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Abstract—In contrast to Part I of this treatise (Xing, 2021)
that focuses on the optimization problems associated with single
matrix variables, in this paper, we investigate the application of
the matrix-monotonic optimization framework in the optimization
problems associated with multiple matrix variables. It is revealed
that matrix-monotonic optimization still works even for multiple
matrix-variate based optimization problems, provided that certain
conditions are satisfied. Using this framework, the optimal struc-
tures of the matrix variables can be derived and the associated
multiple matrix-variate optimization problems can be substantially
simplified. In this paper several specific examples are given, which
are essentially open problems. Firstly, we investigate multi-user
multiple-input multiple-output (MU-MIMO) uplink communica-
tions under various power constraints. Using the proposed frame-
work, the optimal structures of the precoding matrices at each
user under various power constraints can be derived. Secondly, we
considered the optimization of the signal compression matrices at
each sensor under various power constraints in distributed sensor
networks. Finally, we investigate the transceiver optimization for
multi-hop amplify-and-forward (AF) MIMO relaying networks
with imperfect channel state information (CSI) under various
power constraints. At the end of this paper, several simulation
results are given to demonstrate the accuracy of the proposed
theoretical results.

Index Terms—MIMO, matrix-monotonic optimization, multiple
matrix-variate optimizations.
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I. MOTIVATIONS

THE deployment of multi-antenna arrays opened a door
to effectively exploit spatial resources to improve energy

efficiency and spectrum efficiency [1]–[5]. Meanwhile, the in-
volved design variables are usually matrices instead of simple
scalars [6]–[8]. In order to solve the matrix-variate optimiza-
tion problems for MIMO communications efficiently, the most
widely used logic is first to derive the optimal structures of
the matrix variables. Then based on the optimal structures,
the considered optimization problems can be greatly simplified
[9]–[16].

Matrix-monotonic optimization is an interesting framework
that takes advantage of monotonic property in positive semidef-
inite matrix set to derive the optimal structures of optimization
variables [1], [17]–[20]. In Part I [1], we focus our attention on
single-variable optimization problems. However, for many prac-
tical optimization problems there are multiple matrix variates to
optimize. For example, in multi-user multiple-input multiple-
output (MU-MIMO) communication systems, the transceiver
optimization processes of the downlink and uplink involve multi-
ple matrix variables, namely the equalizer matrices and precoder
matrices [21]–[24]. For multi-carrier MIMO systems, in each
subcarrier there is a precoder matrix and an equalizer matrix [17].
Moreover, in multi-hop communications the forwarding matrix
of each relay has to be optimized [25], [26].

This fact inspires us to take a further step and to inves-
tigate the optimization problems hinging on multiple matrix-
variables. Generally speaking, solving an optimization problem
having multiple matrix-variables is more challenging than its
single matrix-variable counterpart. How to solve this kind of
optimization problems has attracted substantial attention both
across the wireless communication and signal processing re-
search communities [21]–[23]. In contrast to single matrix-
variable optimizations, for multiple matrix-variable optimiza-
tion in most cases it is impossible to derive the optimal solutions
in closed-form. Iterative optimization algorithms or alternating
optimization algorithms have neeb widely used to solve this
kind of optimization problems [23]–[27]. Unfortunately, there
is no general-purpose mathematical tool or framework that can
cover all the kinds of optimization problems. In some cases,
similar to the single-variable case, for multiple matrix-variable
optimization first the optimal structures of the matrix variables
have to be derived, based on which the optimization can be
significantly simplified and the corresponding convergence rate
can be substantially improved.
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In this paper, we investigate in detail, how to exploit the
hidden monotonicity in positive semidefinite matrix fields to
derive the optimal structures of the multiple matrix variables.
Based on the optimal structures, the optimizations of multiple
matrix variables can be significantly simplified. In our work, it
is revealed that for many optimization problems associated with
multiple matrix variables, the matrix-monotonic optimization
framework still works. We also would like to point out that the
authors of [17] also investigate how to apply matrix-monotonic
optimization to optimization problems associated with multiple
matrix variables. However, it is worth highlighting that the
previous contribution [17] only considers a simple sum power
constraint. By contrast, our work in this paper is significantly
different from that in [17], since here diverse power constraints
are taken into account, such as the multiple weighted power
constraints of [20], the shaping constraint of [28], [29] and so
on. Additionally, more scenarios are also taken into account.
Furthermore, in addition to the multi-hop systems investigated
in [17], in this paper, the MU-MIMO uplink and distributed
sensor networks are also considered.

The main contributions of this paper are enumerated in the
following. These contributions distinguish our work from the
existing related works.
� Firstly, we investigate precoder optimization in the up-

link of MU-MIMO communications under three different
power constraints, namely the shaping constraint, joint
power constraint and multiple weighted power constraints.
Based on the matrix-monotonic optimization framework,
the optimal structures of the matrix variables can be de-
rived. Then the optimization can be substantially simplified
and can be efficiently solved by an iterative algorithm.
In each iteration based on the optimal structure, the op-
timal solutions of the remaining variables are standard
water-filling solutions. We cover the precoder optimiza-
tion under per-antenna power constraint as its special
cases.

� Secondly, we investigate the signal compression matrix
optimization problem in a distributed sensor network under
the above three power constraints. For this data fusion
optimization, there exist correlations between the signals
transmitted from different sensors. This makes the cor-
responding optimization problem significantly different
from that in the MU-MIMO uplink. Moreover, in con-
trast to [27], where at each sensor only the sum power
constraint is considered, in our work more general power
constraints are taken into account, namely the shaping
constraint, joint power constraint and multiple weighted
power constraints. This is our main contribution. Based on
the matrix-monotonic optimization framework, the optimal
structures of the compression matrices can be derived and
the optimal solutions of the remaining vectors are found to
correspond to water-filling solutions.

� Thirdly, we investigate the robust transceiver optimization
problem of multi-hop amplify-and-forward (AF) cooper-
ative MIMO networks, including both linear and nonlin-
ear transceivers. For the linear transceivers, various kinds
of performance metrics are taken into account, namely

the additively Schur-convex and Schur-concave scenar-
ios [25], [26], [30]. On the other hand, for nonlinear
transceivers, both decision feedback equalizers (DFE) and
Tomlinson-Harashima precoding (THP) are investigated.
In contrast to [28], [31], various power constraints are
taken into account in the robust transceiver optimization
instead of the simple sum power constraint. Based on the
proposed framework, the optimal structures of the robust
transceiver design can be derived, based on which the
robust transceiver optimization can be efficiently solved.
Hence our contribution fills a void in the robust transceiver
design literature of multi-hop AF MIMO systems under
multiple weighted power constraints.

The remainder of this paper is organized as follows. In
Section II, the basic properties of the framework on matrix-
monotonic optimizations are given first. Following that, the MU-
MIMO uplink is investigated in Section III. Compression matrix
optimization for distributed sensor networks is discussed based
on matrix-monotonic optimization in Section IV. In Section V,
robust transceiver optimization is proposed for multi-hop AF
MIMO relaying networks separately under shaping constraints,
joint power constraints and multiple weighted power constraints.
Several numerical results are given in Section VII, Finally, the
conclusions are drawn in Section VIII.

Notation: To be consistent with our Part I work [1], the
following notations and definitions are used throughout this
paper. The symbols ZH, ZT, Tr(Z) and |Z| denote the Her-
mitian transpose, transpose, trace and determinant of matrix
Z, respectively. The matrix Z

1
2 is the Hermitian square root

of a positive semidefinite matrix Z, which is also a positive
semidefinite matrix. For anN ×N matrixZ, the vectorλ(Z) is
defined asλ(Z) = [λ1(Z), . . . , λN (Z)]T whereλi(Z) denotes
the ith largest eigenvalue of Z. The symbol [Z]i,j denotes the
ith-row and jth-column element. On the other hand, the symbol
d(Z) denotes the vector consisting of the diagonal elements of
Z. The identity matrix is denoted by I . In this paper, Λ always
represents a diagonal matrix, and Λ ↘ and Λ ↗ represent a
rectangular or square diagonal matrix with the diagonal elements
in descending order and ascending order, respectively.

II. FUNDAMENTALS OF MATRIX-MONOTONIC OPTIMIZATION

In this paper, we investigate a real valued optimization prob-
lem with multiple complex matrix variables {Xk}Kk=1 which is
generally formulated as

Opt.1.1 : min
{Xk}Kk=1

f0({Xk}Kk=1),

s.t. ψk,i(Xk) ≤ 0,

1 ≤ k ≤ K, 1 ≤ i ≤ Ik, (1)

where ψk,i(·), 1 ≤ k ≤ K, 1 ≤ i ≤ Ik, denotes the constraint
functions. Similar to the single-variate matrix-monotonic opti-
mization investigated in Part I [1], all constraints considered in
this paper are right unitarily invariant, i.e., for arbitrary unitary
matrices QXk

’s,

ψk,i

(
XkQXk

)
= ψk,i (Xk) . (2)
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In the following, several specific power constraints are given.
The general power constraint model is one of the main contri-
butions of this work.

A. The Constraints on Multiple Matrix Variables

The simplest constraint is sum power constraint, i.e., the sum
power across all transmit antennas is smaller than a predefined
threshold. For example, in MU-MIMO uplink communications,
each mobile terminal has a sum power constraint such as

Tr
(
XkX

H
k

) ≤ Pk. (3)

It is obvious that the sum power constraint is right unitarily
invariant. Moreover, in order to constrain the fluctuation of the
eigenvalues ofXkX

H
k , the following joint power constraint will

be used [28], [29]

Tr
(
XkX

H
k

) ≤ Pk, XkX
H
k � τkI. (4)

The difference between the sum power constraint and the joint
power constraint is that there is an additional maximum eigen-
value constraint. It is obvious that the joint power constraint is
right unitarily invariant.

From the circuit viewpoint, each amplifier is connected to
one distinct antenna. It is not reasonable to use the sum power
as a constraint as the powers cannot be shared between different
antennas. In other words, the individual power constraint or per-
antenna power constraint is more practical, which is formulated
as [21], [31], [32][

XkX
H
k

]
n,n

≤ Pk,n, n = 1, . . . , N. (5)

The per-antenna power constraint is also right unitarily invariant.
It is worth highlighting that the per-antenna power constraint
cannot include the sum power constraint as its special case.

In order to build a more general constraint model including
more specific power constraints as its special cases, multiple
weighted power constraints are given in the following [1], [20]

Tr
(
Ωk,iXkX

H
k

) ≤ Pk,i, i = 1, . . . , Ik, (6)

where Ik is the number of weighted power constraints for the
kth variable Xk. The positive semidefinite matrices Ωk,i’s are
weighting matrices. The multiple weighted power constraints
are right unitarily invariant as well.

Finally, in order to constrain the transmit signals to be in a de-
sired region, shaping constraint can be used. Shaping constraint
is a constraint on the covariance matrix of transmitted signals.
Specifically, the shaping constraint on a matrix variable Xk is
defined as [28], [33]

XkX
H
k � Rsk , (7)

where Rsk is the desired signal shaping matrix [28], [33]. The
shaping constraint (7) is right unitarily invariant as well. Under
these power constraints, in the following we give the properties
which are the basis of application of the framework of matrix-
monotonic optimization.

From a mathematical perspective, the more complicated
power constraints will significantly change the feasible set com-
pared to that of the sum power constraint. This is because the sum

power constraint is both right unitarily invariant and left unitarily
invariant, however the general power constraints are only right
unitarily invariant. In other words, the symmetry of sum power
constraint does not exist for the general power constraints such
as multiple weighted power constraints. It is clear that under
multiple weighted power constraints the extreme values and the
optimal solutions are significantly different from that under the
sum power constraint. The multiple weighted power constraints
model also includes the sum power constraint model as its
special case. Note that the sum power constraint model is not
a special case of the per-antenna power constraint model. One
model can include two different constraint models as its special
cases. This is also an advantage of the multiple weighted power
constraints model.

B. Matrix-Monotonic Properties

The framework of matrix-monotonic optimization aims at ex-
ploiting the monotonicity in positive semidefinite field to derive
the optimal structures of the matrix variates. As the constraints
in Opt. 1.1 are right unitarily invariant, definingXk = F kQXk

Opt. 1.1 is equivalent to the following optimization problem

Opt.1.2 : min
{F k,QXk

}Kk=1

f0({F kQXk
}Kk=1),

s.t. ψk,i(F k) ≤ 0,

1 ≤ k ≤ K, 1 ≤ i ≤ Ik (8)

In our work, Opt. 1.2: satisfies the following properties.
For the kth optimal unitary matrix QXk

, the objective
function in Opt. 1.2 can be transferred into a function of
λ(FH

k ΠkF k) i.e.,

f0({F kQXk
}Kk=1) = g0,k(λ(F

H
k ΠkF k)), for k = 1, . . . ,K

(9)

with g0,k(λ(F
H
k ΠkF k)) being a monotonically decreasing

function with respect to λ(FH
k ΠkF k) for k = 1, . . . ,K. The

optimal F k is a Pareto optimal solution of the following vector
optimization subproblem

Opt.1.3 : max
F k

λ(FH
k ΠkF k),

s.t. ψk,i(F k) ≤ 0, 1 ≤ i ≤ Ik, (10)

which is equivalent to the following matrix-monotonic optimiza-
tion problem [1], [17]

Opt.1.4 : max
F k

FH
k ΠkF k,

s.t. ψk,i(F k) ≤ 0, 1 ≤ i ≤ Ik. (11)

where Πk is independent of F k. Then, based on the results of
Part I [1], the optimal structure of F k can be derived. Based on
the optimal structures, the optimization problem can be substan-
tially simplified. To elaborate a little further, given the optimal
structures, the optimization problem Opt. 1.2 associated with
multiple matrix variables can be efficiently solved in an iterative
manner. It is worth noting that given the optimal structures,
an iterative algorithm is still needed to solve Opt. 1.2 and in
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most cases the iterative algorithms used are iterative water-filling
algorithms [53], [54]. Suffice to say that the convergence of this
kind of algorithms can be guaranteed, but in a general case after
convergence only covergence to the local optimum of the final
solutions can be guaranteed. Based on Part I [1], in the following
the fundamental results for Opt. 1.4 are given, which constitute
the basis for the following sections.

Shaping Constraint For the shaping constraint, Opt. 1.4
becomes the following optimization problem [28]

Opt.1.5 : maxF k
FH

k ΠkF k

s.t. F kF
H
k � Rsk . (12)

The following lemma reveals the optimal structure of F k for
Opt. 1.5 with the shaping constraint.

Lemma 1: When the rank ofRsk is not higher than the number
of columns and the number of rows in F k, the optimal solution
F opt,k of Opt. 1.5 is a square root of Rsk , i.e., F opt,kF

H
opt,k =

Rsk .
Joint Power Constraint Under the joint power constraint,

Opt. 1.4 can be rewritten as

Opt.1.6 : maxF k
FH

k ΠkF k

s.t. Tr
(
F kF

H
k

)≤Pk,F kF
H
k � τkI. (13)

The Pareto optimal solution F opt,k for Opt. 1.6 is given in
Lemma 2.

Lemma 2: For Opt. 1.6 with the joint power constraint, the
Pareto optimal solutions satisfy the following structure

F opt,k = UΠk
ΛF k

UH
Arb,k, (14)

where the unitary matrix UΠk
is specified by the EVD

Πk = UΠk
ΛΠk

UH
Πk

with ΛΠk
↘, (15)

every diagonal element of the rectangular diagonal matrix ΛF k

is smaller than
√
τk, and UArb,k is an arbitrary unitary matrix

having the appropriate dimension.
Multiple Weighted Power Constraints Under the multiple

weighted power constraints, Opt. 1.4 becomes

Opt.1.7 : max
F k

FH
k ΠkF k

s.t. Tr
(
Ωk,iF kF

H
k

)≤Pk,i, 1 ≤ i ≤ Ik. (16)

Note that the weighted power constraints include both the sum
power constraint and per-antenna power constraints as its special
cases. The Pareto optimal solution F opt,k for Opt. 1.7 is given
in Lemma 3.

Lemma 3: The Pareto optimal solutions of Opt. 1.6 satisfy
the following structure

F opt,k = Ω
− 1

2

k U
˜Πk

Λ
˜F k

UH
Arb,k, (17)

where UArb,k is an arbitrary unitary matrix of appropri-
ate dimension, Ωk =

∑Ik
i=1 αk,iΩk,i, the nonnegative scalars

αk,i are the weighting factors that ensure that the constraints
Tr(Ωk,iF kF

H
k ) ≤ Pk,i hold and they can be computed by

classic subgradient methods, while the unitary matrix U
˜Πk

is

specified by the EVD

Ω
− 1

2

k ΠkΩ
− 1

2

k = U
˜Πk

Λ
˜Πk

UH
˜Πk

with Λ
˜Πk

↘ . (18)

In this paper, we focus our attention on the optimization prob-
lems of multiple complex matrix variates. In order to overcome
the difficulties arising from the coupling relationships among the
multiple matrix variates, the right unitarily invariant property of
the constraints in Opt. 1.1 is exploited to introduce a series of
auxiliary unitary matrices. Each auxiliary unitary matrix aligns
its corresponding matrix variable to achieve extreme objective
values. As a result, the optimal solutions of the matrix variables
are Pareto optimal solutions of a series of single-variate matrix
monotonic optimization problems. Then the optimal structure of
each matrix variable can be derived, based on which the original
optimization problem can be solved efficiently in an iterative
manner. In the following, three specific optimization problems
will be investigated, namely transceiver optimization for the
multi-user MIMO (MU-MIMO) uplink, signal compression for
distributed sensor networks and transceiver optimizations for
multi-hop amplify-and-forward (AF) MIMO relaying networks.
Generally speaking, an auxiliary unitary matrix aligns its left-
hand side and righthand side with its corresponding matrix
variables. The three examples are specifically chosen for char-
acterizing the effects of the matrix variates on the auxiliary
unitary matrices. Specifically, in the transceiver optimization of
the MU-MIMO uplink, when optimizing the kth matrix variate,
the other matrix variates only affect the righthand side of the
corresponding unitary matrix. As for signal compression in
distributed sensor networks, when optimizing the kth matrix
variate, the effects of other matrix variates are only on the
lefthand side of the corresponding unitary matrix. Finally, as
for transceiver optimizations in AF MIMO relaying networks,
when optimizing the kth matrix variate, the other matrix variates
affect both sides of the corresponding unitary matrix.

III. MU-MIMO UPLINK COMMUNICATIONS

The first application scenario for the matrix monotonic opti-
mization theory is found in MU MIMO uplink communications.
In the MU MIMO uplink system of Fig. 1,Kmulti-antenna aided
mobile users communicate with a multi-antenna assisted base
station (BS) [34]–[37]. The BS recovers the signals transmitted
from all the K mobile terminals. The sum rate maximization
problem associated with this MU-MIMO uplink can be formu-
lated as follows [21], [34]–[36]

Opt.2.1: min
{P k}Kk=1

− log

∣∣∣∣Rn +
K∑

k=1

HkXkW kX
H
k H

H
k

∣∣∣∣,
s.t. ψk,i(Xk) ≤ 0, 1 ≤ i ≤ Ik, 1 ≤ k ≤ K,

(19)

where Hk is the MIMO channel matrix between the kth user
and the BS, Xk is the precoding matrix at the kth user, and
Rn is the additive noise’s covariance matrix at the BS. For the
kth user, the positive definite matrix W k is the corresponding
weighting matrix. Different from the work in [21], the power
constraints considered in our work are more general than the per-
antenna power constraints in [21]. Similar to Opt. 1.2, defining
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Fig. 1. The uplink of MU-MIMO communications.

Xk = F kQXk
, the optimization problem (19) is equivalent to

Opt.2.2: min
{F k}Kk=1

− log

∣∣∣∣Rn+
K∑

k=1

HkF kQXk
W kQ

H
Xk

FH
k H

H
k

∣∣∣∣,
s.t. ψk,i(F k) ≤ 0, 1 ≤ i ≤ Ik, 1 ≤ k ≤ K,

(20)

The objective function of Opt. 2.2 satisfies the following prop-
erty, which can be exploited to optimize the multiple matrix
variables

log

∣∣∣∣Rn +

K∑
k=1

HkF kQXk
W kQ

H
Xk

FH
k H

H
k

∣∣∣∣
= log

∣∣∣∣I +HkF kQXk
W kQ

H
Xk

FH
k H

H
k

×
(
Rn +

∑
j �=k

HjF jQXk
W jQ

H
Xk

FH
j H

H
j

)−1∣∣∣∣
+ log

∣∣∣∣Rn +
∑
j �=k

HjF jQXj
W jQ

H
Xj

FH
j H

H
j

∣∣∣∣
= log

∣∣∣∣I +W kQ
H
Xk

FH
k H

H
k K

−1
nk
HkF kQXk

∣∣∣∣+ log
∣∣Knk

∣∣,
(21)

where we have

Knk
= Rn +

∑
j �=k

HjF jQXj
W jQ

H
Xj

FH
j H

H
j . (22)

Therefore, based on (21) for the kth matrix variate F k

Opt. 2.2 can be written in the following equivalent formula

Opt.2.3: min
F k

− log

∣∣∣∣I+W kQ
H
Xk

FH
k H

H
k K

−1
nk
HkF kQXk

∣∣∣∣,
s.t. Knk

=Rn+
∑
j �=k

HjF jQXj
W jQ

H
Xj

FH
j H

H
j ,

ψk,i(F k) ≤ 0, i = 1, . . . , Ik. (23)

The matrix FH
k H

H
k K

−1
nk
HkF k can be interpreted as the matrix

version SNR for the kth user [31]. Based on Matrix Inequality

4 in Part I [1], we have

log

∣∣∣∣I +W kQ
H
Xk

FH
k H

H
k K

−1
nk
HkF kQXk

∣∣∣∣
≤
∑
i

log
(
1 + λi(W )λi(F

H
k H

H
k K

−1
nk
HkF k)

)
. (24)

The equality holds when the unitary matrix QXk
equals

Qopt,Xk
= USNR,kU

H
W (25)

where the unitary matrices USNR,k and UW k
are defined based

on the following EVDs

FH
k H

H
k K

−1
nk
HkF k

= USNR,kΛSNR,kU
H
SNR,k with ΛSNR,k ↘

W k = UW k
ΛW k

UH
W k

with ΛW k
↘ . (26)

From the multi-objective optimization viewpoint, the optimal
solutions of Opt. 2.3 belong to the Pareto optimal solution sets
of the following optimization problems for 1 ≤ k ≤ K

Opt.2.4 : max
F k

λ
(
FH

k H
H
k K

−1
nk
HkF k

)
,

s.t. Knk
=Rn+

∑
j �=k

HjF jQXj
W jQ

H
Xj

FH
j H

H
j ,

ψk,i(F k) ≤ 0, i = 1, . . . , Ik. (27)

which is equivalent to

Opt.2.5: max
F k

FH
k H

H
k K

−1
nk
HkF k,

s.t. Knk
=Rn+

∑
j �=k

HjF jQXj
W jQ

H
Xj

FH
j H

H
j ,

ψk,i(F k) ≤ 0, i = 1, . . . , Ik. (28)

It can be seen that by using alternating optimization algorithm,
the multiple-matrix-variate optimization of Opt. 2.3 is trans-
ferred into the multiple single-matrix-variate matrix-monotonic
optimization of Opt. 2.5. Based on Opt. 2.5, the optimal struc-
ture of F k can be derived, and then the original optimization
problem Opt. 2.2 can be solved in an iterative manner. It is
worth noting that in most cases, for the alternating optimization
algorithm, the final solutions are suboptimal. The alternating op-
timization algorithm stops when the performance improvement
is smaller than a predefined threshold or the iteration number
reaches the predefined maximum value. The convergence can
be guaranteed when the subproblems are solved with global
optimality.

1) Shaping Constraint: We have Ik = 1 and

ψk,1(F k) = F kF
H
k −Rsk . (29)

Based on Lemma 1 in Section II, we readily conclude that for
1 ≤ k ≤ K, when the rank of Rsk is not higher than the number
of columns and the number of rows in F k, the optimal solution
F opt,k of Opt. 2.3 is a square root of Rsk .

2) Joint Power Constraint: We have Ik = 2 and

ψk,1(F k) = Tr
(
F kF

H
k

)− Pk,

ψk,2(F k) = F kF
H
k − τkI.

(30)

Based on Lemma 2 in Section II, we readily conclude that for
1 ≤ k ≤ K, the optimal solution F opt,k of Opt. 2.3 satisfies the
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Fig. 2. Illustration of distribute sensor network.

following structure

F opt,k = V
˜Hk

ΛF k
UH

Arb,k, (31)

where the unitary matrix V
˜Hk

is defined based on the SVD

K
− 1

2
nk Hk = U

˜Hk
Λ

˜Hk
V H

˜Hk
with Λ

˜Hk
↘ . (32)

and every diagonal element of the rectangular diagonal matrix
ΛF k

is smaller than
√
τk. The diagonal matrix ΛF k

can be
efficiently solved using a variant water-filling algorithm [52],
[54].

3) Multiple Weighted Power Constraints: In this case, we have

ψk,i(F k) = Tr
(
Ωk,iF kF

H
k

)− Pk,i. (33)

Then based on Lemma 3 in Section II, we conclude that for
1 ≤ k ≤ K, the optimal solution F opt,k of Opt. 2.3 satisfies
the following structure

F opt,k = Ω
− 1

2

k V Hk
Λ

˜F k
UH

Arb,k, (34)

where the unitary matrix V Hk
is defined by the following SVD

K
− 1

2
nk HkΩ

− 1
2

k = UHk
ΛHk

V H
Hk

with ΛHk
↘, (35)

and the matrix Ωk is defined as

Ωk =

Ik∑
i=1

αk,iΩk,i. (36)

The diagonal matrix Λ
˜F k

can be efficiently solved using water-
filling algorithms [53].

IV. SIGNAL COMPRESSION FOR DISTRIBUTED

SENSOR NETWORKS

In the distributed sensor network illustrated in Fig. 2, the
K sensors transmit their individual signals to the fusion cen-
ter [38]–[47]. Specifically, the kth sensor transmits its signal xk

to the fusion center, when the channel between the kth sensor
and the fusion center is Hk. The fusion center recovers the
transmitted signalsxk for 1 ≤ k ≤ K. In contrast to the scenario
of MU-MIMO communications, there exist correlations among
xk [27], and the correlation matrix is denoted by

Cx = E

{[
xT
1 · · ·xT

K

]T [
xT
1 · · ·xT

K

]∗}
. (37)

Note that the correlations among the signals make the optimiza-
tion approach of this application totally different from that of
the MU-MIMO application.

To maximize the mutual information between the received
signal at the data fusion center and the signal to estimate, the
signal compression can be formulated as Opt. 3.1 [27], given as

Opt.3.1: min
{Xk}Kk=1

− log
∣∣∣C−1

x

+ diag
{{

XH
k H

H
k R

−1
nk
HkXk

}K
k=1

} ∣∣∣,
s.t. ψk,i

(
XkR

1
2
xk

)
≤0, 1≤ i≤Ik, 1≤k≤K,

(38)

where F k is the signal compression matrix at the kth sensor,
Rxk

is the covariance matrix of the signal xk transmitted from
the kth sensor, and Rnk

is the covariance matrix of the additive
noise nk for the kth sensor signal received in its own time slot
at the fusion center. Note that if all the sensors send signals at
the same frequency, all the Rnk

are identical. If the sensors use
different frequency bands, the noise covariance matrices Rnk

are different.
Note that in [27], only the simple sum power constraint

is considered, while in our work the more general multiple
weighted linear power constraints are taken into account. In other
words, the result derived in this section for signal compression
in distributed sensor networks is novel.

For the general correlation matrixCx, it is difficult to directly
decouple the optimization problem. A natural choice is to take
advantage of alternating optimization algorithms among Xk for
1 ≤ k ≤ K. To simplify the derivation, a permutation matrix
P k is first introduced, which reorders the block diagonal matrix
diag{{XH

k H
H
k R

−1
nk
HkXk}Kk=1} so that the following equality

holds

P kdiag
{{

XH
k H

H
k R

−1
nk
HkXk

}K
k=1

}
PH

k

=

[
XH

k H
H
k R

−1
nk
HkXk 0

0 Ξk

]
. (39)

The computation of P k and the definition of Ξk are provided
in Appendix A. The permutation matrix P k aims at moving
the term XH

k H
H
k R

−1
nk
HkXk at the top of the block diagonal

matrix. The permutation matrixP k is determined by the position
of the term XH

k H
H
k R

−1
nk
HkXk in the block diagonal matrix

diag{{XH
k H

H
k R

−1
nk
HkXk}Kk=1}. Note that a permutation ma-

trix is also a unitary matrix. By further exploiting the properties
of matrix determinants, Opt. 3.1 becomes equivalent to Opt. 3.2
of (40).

Opt.3.2 : min
{F k}Kk=1

− log
∣∣∣P kC

−1
x PH

k

+P kdiag
{{

XH
k H

H
k R

−1
nk
HkXk

}K
k=1

}
PH

k

∣∣∣,
s.t. ψk,i

(
XkR

1
2
xk

)
≤ 0, 1 ≤ i ≤ Ik, 1 ≤ k ≤ K.

(40)
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In order to simplify Opt. 3.2, we divide P kC
−1
x PH

k into

P kC
−1
x PH

k =

[
P 1,1 P 1,2

P 2,1 P 2,2

]
. (41)

Combining (39) and (41) leads to

P kC
−1
x PH

k + P kdiag
{{

XH
k H

H
k R

−1
nk
HkXk

}K
k=1

}
PH

k

=

[
P 1,1 +XH

k H
H
k R

−1
nk
HkXk P 1,2

P 2,1 P 2,2 +Ξk

]
. (42)

Further exploiting the fundamental properties of matrix deter-
minants [27], [56], we have the following equality∣∣∣∣[P 1,1 +XH

k H
H
k R

−1
nk
HkXk P 1,2

P 2,1 P 2,2 +Ξk

]∣∣∣∣
=
∣∣P 2,2 +Ξk

∣∣∣∣XH
k H

H
k R

−1
nk
HkXk +Φk

∣∣, (43)

where

Φk = P 1,1 − P 1,2(P 2,2 +Ξk)
−1P 2,1. (44)

Based on (43), the alternating optimization of F k for 1 ≤ k ≤
K can be performed. Specifically, the optimization problem
Opt. 3.2 is transferred into: for 1 ≤ k ≤ K,

Opt.3.3 : min
Xk

− log
∣∣Φk +XH

k H
H
k R

−1
nk

HkXk

∣∣,
s.t. ψk,i

(
XkR

1
2
xk

)
≤ 0, 1 ≤ i ≤ Ik.

(45)

It can be seen that by exploiting its block diagonal structure,
the multiple-matrix-variate matrix-monotonic optimization of
Opt. 3.1 is transferred into several single-matrix-variate matrix-
monotonic optimization problems in the form of Opt. 3.3.

For 1 ≤ k ≤ K, by introducing the auxiliary variable

F kQXk
= XkR

1
2
xk , (46)

the optimization problem Opt. 3.3 is transferred into:

Opt.3.4: min
F k

− log
∣∣R− 1

2
xk ΦkR

− 1
2

xk

+QH
Xk

FH
k H

H
k R

−1
nk

HkF kQXk

∣∣,
s.t. ψk,i (F k) ≤ 0, 1 ≤ i ≤ Ik. (47)

Based on Matrix Inequality 3 in Part I [1], we have

log
∣∣R− 1

2
xk ΦkR

− 1
2

xk +Q
H
Xk

FH
k H

H
k R

−1
nk

HkF kQXk

∣∣
≤
∑
j

log|λN−j+1(R
− 1

2
xk ΦkR

− 1
2

xk )+λj(F
H
k H

H
k R

−1
nk

HkF k)|

(48)

based on which the optimal unitary matrix QXk
equals [17]

Qopt,Xk
= USNR,kŪ

H
ΦkRk

(49)

where the unitary matrices USNR,k and Ū
H
ΦkRk

are defined by
the following SVD and EVD,

FH
k H

H
k K

−1
nk
HkF k

= USNR,kΛSNR,kU
H
SNR,k with ΛSNR,k ↘

R
− 1

2
xk ΦkR

− 1
2

xk =ŪΦkRk
Λ̄ΦkRk

Ū
H
ΦkRk

with Λ̄ΦkRk
↗ . (50)

From the multi-objective optimization viewpoint, the optimal
solutions of Opt. 3.4 belong to the Pareto optimal solution sets
of the following optimization problems for 1 ≤ k ≤ K [17]

Opt.3.5 : max
F k

λ
(
FH

k H
H
k R

−1
nk
HkF k

)
,

s.t. ψk,i (F k) ≤ 0, 1 ≤ i ≤ Ik.
(51)

which is equivalent to the following matrix-monotonic optimiza-
tion problem:

Opt.3.6 : max
F k

FH
k H

H
k R

−1
nk
HkF k,

s.t. ψk,i (F k) ≤ 0, 1 ≤ i ≤ Ik.
(52)

Based on the fundamental results of the previous sections de-
rived for matrix-monotonic optimization, we have the following
results. Clearly, the optimal Xk equals

Xopt,k = F opt,kQopt,Xk
R

− 1
2

xk . (53)

1) Shaping Constraint: We have Ik = 1 and

ψk,1 (F k) = F kF
H
k −Rsk . (54)

Based on Lemma 2 in Section II, we have when the rank of
Rsk is not higher than the number of columns and the number
of rows in F k, the optimal solution F opt,k is a square root of
Rsk .

2) Joint Power Constraints: We have

ψk,1 (F k) = Tr
(
F kF

H
k

)− Pk,

ψk,2 (F k) = F kF
H
k − τkI. (55)

Based on Lemma 2 in Section II, the Pareto optimal solutions
F opt,k satisfy the following structure

F opt,k = V Hk
ΛF k

UH
Arb,k, (56)

where every diagonal element of the rectangular diagonal matrix
ΛF̆ k

is smaller than
√
τk. The diagonal matrix ΛF̆ k

can be
efficiently solved using a variant water-filling algorithm [52],
[54].

3) Multiple Weighted Power Constraints: We have

ψk,i (F k) = Tr
(
Ωk,iF kF

H
k

)− Pk,i. (57)

Based on Lemma 3 in Section II, the Pareto optimal solutions
F opt,k satisfy the following structure

F opt,k = Ω
− 1

2

k V̆ Hk
ΛF̆ k

UH
Arb,k, (58)

where Ωk is given by (36), while V̆ Hk
is defined by the follow-

ing SVD, respectively,

R
− 1

2
nk HkΩ

− 1
2

k =ŬHk
Λ̆Hk

V̆
H

Hk
with Λ̆Hk

↘ . (59)

The diagonal matrix ΛF̆ k
can be efficiently solved using water-

filling algorithms [53], [54].
Remark 1: The results of this paper can also be applied to

more complex scenarios. For example, when the CSI between
a sensor and its data fusion center is imperfect, Hk = Ĥk +

HW,kΨ
1
2

k , where Ĥk and HW,kΨ
1
2

k are the estimated CSI
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Fig. 3. Multi-hop cooperative AF MIMO relaying network.

and the channel estimation error, respectively. The correlation
matrix Ψk is a function of both the channel estimator and of
the training sequence. Based on the proposed framework, the
optimal structures of the optimal solutions for the robust signal
compression matrices at different sensors can also be readily
derived.

V. MULTI-HOP AF MIMO RELAYING NETWORKS

Multi-hop relaying communication is one of the most im-
portant enabling technologies for future flexible and high-
throughput communications, such as machine-to-machine,
device-to-device, vehicle-to-vehicle, internet of things or satel-
lite communications [28], [48]. The key idea behind multi-hop
communications is to deploy multiple relays to realize the com-
munications between the source node and destination node [48],
[49]. Before presenting our third application of transceiver op-
timization for multi-hop communications, we first highlight the
difference between our work presented in this section and the
previous conclusions in [28], [31].
� We consider a more general power constraint which in-

cludes both the per-antenna power constraint in [31] and
the shaping constraints in [28] as its special cases.

� The channel estimation errors are realistically taken into
account in our work. By contrast, in [31] the CSI is assumed
to be perfectly known.

To the best of our knowledge, the robust transceiver optimiza-
tion for multi-hop communications even under the per-antenna
power constraint is still the problem not yet fully solved in the
existing literature. Therefore, the results presented in this section
is novel and significant.

TheK-hop AF MIMO relaying network is illustrated in Fig. 3,
where the source, denoted as node 0, communicates with the
destination, represented by nodeK, with the help of the (K − 1)
relays, which are nodes 1 to (K − 1). Denote the signal sent by
the source asx0, which has the covariance matrix of σ2

x0
I . Then

the signal model in thekth hop, for 1 ≤ k ≤ K, can be expressed
as

xk = HkXkxk−1 + nk, (60)

where xk is the signal received by node k, Hk is the channel
matrix of the kth hop, and nk is the additive noise of the corre-
sponding link with the covariance matrix σ2

nk
I , while Xk is the

forwarding matrix of node (k − 1). Note that S1 is the source’s

transmit precoding matrix. When the channel estimation error is
considered, based on a practical channel estimation scheme [15]
the CSI of the kth hop is expressed as

Hk = Ĥk +HW,kΨ
1
2

k , (61)

where Ĥk and HW,kΨ
1
2

k are the estimated CSI and the channel
estimation error of the kth hop, respectively. Furthermore, Ψk

is the covariance matrix of the channel estimate, and the ele-
ments of HW,k follow the independent and identical complex
Gaussian distribution CN (0, 1). For notational convenience, let
us define the new variables F 1QX1

= X1, with the associated
unitary matrix QX1

, and F kQk for 2 ≤ k ≤ K as

F k = XkK
1
2
nk−1Mk−1Q

H
Xk
, (62)

where Qk is the associated unitary matrix,

Mk=
(
K

− 1
2

nk ĤkF kF
H
k Ĥ

H

k K
− 1

2
nk +I

) 1
2

, (63)

Knk
=
(
σ2
nk

+Tr
(
F kF

H
k Ψk

))
I, (64)

and clearly K
1
2
n0M0 = σx0

I . Based on these definitions, as
proved in Appendix B the MSE matrix of the data detection
at the destination is expressed as, [28], [31]

ΦMSE

({F k}Kk=1, {QXk
}Kk=1,C

)
= σ2

x0
CCH − σ2

x0
C

(
K∏

k=1

M
− 1

2

k K
− 1

2
nk ĤkF kQXk

)H

×
(

K∏
k=1

M
− 1

2

k K
− 1

2
nk ĤkF kQXk

)
CH. (65)

Based on the MSE matrix given in (65), both the linear and
nonlinear transceiver optimization problems [28], [31] can be
unified into the general optimization problem Opt. 4.1 given
in (66), shown at the bottom of this page. Various objective
functions typically adopted for Opt. 4.1 are listed in Table I.
For linear transceiver optimization, to realize different lev-
els of fairness between different transmitted data streams, a
general objective function can be formulated as an additively
Schur-convex function [31], [51] or additively Schur-concave
function [31], [51] of the diagonal elements of the MSE matrix,
which are given by Obj. 3 and Obj. 4 [31], [51], respectively. The
additively Schur-convex function f convexA-Schur (·) and the additively
Schur-concave function f concaveA-Schur (·) represent different levels of
fairness among the diagonal elements of the data MSE matrix.
When nonlinear transceivers are adopted for improving the BER
performance at the cost of increased complexity, e.g., THP or
DFE, the objective functions of the transceiver optimization can
be formulated as a multiplicative Schur-convex function or a
multiplicative Schur-concave function of the vector consisting

Opt4.1 : min
{F k}Kk=1,{QXk

}Kk=1,C
f
(
ΦMSE

({F k}Kk=1, {QXk
}Kk=1,C

))
,

s.t. ψk,i(F k) ≤ 0, 1 ≤ i ≤ Ik, 1 ≤ k ≤ K,
[C]i,i = 1, [C]i,j = 0 for i < j, 1 ≤ i ≤ N.

(66)
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TABLE I
THE OBJECTIVE FUNCTIONS AND THE ASSOCIATED OPTIMAL FIRST UNITARY MATRICES Q1 FOR MULTI-HOP COOPERATIVE AF RELAY NETWORKS

of the squared diagonal elements of the Cholesky-decomposition
triangular matrix of the MSE matrix, that is, Obj. 5 and
Obj. 6 [31], [51], respectively, where L is a lower triangular
matrix. The multiplicatively Schur-convex function f convexM-Schur(·)
and the multiplicatively Schur-concave function f concaveM-Schur (·) re-
flect the different levels of fairness among the different data
streams, i.e., different tradeoffs among the performance of dif-
ferent data steams [17]. The detailed definitions of f convexA-Schur (·),
f concaveA-Schur (·), f convexM-Schur(·) and f concaveM-Schur (·) are given in Appendix C.
This appendix makes our work self-contained.

The constraintsψk,i(F k) ≤ 0 are right unitarily invariant, and
the power constraint model of Opt. 4.1 is more general than the
power constraint models considered in [17], [28], [31].

For linear transceivers with the objective functions
Objs. 1-4 in Table I, C = I is an identity matrix, while for
nonlinear transceiver optimization with the objective functions
Obj. 5 and Obj. 6 in Table I, C is a lower triangular matrix.
Specifically, we assume that the size of C is N ×N . Then, for
nonlinear transceivers, the optimal C satisfies [31]

Copt = diag
{{[L]i,i}Ni=1

}
L−1, (67)

where L is the triangular matrix of the Cholesky decomposition
of the following matrix [31]

LLH = Φ̃MSE

({F k}Kk=1, {QXk
}Kk=1

)
= σ2

x0
I − σ2

x0

(
K∏

k=1

M
− 1

2

k K
− 1

2
nk ĤkF kQXk

)H

×
(

K∏
k=1

M
− 1

2

k K
− 1

2
nk ĤkF kQXk

)
. (68)

The optimal unitary matrices QXk
can be derived based on

majorization theory. Specifically, the optimal Qk for k > 1 are
derived as [26], [28], [31]

Qopt,Xk
= V Ak

UH
Ak−1

, (69)

where the unitary matrices V Ak
and UAk

are defined by the
following SVDs

M
− 1

2

k K
− 1

2
nk ĤkF k = UAk

ΛAk
V H

Ak
with ΛAk

↘ . (70)

The optimal QX1
is determined by the specific objective func-

tion, and various Qopt,X1
associated with different objective

functions are also summarized in Table I. Here, the unitary
matrix UArb denotes an arbitrary matrix having the appropriate
dimension. The unitary matrixUW is the unitary matrix defined

by the following EVD

W = UWΛWUH
W with ΛW ↘ . (71)

The unitary matrix UDFT is a DFT matrix [55], [56]. Finally,
the unitary matrix ŨGMD ensures that the triangular matrix of
the Cholesky decomposition of Φ̃MSE({F k}Kk=1, {QXk

}Kk=1)
has the same diagonal elements [31].

Given the optimal Qopt,Xk
and Copt, the objective function

of Opt. 4.1 can be rewritten as [28]

f
(
ΦMSE

({F k}Kk=1, {Qopt,Xk
}Kk=1,Copt

))
= f̃

⎛⎜⎝
⎧⎨⎩

K∏
k=1

λi(F
H
k Ĥ

H

k K
−1
nk
ĤkF k)

1 + λi(F
H
k Ĥ

H

k K
−1
nk
ĤkF k)

⎫⎬⎭
N

i=1

⎞⎟⎠
� fEigen

({
λ
(
FH

k Ĥ
H

k K
−1
nk
ĤkF k

)}K

k=1

)
. (72)

In (72) fEigen(·) is a monotonically decreasing function with

respect to the eigenvalue vector λ(FH
k Ĥ

H

k K
−1
nk
ĤkF k). The

specific formula of fEigen(·) is determined by the specific per-
formance metrics. For example, for sum MSE minimization
fEigen(·) equals

fEigen

({
λ
(
FH

k Ĥ
H

k K
−1
nk
ĤkF k

)}K

k=1

)

=

I∑
i=1

x20

⎛⎝1−
K∏

k=1

λi(F
H
k Ĥ

H

k K
−1
nk
ĤkF k)

1 + λi(F
H
k Ĥ

H

k K
−1
nk
ĤkF k)

⎞⎠ . (73)

In addition, for sum rate maximization fEigen(·) equals

fEigen

({
λ
(
FH

k Ĥ
H

k K
−1
nk
ĤkF k

)}K

k=1

)

=
I∑

i=1

log

⎛⎝1−
K∏

k=1

λi(F
H
k Ĥ

H

k K
−1
nk
ĤkF k)

1 + λi(F
H
k Ĥ

H

k K
−1
nk
ĤkF k)

⎞⎠ .

(74)

Hence, given Qopt,Xk
and Copt, Opt. 4.1 is transferred into

Opt.4.2 : min
{F k}Kk=1

fEigen

({
λ
(
FH

k Ĥ
H

k K
−1
nk
ĤkF k

)}K

k=1

)
,

s.t. Knk
=
(
σ2
nk

+Tr
(
F kF

H
k Ψk

))
I,

ψk,i(F k) ≤ 0, 1 ≤ i ≤ Ik, 1 ≤ k ≤ K.

(75)
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Since the objective function of Opt. 4.2 is a monotonically

decreasing function of λ(FH
k Ĥ

H

k K
−1
nk
ĤkF k), it can be decou-

pled into the following sub-problems: for 1 ≤ k ≤ K,

Opt.4.3 : min
F k

λ
(
FH

k Ĥ
H

k K
−1
nk
ĤkF k

)
,

s.t. Knk
=
(
σ2
nk
+Tr

(
F kF

H
k Ψk

))
I,

ψk,i(F k) ≤ 0, 1 ≤ i ≤ Ik.

(76)

Clearly, Opt. 4.3 is equivalent to the following matrix-
monotonic optimization problem

Opt.4.4 : min
F k

FH
k Ĥ

H

k K
−1
nk
ĤkF k,

s.t. Knk
=
(
σ2
nk
+Tr

(
F kF

H
k Ψk

))
I,

ψk,i(F k) ≤ 0, 1 ≤ i ≤ Ik.

(77)

In this application, by exploiting its cascade structure, we are
able to transfer the associated multiple-matrix-variate matrix-
monotonic optimization problem into several single-matrix-
variate matrix-monotonic optimization problems. Based on the
fundamental results of the previous sections, we readily have the
following results.

1) Shaping Constraint: We have Ik = 1 and

ψk,1(F k) = F kF
H
k −Rsk . (78)

As proved in Part I, based on Lemma 1 in Section II, it is
concluded that when the rank of Rsk is not higher than the
number of columns and the number of rows in F k, a suboptimal
solution F opt,k that maximizes a lower bound of the objective
of Opt. 4.4 is a square root of Rsk . When Ψk = 0 the lower
bound is tight and then the suboptimal solution will be the Pareto
optimal solution of Opt. 4.4.

2) Joint Power Constraint: We have

ψk,1 (F k) = Tr
(
F kF

H
k

)− Pk,

ψk,2 (F k) = F kF
H
k − τkI.

(79)

As proved in Part I, based on Lemma 2 in in Section II for the
general case Ψk �∝ I , a suboptimal solution that maximizes a
lower bound of the objective of Opt. 4.4 satisfies the following
structure

F k=
σnk

Ψ̃
− 1

2

k V
˜Hk

Λ
˜F k

UH
Arb,k(

1−Tr
(
Ψ̃

− 1
2

k ΨΨ̃
− 1

2

k V
˜Hk

Λ
˜F k

ΛH
˜F k

V H
˜Hk

)) 1
2

, (80)

where Ψ̃k = σ2
nk
I + PkΨk. It is worth noting that when Ψk =

0 or Ψk ∝ I , the corresponding lower bound is tight. In other
words, in that case the suboptimal solution is exactly the Pareto
optimal solution of Opt. 4.4. The unitary matrix V

˜Hk
is the

right unitary matrix of the following SVD

Ĥk

(
σ2
nk
I + PkΨk

)− 1
2 = U

˜Hk
Λ

˜Hk
V H

˜Hk
,with Λ

˜Hk
↘,

(81)

and every diagonal element of the rectangular diagonal matrix
Λ

˜F k
in (80) is smaller than the following threshold√
τk
(
σ2
nk

+ Pkλmin(Ψk)
)
/
(
σ2
nk

+ Pkλmax(Ψk)
)
. (82)

The diagonal matrix Λ
˜F k

can be efficiently solved using a
variant water-filling algorithm [53], [54].

3) Multiple weighted power constraints: We have

ψk,i (F k) = Tr
(
Ωk,iF kF

H
k

)− Pk,i. (83)

As proved in Part I, based on Lemma 3 in Section II, we conclude
that the Pareto optimal solutions F opt,k satisfy the following
structure

F opt,k=
σnk

Ω̃
− 1

2

k V Hk
Λ

˜F k
UH

Arb,k(
1−Tr

(
Ω̃

− 1
2

k ΨkΩ̃
− 1

2

k V Hk
Λ

˜F k
ΛH

˜F k
V H

Hk

)) 1
2

,

(84)

where the unitary matrix V Hk
is defined by the SVD

ĤkΩ̃
− 1

2

k = UHk
ΛHk

V H
Hk

with ΛHk
↘, (85)

and the matrix Ω̃k is defined by

Ω̃k = σ2
nk

Ik∑
i=1

αk,i (Ωk,i + Pk,iΨk) . (86)

The diagonal matrix Λ
˜F k

can be efficiently solved using water-
filling algorithms [53], [54].

VI. DISCUSSIONS

In this paper, we have investigated three representative ex-
amples for the proposed framework of multi-variable matrix-
monotonic optimization. Based on the proposed matrix-
monotonic framework, the structure of the optimal solutions for
the three largely different optimization problems can be derived
in the same logic. The distinct difference between our work
and existing work is that more general power constraints have
been taken in account. Taking more general power constraints
into account is definitely not trivial extensions. From physical
meaning perspective, the considered optimization under more
general power constraints includes more MIMO transceiver op-
timizations as its special cases. Moreover, from a mathematical
viewpoint, the optimization with more general power constraints
is more challenging. It is impossible to extend the existing results
in the literature to the conclusions given in this paper via using
simple substitutions. From convex optimization theory perspec-
tive, adding one more constraint may not change the convexity
of the considered optimization problem. Specifically, adding one
more linear matrix inequality on a SDP problem, the resulting
problem is still a SDP problem. Adding a quadratical constraint
on a QCQP problem, the resulting problem is still a QCQP. The
story is totally different for the matrix-monotonic optimization
framework as the matrix-monotonic optimization framework
aims at deriving the structure of the optimal solutions. One more
constraint will change the feasible region of matrix variate and
significantly change the structure of the optimal solutions. The
corresponding analytical derivations will change distinctly.

We also would like to point out that the matrix-monotonic
optimization framework is applicable to more complicated com-
munication systems. Recently, in [18] based on the matrix-
monotonic optimization framework, a general framework on
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hybrid transceiver optimizations under sum power constraint
is proposed. Different from the fully digital MIMO systems, in
a typical hybrid MIMO system, at the source or the destination
the precoder or the receiver consists of two parts, i.e., analog
part and digital part. For the analog part, only the phase of the
signal at each antenna is adjustable. After that, in [19] based on
the matrix-monotonic optimization framework, a framework on
the transceiver optimizations for multi-hop AF hybrid MIMO
relaying systems is further proposed. In multi-hop communica-
tions, the forwarding matrix at each relay consists of three parts,
the left analog part, the inner digital part and the right analog
part.

VII. SIMULATION RESULTS AND DISCUSSIONS

A. Two-User MIMO Uplink

We first consider the MU-MIMO uplink, where a pair of
4-antenna mobile users communicate with an 8-antenna BS. We
define Pk

σ2
n

as the SNR for the kth user, where Pk is the sum

transmit power of userk andσ2
n is the noise power at each receive

antenna of the BS. Without loss of generality, the same maximum
transmit power is assumed for all the users, i.e., P1 = P2.
Based on the Kronecker correlation model [13]–[15], the spatial
correlation matrix RRx of the BS’s receive antennas and the
spatial correlation matrix RTx,k of the kth user’s transmit an-
tennas, where k = 1, 2, are specified respectively by [RRx]i,j =

r
|i−j|
r and [RTx,k]i,j = r

|i−j|
t,k . In the simulations, we further set

rt,1 = rt,2 = rt. Three power constraints, namely, the shap-
ing constraint, the joint power constraint and the per-antenna
power constraints, are considered. For the shaping constraint, the
widely used Kronecker correlation model of [Rsk ]i,j = 0.6|i−j|

is employed [28]. For the joint power constraint, the threshold is
chosen as τk = 1.4. For the per-antenna power constraints, the
power limits for the four antennas of each user are set to 1.2,
1.2, 0.8 and 0.8, respectively.

It is worth highlighting that the transceiver optimization
under these three power constraints can be transferred into
convex optimization problems, which can be solved numeri-
cally using the CVX tool [58]. This approach however suffers
from high computational complexity, especially for high dimen-
sional antenna arrays. By contrast, our approach presented in
Section III provides the optimal closed-form solutions for the
same transceiver optimization design problems. Fig. 4 compares
the sum rate performance as the function of the SNR for the
proposed closed-form solutions and for the numerical optimiza-
tion solutions computed by the CVX tool. It can be seen that
our closed-form solutions have an identical performance to the
solutions computed by the CVX tool.

B. Signal Compression for Distributed Sensor Networks

In this subsection, we investigate the performance of the pro-
posed algorithm employed for signal compression in distributed
sensor networks. Specifically, the distributed sensor network
considered consists of K sensors and a data fusion center. Each
sensor is equipped with 4 antennas and the data fusion center is
equipped with 8 antennas. The per-antenna power constraints

Fig. 4. Sum rate performance comparison between the proposed closed-form
solutions and the solutions computed by the CVX tool for the two-user MIMO
Uplink.

for the four antennas of each sensor are set to 1.2, 1.2, 0.8
and 0.8, respectively. For the signal correlations between dif-
ferent sensors, the distance-dependent correlation matrix model
of [27] is adopted. Specifically, we have Rxm,n

= e−dm,nI for
the mth sensor and the for the nth sensor, where dm,n is the
correlation between these two sensors. In our simulations, dm,n

is distributed uniformly between 0 and 1. In order to quantify the
performance advantages attained, a benchmark algorithm based
on CVX is used in this subsection. The algorithm based on CVX
aims for minimizing the weighted sum MSE under per-antenna
power constraints, which is termed as the linear minimum mean
square error (LMMSE) algorithm. In the LMMSE algorithm,
the signal compression matrices of the different sensors and the
combiner matrix at the data fusion center are optimized itera-
tively. At each iteration, the optimization problem considered
is a standard QCQP problem, which can be readily solved by
CVX. Observe in Fig. 5 that the proposed algorithm always
outperforms the CVX-based benchmarker.

C. Dual-Hop AF MIMO Relaying Network

A dual-hop AF MIMO relaying network is simulated, which
consists of one source, one relay and one destination. All the
nodes are equipped with 4 antennas. At the source and relay, per-
antenna power constraints are imposed. Specifically, the power
limits for the four antennas are set as 1, 1, 1 and 1, respectively.
The SNR in each hop is defined as the ratio between the transmit
power and the noise variance, i.e., SNRk = Pk

σ2
nk

. Without loss

of generality, the SNRs in the both hops are assumed to be the
same, namely, SNR1 = SNR2 = SNR.

In contrast to the existing works [28], [31], which consider
the transceiver optimization unrealistically with the perfect CSI,
in this paper, we focus on the robust transceiver optimiza-
tion, which takes into account the channel estimation error.
In the simulations, the estimated channel matrix is generated

according to Ĥk = ĤW,kΨ
1
2

k [17], where we have [Ψk]i,j =
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Fig. 5. Mutual information performance comparisons between the proposed
algorithm and the LMMSE algorithm based on CVX for distributed sensor
networks with different numbers of sensors.

Fig. 6. Sum rate performance comparison between our proposed robust design
and the non-robust design of [31] for the dual-hop AF MIMO relaying network.

0.6|i−j|. The elements of ĤW,k are independently identically
distributed Gaussian random variables. In order to ensure that
E{[H]i,j [H]∗i,j} = 1, ∀i, j, we set E{[HW,k]i,j [HW,k]

∗
i,j} =

σ2
ek

and E{[ĤW,k]i,j [ĤW,k]
∗
i,j} = 1− σ2

ek
. Without loss of

generality, we assumeσ2
e1

= σ2
e2

= σ2
e . It can be seen from Fig. 6

that our robust design achieves better sum rate performance
than the non-robust design of [31]. Furthermore, as expected,
the performance gap between the robust and non-robust designs
becomes larger as the channel estimation error increases.

VIII. CONCLUSION

In this paper, we investigated the application of the framework
of matrix-monotonic optimization in the optimizations with

multiple matrix-variates. It is shown that when several properties
are satisfied, the framework of matrix-monotonic optimization
still works, based on which the optimal structures of multi-
ple matrix-variates can be derived. Then the multiple matrix-
variable optimizations can be effectively solved in iterative man-
ners. Three specific examples are also given in this paper to ver-
ify the validity of the proposed multi-variable matrix-monotonic
optimization framework. Specifically, under various power con-
straints, i.e., sum power constraint, shaping constraints, joint
power constraints and multiple weighted power constraints, the
transceiver optimizations for uplink MIMO communications,
the compression matrix optimizations for distributed sensor
networks, and the robust transceiver optimizations for multi-hop
AF MIMO relaying systems have been investigated. At the end
of this paper, several numerical results demonstrated the accu-
racy and performance advantages of the proposed multi-variable
matrix-monotonic optimization framework.

APPENDIX A
COMPUTATION OF P k AND Ξk

Given the following block diagonal matrix

Φ = diag
{{

XH
k H

H
k R

−1
nk
HkXk

}K
k=1

}
(87)

the permutation matrix P k aims at changing the orders of
the kth element XH

k H
H
k R

−1
nk
HkXk and the first element

XH
1 H

H
1 R

−1
n1
H1X1 along the diagonal line. Before construct-

ing P , we first give an identity matrix I that has the same
dimensions as Φ. Moreover, I can be interpreted as a block
diagonal matrix as

I = diag
{
{Ik}Kk=1

}
(88)

where Ik is an identity matrix of the same dimensions as
XH

k H
H
k R

−1
nk
HkXk for 1 ≤ k ≤ K. Moreover, I is further

divided into the following submatrices

I = diag
{
{Ik}Kk=1

}
=

⎡⎢⎢⎢⎣
I1

I2

...
IK

⎤⎥⎥⎥⎦ (89)

where Ik and Ik have the same row number for 1 ≤ k ≤ K.
Based on the above definitions of Ik’s, we have

IkΦIH
j = IkΦIT

j = 0, for, k �= j, (90)

and

IkΦIH
k = IkΦIT

k = XH
k H

H
k R

−1
nk
HkXk. (91)
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Therefore, based on (89) P k is constructed by interchanging I1

and Ik, i.e.,

P k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik

I2

...
Ik−1

I1

Ik+1

...
IK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (92)

It is obvious that P k is a unitary matrix, i.e.,

P kP
H
k = I and PH

k P k = I. (93)

Based on (92) and together with (90) and (91), we have

P kdiag
{{

XH
k H

H
k R

−1
nk
HkXk

}K
k=1

}
PH

k

=

[
XH

k H
H
k R

−1
nk
HkXk 0

0 Ξk

]
. (94)

where Ξk is the following block diagonal matrix

Ξk = diag{Φ̃2, . . . , Φ̃k−1, Φ̃1, Φ̃k+1, . . . , Φ̃K} (95)

with Φ̃j = XH
j H

H
j R

−1
nj
HjXj .

APPENDIX B
MSE MATRIX FOR MULTI-HOP COMMUNICATIONS

Based on the signal model given in (60), at the destination the
received signal y equals

y = xK = HKXKxK−1 + nK . (96)

After performing a linear equalizer G, the signal estimation
MSE matrix at the destination can be written in the following
formula [26], [28], [31]

ΦMSE

(
G, {Xk}Kk=1,C

)
= E{(Gy −Cx0)(Gy −Cx0)

H} (97)

where C = I +B and B is a strictly lower triangular ma-
trix [17]. For the linear transceivers, B is a constant matrix,
i.e., B = 0. On the other hand for the nonlinear transceivers
with THP or DFE, B corresponds to the feedback operations
and should be optimized as well [26], [28], [31]. Substituting
(96) into ΦMSE(G, {Xk}Kk=1) in (97), we have

ΦMSE

(
G, {Xk}Kk=1,C

)
= G

(
ĤKXKRxK−1

XH
KĤ

H

K

+Tr(XKRxK−1
XH

KΨK)I

)
GH

−G

(
K∏

k=1

ĤkXk

)
Rx0

CH−CRx0

(
K∏

k=1

ĤkXk

)H

GH

+GRnK
GH +CRx0

CH, (98)

where Rxk
= E{xkx

H
k }. The corresponding LMMSE equal-

izer GLMMSE equals

GLMMSE = CRx0

(
K∏

k=1

ĤkXk

)H

×
(
ĤKXKRxK−1

XH
KĤ

H

K +KnK

)−1

(99)

with

KnK
= Tr(XKRxK−1

XH
KΨK)I +RnK

. (100)

It is well-known that the LMMSE equalizer GLMMSE is the
optimal G for ΦMSE(G, {Xk}Kk=1) as [17]

ΦMSE

(
G, {Xk}Kk=1,C

) � ΦMSE

(
GLMMSE, {Xk}Kk=1,C

)
.

(101)

Substituting GLMMSE into (98), we have

ΦMSE

(
G, {Xk}Kk=1,C

)
= CRx0

CH −CRx0

(
K∏

k=1

ĤkXk

)H

×
(
ĤKXKRxK−1

XH
KĤ

H

K +KnK

)−1

×
(

K∏
k=1

ĤkXk

)
Rx0

CH. (102)

Therefore, based on the definition ofF k in (62) and the definition
of Mk in (63) we have

ΦMSE

(
G, {Xk}Kk=1,C

)
= ΦMSE

({F k}Kk=1, {QXk
}Kk=1,C

)
= σ2

x0
CCH − σ2

x0
C

(
K∏

k=1

M
− 1

2

k K
− 1

2
nk ĤkF kQXk

)H

×
(

K∏
k=1

M
− 1

2

k K
− 1

2
nk ĤkF kQXk

)
CH. (103)

APPENDIX C
FUNDAMENTAL DEFINITIONS OF MAJORIZATION THEORY

A brief introduction of majorization theory is given in this ap-
pendix. Generally speaking, majorization theory is an important
branch of matrix inequality theory [57]. Majorization theory is
a very useful mathematical tool to prove the inequalities for the
diagonal elements of matrices, the eigenvalues of matrices and
the singular values of matrices. Majorization theory can reveal
the relationships between diagonal elements and eigenvalues,
based on which some extrema can be computed. Moreover,
majorization theory can quantitatively analyze the relationships
between the eigenvalues or singular values of matrix products
and matrix additions and that of the involved individual matrices.
Based on majorization theory, a rich body of useful matrix
inequalities can be derived, based on which the extrema of the
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matrix variate functions can be derived. The definitions of addi-
tively Schur-convex, additively Schur-concave, multiplicatively
Schur-convex and multiplciatively Schur-concave functions are
given in the following. Meanwhile, we would like to point out
that Schur-convex function is a kind of increasing function and
Schur-concave function is a kind of decreasing function [28].
They actually have no relationship with the traditional convex
or concave properties defined in the convex optimization the-
ory [50].

Definition 1 ([57]): For a K × 1 vector x ∈ R
K , the �th

largest element of x is denoted as x[�], i.e., x[1] ≥ x[2] ≥ · · · ≥
x[K]. Based on this definition, for twoK × 1vectorsx,y ∈ R

K ,
the statement that y majorizesx additively, denoted byx ≺+ y,
is defined as follows

m∑
n=1

x[n] ≤
m∑

n=1

y[n], m = 1, . . . ,K−1, and
K∑

n=1

x[n] =
K∑

n=1

y[n].

(104)

Definition 2 ([57]): A real function f(·) is additively Schur-
convex when the following relationship holds

f(x) ≤ f(y) when x ≺+ y. (105)

A real function f(·) is additively Schur-concave if and only if
−f(·) is additively Schur-convex.

Definition 3 ([28], [51]): Given K × 1 vectors x,y ∈ R
K

with nonnegative elements, the statement that the vector y ma-
jorizes vector x multiplicatively, denoted by x ≺× y, is defined
as follows

m∏
n=1

x[n] ≤
m∏

n=1

y[n], m=1, . . . ,K−1, and
K∏

n=1

x[n]=

K∏
n=1

y[n].

(106)

Definition 4 ([28], [51]): A real function f(·) is multiplica-
tively Schur-convex when the following relationship holds

f(x) ≤ f(y) when x ≺× y. (107)

A real function f(·) is multiplicatively Schur-concave if and
only if −f(·) is multiplicatively Schur-convex.

Generally, it is not convenient to use these definitions to prove
whether a function is Schur-convex or not. In the following,
two criteria are given, based on which we can judge whether a
function is additively Schur-convex or multiplicatively Schur-
convex [17], [25], [26]. For a given function f(·), according to
the value order of the elements of x the considered function
f(x) is first reformulated as

f(x) = ψ(x[1], . . . , x[k], x[k+1], · · · ). (108)

When f(x) = ψ(x[1], . . . , x[k] − e, x[k+1] + e, · · · ) is a de-
creasing function with respect to e for e ≥ 0 and x[k] − e ≥
x[k+1] + e, f(·) is additively Schur-convex. On the other hand,
when f(x) = ψ(x[1], . . . , x[k]/e, x[k+1]e, · · · ) is a decreasing
function with respect to e for e ≥ 1 and x[k]/e ≥ x[k+1]e, f(·)
is multiplicatively Schur-convex.
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