, pp. 9708–9720, Oct. 2024.

[10] J. Hu et al., “WiShield: Privacy against Wi-Fi human tracking,” IEEE J.
Sel. Areas Commun., vol. 42, no. 10, pp. 2970–2984, Oct. 2024.

[11] Raghav et al., “Proactive threshold-proxy re-encryption scheme for secure
data sharing on cloud,” J. Supercomputing, vol. 79, no. 13, pp. 14117–
14145, 2023.

[12] V. Muthukumaran and D. Ezhilmaran, “A cloud-assisted proxy re-
encryption scheme for efficient data sharing across IoT systems,” in
Research Anthology on Convergence of Blockchain, Internet of Things,
and Security. Hershey, PE, USA: IGI Global, 2023, pp. 626–646.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

1408 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2025

[13] F. Hu, H. Yang, L. Qiu, S. Wei, H. Hu, and H. Zhou, “Spatial structure
and organization of the medical device industry urban network in China:
Evidence from specialized, refined, distinctive, and innovative firms,”
Front. Public Health, vol. 13, 2025, Art. no. 1518327.

[14] C. Chen and J. Pan, “The effect of the health poverty alleviation project
on financial risk protection for rural residents: Evidence from chishui city,
China,” Int. J. Equity Health vol. 18, no. 1, 2019, Art. no. 79.

[15] S. Das and S. Namasudra, “Macpabe: Multi-authority-based cp-abe with
efficient attribute revocation for IoT-enabled healthcare infrastructure,”
Int. J. Netw. Manage., vol. 33, no. 3, 2023, Art. no. e2200.

[16] M. Waqas et al., “The role of artificial intelligence and machine learning
in wireless networks security: Principle, practice and challenges,” Artif.
Intell. Rev. vol. 55, pp. 5215–5261, 2022.

[17] A. Ometov, O. L. Molua, M. Komarov, and J. Nurmi, “A survey of
security in cloud, edge, and fog computing,” Sensors, vol. 22, no. 3, 2022,
Art. no. 927.

[18] Y. Zhou, K. Liu, and P. Vijayakumar, “FTPS: Efficient fault-tolerant
dynamic phrase search over outsourced encrypted data with forward and
backward privacy,” Concurrency Computation: Pract. Experience, vol. 34,
no. 28, 2022, Art. no. e7360.

[19] M. Haus, M. Waqas, A. Y. Ding, Y. Li, S. Tarkoma, and J. Ott, “Security
and privacy in device-to-device (D2D) communication: A review,” IEEE
Commun. Surveys Tuts., vol. 19, no. 2, pp. 1054–1079, Secondquarter
2017.

[20] T. Wang, J. Zhou, X. Chen, G. Wang, A. Liu, and Y. Liu, “A three-layer
privacy preserving cloud storage scheme based on computational intel-
ligence in fog computing,” IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 1, pp. 3–12, Feb. 2018.

[21] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[22] A. Mohammadali and M. S. Haghighi, “A privacy-preserving homomor-
phic scheme with multiple dimensions and fault tolerance for metering
data aggregation in smart grid,” IEEE Trans. Smart Grid, vol. 12, no. 6,
pp. 5212–5220, Nov. 2021.

[23] Y. Su, Y. Li, J. Li, and K. Zhang, “LCEDA: Lightweight and
communication-efficient data aggregation scheme for smart grid,” IEEE
Internet Things J., vol. 8, no. 20, pp. 15639–15648, Oct. 2021.

[24] Y. Su, J. Li, Y. Li, and Z. Su, “Edge-enabled: A scalable and decentralized
data aggregation scheme for IoT,” IEEE Trans. Ind. Informat., vol. 19,
no. 2, pp. 1854–1862, Feb. 2023.

[25] H. Guo et al., “Accountable proxy re-encryption for secure data sharing,”
IEEE Trans. Dependable Secure Comput., vol. 18, no. 1, pp. 145–159,
Jan./Feb. 2021.

[26] H. Pei et al., “Proxy re-encryption for secure data sharing with
blockchain in Internet of Medical Things,” Comput. Netw., vol. 245, 2024,
Art. no. 110373.

[27] S. Das and S. Namasudra, “Multiauthority CP-ABE-based access control
model for IoT-enabled healthcare infrastructure,” IEEE Trans. Ind. Infor-
mat., vol. 19, no. 1, pp. 821–829, Jan. 2023.

[28] Y. Zhou et al., “TRE-DSP: A traceable and revocable CP-ABE based
data sharing scheme for iov with partially hidden policy,” Digit. Commun.
Netw., vol. 11, pp. 455–464, 2024.

[29] M. Xie, Y. Ruan, H. Hong, and J. Shao, “A CP-ABE scheme based
on multi-authority in hybrid clouds for mobile devices,” Future Gener.
Comput. Syst., vol. 121, pp. 114–122, Aug. 2021.

[30] Z. Ren, E. Yan, T. Chen, and Y. Yu, “Blockchain-based CP-ABE
data sharing and privacy-preserving scheme using distributed kms and
zero-knowledge proof,” J. Saud Univ.-Comput. Inf. Sci., vol. 36, 2024,
Art. no. 101969.

[31] Y. Yang, J. Sun, Z. Liu, and Y. Qiao, “Practical revocable and multi-
authority CP-ABE scheme from RLWE for cloud computing,” J. Inf. Secur.
Appl., vol. 65, Mar. 2022, Art. no. 103108.

[32] S. Zhang, F. Guo, C. Jing, and C. Wu, “Electronic medical record privacy
protection scheme based on attribute encryption technology,” in Proc.
IAEAC 2024 Chongqing, China, Mar. 2024, vol. 7, pp. 402–412.

[33] M. Zhang, E. Wei, R. Berry, and J. Huang, “Age-dependent differential
privacy,” IEEE Trans. Inf. Theory, vol. 70, no. 2, pp. 1300–1319, Feb. 2024.

[34] K. Xue, W. Chen, W. Li, J. Hong, and P. Hong, “Combining data owner-side
and cloud-side access control for encrypted cloud storage,” IEEE Trans.
Inf. Forensics Secur., vol. 13, no. 8, pp. 2062–2074, Aug. 2018.

[35] J. Zhang et al., “Enabling efficient data sharing with auditable user re-
vocation for IoV systems,” IEEE Syst. J., vol. 16, no. 1, pp. 1355–1366,
Mar. 2022.

[36] Y. Yang, X. Chen, H. Chen, and X. Du, “Improving privacy and secu-
rity in decentralizing multi-authority attribute-based encryption in cloud
computing,” IEEE Access, vol. 6, pp. 18009–18021, 2018.

[37] N. Vaanchig, W. Chen, and Z. Qin, “Ciphertext-policy attribute-based ac-
cess control with effective user revocation for cloud data sharing system,”
in Proc. CBD 2016, Chengdu, China, Aug. 2016, pp. 186–193.

[38] L. Zhang, S. Xie, Q. Wu, and F. Rezaeibagha, “Enhanced secure attribute-
based dynamic data sharing scheme with efficient access policy hiding
and policy updating for iomt,” IEEE Internet Things J., vol. 11, no. 16,
pp. 27435–27447, Aug. 2024.

[39] M. A. et al., “A secure and privacy preserved data aggregation scheme in
IoMT,” Heliyon, vol. 10, 2024, Art. no. e27177.

[40] C. Ren et al., “Clap-pre: Certificateless autonomous path proxy re-
encryption for data sharing in the cloud,” Appl. Sci., vol. 12, no. 9, 2022,
Art. no. 4353.

[41] B. Gong et al., “SLIM: A secure and lightweightmulti-authority attribute-
based signcryption scheme for IoT,” IEEE Trans. Inf. Forensics Secur.,
vol. 19, pp. 1299–1312, 2024.

[42] S. Tu, M. Waqas, A. Badshah, M. Yin, and G. Abbas, “Network intru-
sion detection system (NIDS) based on pseudo-Siamese stacked autoen-
coders in fog computing,” IEEE Trans. Serv. Comput., vol. 16, no. 6,
pp. 4317–4327, Nov./Dec. 2023.

[43] J. Li et al., “Multiauthority attribute-based encryption for assuring data
deletion,” IEEE Syst. J., vol. 17, no. 2, pp. 2029–2038, Jun. 2023.

[44] W. Weng, J. Li, Y. Zhang, Y. Lu, J. Shen, and J. Han, “Efficient registered
attribute based access control with same sub-policies in mobile cloud
computing,” IEEE Trans. Mobile Comput., vol. 24, no. 9, pp. 8441–8453,
Sep. 2025.

[45] J. Li et al., “Attribute based encryption with privacy protection and ac-
countability for CloudIoT,” IEEE Trans. Cloud Comput., vol. 10, no. 2,
pp. 762–773, Apr.–Jun. 2022.

[46] J. Li, E. Zhang, J. Han, Y. Zhang, and J. Shen, “PH-MG-ABE: A flexible
policy-hidden multigroup attribute-based encryption scheme for secure
cloud ctorage,” IEEE Internet Things J., vol. 12, no. 2, pp. 2146–2157,
Jan. 2025.

[47] S. Chen, J. Li, Y. Zhang, and J. Han, “Efficient revocable attribute-based
encryption with verifiable vata integrity,” IEEE Internet Things J., vol. 11,
no. 6, pp. 10441–10451, Mar. 2024.

[48] H. Sun et al., “A fine-grained and traceable multidomain secure data-
sharing model for intelligent terminals in edge-cloud collaboration sce-
narios,” Int. J. Intell. Syst., vol. 37, no. 3, pp. 2543–2566, 2022.

[49] J. Ning et al., “Auditable σ-time outsourced attribute-based encryption
for access control in cloud computing,” IEEE Trans. Inf. Forensics Secur.,
vol. 13, no. 1, pp. 94–105, Jan. 2018.

[50] S. Wang et al., “Attribute-based data sharing scheme revisited in
cloud computing,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 8,
pp. 1661–1673, Aug. 2016.

[51] C. Lan, C. Wang, H. Li, and L. Liu, “Comments on ‘attribute-based data
sharing scheme revisited in cloud computing’,” IEEE Trans. Inf. Forensics
Secur., vol. 16, pp. 2579–2580, 2021.

[52] M. Kumar and A. Singh, “Bloom filter empowered smart storage/access
in IoMT [edge-fog-cloud] hierarchy for health-care data ingestion,” Con-
currency Computation: Pract. Experience, vol. 36, 2024, Art. no. e8012.

[53] L. Jiang and D. Guo, “Dynamic encrypted data sharing scheme based
on conditional proxy broadcast re-encryption for cloud storage,” IEEE
Access, vol. 5, pp. 13336–13345, 2017.

[54] S. Wang, D. Zhang, Y. Zhang, and L. Liu, “Efficiently revocable and
searchable attribute-based encryption scheme for mobile cloud storage,”
IEEE Access, vol. 6, pp. 30444–30457, 2018.

[55] B. Seth et al., “Integrating encryption techniques for secure data storage
in the cloud,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 4, 2022,
Art. no. e4108.

[56] M. O. U. Islam et al., “Lightweight medical-image encryption technique
for iomt based healthcare applications,” Multimedia Tools Appl., vol. 84,
pp. 8929–8964, 2025.

[57] Y. Pu, C. Hu, S. Deng, and A. Alrawais, “R2PEDS: A recoverable and
revocable privacy-preserving edge data sharing scheme,” IEEE Internet
Things J., vol. 7, no. 9, pp. 8077–8089, Sep. 2020.

[58] D. Zeng, A. Badshah, S. Tu, M. Waqas, and Z. Han, “A security-enhanced
ultra-lightweight and anonymous user authentication protocol for tele-
healthcare information systems,” IEEE Trans. Mobile Comput., vol. 24,
no. 5, pp. 4529–4542, May 2025.

[59] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. SP 2007. Berkeley, CA, USA, May 2007,
pp. 321–334.

[60] A. D. Caro and V. Iovino, “jPBCJ: JAVA pairing based cryptography,” in
Proc. ISCC, 2011, Kerkyra, Greece, 2011, pp. 850–855.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 01,2026 at 20:05:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

