
This article provides an overview of the conflicting

design tradeoffs of low-density parity-check (LDPC)

codes and thus advocates a more holistic approach

to their design for wireless channels. We reveal

some of the intricate interdependencies of the LDPC code

parameters and hence recommend designing codes that

strike an attractive tradeoff concerning a number of desirable

attributes, rather than simply designing

codes that closely approach capacity

but possess less-attractive hardware

implementations.

The birth of information and cod-

ing theory is marked by Shannon’s

seminal article, ‘‘A Mathematical Theory of

Communication’’ [1], published in 1948, in which it was

demonstrated that arbitrarily reliable communication of

information over an unreliable channel is possible pro-

vided that the transmission rate, i.e., the amount of infor-

mation-carrying bits transmitted over the channel per

second is less than the channel capacity. The fundamental

idea is that of incorporating a channel code that imposes

redundancy on the data bits before their transmission.

Therefore, according to Shannon, it is the channel capacity

that determines the minimum possible amount of redun-

dancy that has to be incorporated to be able to correct the

errors imposed by the channel. However, Shannon’s theory

proved the existence of capacity-approaching codes but

refrained from suggesting any specific practical coding

schemes that can achieve this aim. This naturally triggered

a widespread endeavor by the research community leading

to diverse extensions, deeper interpreta-

tions, and further pragmatic realiza-

tions of Shannon’s original work. For

decades, the principal aim of code

designers was to reduce the dis-

tance, measured in decibels, from this

ultimate channel capacity bound promised

by Shannon, and thus the channel code’s performance

was typically assessed by means of plots of the bit error

ratio (BER) or block error ratio (BLER) versus the chan-

nel’s signal-to-noise ratio (SNR) or the ratio of the energy

per uncoded bit to the noise power spectral density,

commonly denoted by Eb=N0. This race toward capacity

reached its pinnacle by the discovery of the iterative

decoding principle, which was proposed in the now-clas-

sic turbo [2] and LDPC [3] codes, both of which provided
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the most satisfying solutions to Shannon’s challenge up

to this point in time.

Following these notable developments, one can argue

that the original research problem posed by Shannon

must now be reassessed and tackled from a wider

perspective. Let us commence our discussions by posing

the following two questions:

n In terms of which particular performance metric

should a channel code be evaluated? Should code

designers focus solely on the attainable BER/BLER

performance or should other attributes be also taken

into consideration?

n What is the complexity penalty as well as the imple-

mentation-related ramification of attaining a BER/

BLER performance that is within a minute margin of

the channel’s capacity bound?

Preliminaries

LDPC codes form part of a larger family of codes, which are

typically referred to as linear block codes. A code is termed a

block code if the original information bit sequence can be seg-

mented into fixed-length message blocks, hereby denoted by

u, each having K information digits. This implies that there

are 2K possible distinct message blocks. For the sake of

simplicity, we will only be considering binary LDPC codes,

i.e., the codes associated with the logical symbols/bits of

f1, 0g. The LDPC encoder is then capable of transforming

each input message block u according to a predefined set of

rules into a distinct N -tuple (N -bit sequence) z, which is typi-

cally referred to as the code word. The code word length N ,

where N4K , is then referred to as the block length.

The number of nonzero symbols of a code word z is called

the weight, whereas the number of bit positions in which two

code words differ is termed the distance. (Code words that

have a low number of binary ones are referred to as low-

weight code words.) For instance, the distance between the

code words z1 ¼ (1101001) and z2 ¼ (0100101) is equal to

three. The minimum distance, hereby denoted by dmin, corre-

sponds to the minimum distance between two of its code

words, and for a linear code, dmin is determined by the weight

of the nonzero code word that has the minimum weight.

The unique and distinctive nature of the code words

implies that there is a one-to-one mapping between a K -bit

information sequence u and the corresponding N -bit code

word z described by the set of rules of the encoder. Clearly,

if both K and N are small, then the 2K distinct message

blocks and the corresponding code words can be stored in a

look-up table (LUT). However, for large K , the 2K -entry LUT

encoder will be prohibitively complex. This complexity is

significantly reduced by the fact that LDPC codes are linear

codes, and therefore, the modulo-2 sum (eXclusive OR) of

any two or more code words is another code word. In fact,

the code word z can be calculated by multiplying the input

message sequence u with a (K 3 N)-element matrix G, which

is referred to as the generator matrix (GM). So, if we consider

the simple example of having a four-bit input message

sequence u and assume that the ith column of G is given by

1101½ �, then the ith bit of the code word z will be equal to the

modulo-2 sum of the first, second, and fourth bits of u.

However, there is another useful matrix associated with a

linear block code. This matrix is referred to as the parity-

check matrix (PCM), which is typically denoted by H and

contains M � (N � K) rows and N columns. A characteristic

of the PCM of LDPC codes is that it is sparse, i.e., there are

fewer ones than there are zeros. As a result, their PCM is said

to have a low density—hence, the terminology of LDPC

codes. The code rate R of an LDPC code will then satisfy

R� 1�M=N , where the equality holds when all the rows of

the underlying PCM are linearly independent. (In this spe-

cific case, the PCM has M ¼ N � K rows.) The PCM can also

be represented graphically by what is known as a bipartite

graph, as exemplified in Figure 1. Let us consider, as an exam-

ple, the LDPC code having N ¼ 6, associated with the PCM

shown in Figure 1(a). The corresponding graph is then illus-

trated in Figure 1(b). It can be observed that this graph can

be divided in two parts (hence, the terminology bipartite),

whereby the right-hand side of the graph shows the parity-

check nodes, which correspond to a row of the PCM H,

whereas the left-hand side (LHS) contains the variable

nodes, which relate to the columns of the PCM H. A variable

node is, essentially, a transmitted bit in the code word z. The

ones in the PCM H of Figure 1(a) represent the edges that

interconnect the parity-check nodes and variable nodes

located on the graph of Figure 1(b). For example, one can

observe from Figure 1(b) that the first parity-check node c1

is checking the result of the modulo-2 sum (called the parity)

of v1, v3, v5, and v6, which is also seen in the first row of the

corresponding PCM; i.e., if the transmitted bits represented

by v1, v3, v5, and v6 are received correct, then the value of

v1 � v3 � v5 � v6 � c1 ¼ 0. Here, we denote the modulo-2

(b)(a)
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FIGURE 1 (a) A PCM. (b) The bipartite graph having girth of four and

corresponding to the PCM of (a). A cycle of six (represented by the

continuous bold lines) and a cycle of four (represented by dashed

bold lines) are shown.
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operation by �. We also remark that the edge interconnec-

tions between the variable and check node essentially con-

stitute an interleaver, and hence LDPC-coded systems can

dispose of the channel interleaver when transmitting over

Rayleigh channels.

Adopting a Holistic Approach to

the LDPC Code Design

Previously, we have briefly touched upon adopting a more

holistic approach to the design of LDPC codes. We hinted

that the performance attributes of codes, in this case those

of LDPC codes, must be viewed from a wider perspective

that also takes into account other factors, such as the

practicality of the code as well as the ease/difficulty of

implementation. In this respect we have attempted to

summarize in Figure 2 the most important tradeoffs associ-

ated with the LDPC code design. More specifically, we

divided these tradeoffs into four categories, namely, the

BER/BLER performance metrics, the construction attrib-

utes, and the encoder and decoder implementation-related

characteristics, all of which will be described in more detail

in the forthcoming sections. It will soon become evident

that trying to find a good balance between these design

attributes is definitely not a simple task since most of the

parameters are conflicting, i.e., favoring one particular

attribute will almost certainly result in attaining inferior fea-

tures for one or more of the remaining parameters.

BER/BLER Performance Metrics

The overall BER/BLER versus SNR performance of an LDPC

code is generally described by two different regions and a

threshold. The first region is commonly referred to as the

waterfall region, which corresponds to the low-to-medium

SNR region of the BER/BLER versus SNR plot. By contrast,

the error floor [4] is located at the bottom of the waterfall-

shaped curve where it can be observed that the BER/BLER

no longer exhibits the rapid improvement as in the water-

fall region. More often than not, the error floor is not explic-

itly visible in the corresponding BER/BLER plot since it is

below the BERs readily generated by the simulation per-

formed. There is the parlance of turbo cliff, above which

the BER/BLER performance improves rapidly upon increas-

ing the SNR. The performance of an LDPC code in the differ-

ent regions as well as the actual value of the turbo-cliff SNR

depend on various code construction attributes, which will

be detailed in the next section.

Construction Attributes

The construction attributes of LDPC codes are best under-

stood in the context of their associated PCM or the corre-

sponding bipartite graph; hence; we will build upon the

preliminary concepts and definitions introduced in the

‘‘Preliminaries’’ section.

Regular Versus Irregular Parity-Check Matrices

One of the first dilemmas faced when designing LDPC codes

is that of choosing between a regular or an irregular con-

struction. To understand the difference between these two

attributes, we will introduce further basic definitions

related to graph theory. We will start by defining the degree

of a node in a graph as the number of edges emerging from

that node. Hence, a parity-check node’s degree, hereby

denoted by q, is the number of ones in the relevant row of

the associated PCM, and a variable node’s degree c is the

number of ones in the corresponding column of the PCM H.

The parameters q and c are also referred to as the row and

column weights of the H matrix. Subsequently, an LDPC

code is said to be regular if every parity-check node con-

tained in its underlying graph is connected to q variable

nodes, whilst every variable node is connected to c parity-

check nodes. If this is not the case, the code and its associ-

ated graph are termed to be irregular. For example, the

LDPC code represented by the graph of Figure 1 is irregular

or, more accurately, left regular since it is only the variable

nodes located on the LHS of the graph that have the same

degree of two. Carefully designed irregular LDPC codes can

attain a lower turbo-cliff SNR than regular codes of the same

rate; i.e., their exhibited BER/BLER starts to rapidly
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Simple MAG
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Simple Hardware Implementation
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Code Description
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FIGURE 2 Conflicting design factors related to LDPC code construction. PCM: parity check matrix. MAG: memory address generation.
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decrease at a lower SNR value, and hence, their BER/BLER

performance is superior in the waterfall region. The reason

for this phenomenon lies in the conflicting (ideal) require-

ments of the variable and parity-check nodes, whereby the

variable nodes benefit from having large degrees, strongly

protecting them. By contrast, a parity-check node should

have a low degree to prevent error propagation when it is

corrupted. However, we note that the superior BER/BLER

performance of irregular LDPC codes is achieved at the

expense of a potentially increased implemental complexity,

since it is slightly more challenging to design a hardware

architecture that is sufficiently flexible to support an imple-

mentation having different row and column degrees.

Previously, we have emphasized that irregular LDPC

codes must be carefully designed for two main reasons.

First, the design of irregular codes necessitates the use of

sophisticated techniques, such as density evolution [5] or

extrinsic information transfer (EXIT) charts [6], both of

which can predict the value of the turbo-cliff SNR. Both

density evolution and EXIT charts can provide actual (non-

uniform) distributions for the row and column weights of

the irregular PCM. However, we note that both of these tech-

niques assume that the LDPC code has a high block length

(in the region of N � 10, 000 b) and will be decoded by a

decoder that can afford a high number of independent itera-

tions. (This is related to what is referred to as the girth of the

underlying graph, which will be defined in the ‘‘The Girth of

the Underlying Graph’’ section.) Second, the BER/BLER

performance exhibited by irregular LDPC codes is inferior

to that exhibited by regular LDPC codes in the error floor

region, unless specific techniques are employed at the PCM

design stage. These specific techniques are referred to, in

parlance, as conditioning and will be described in the ‘‘Code-

Construction Attributes Affecting the Error Floor’’ section.

The Girth of the

Underlying Graph

Let us once again focus our attention

on the bipartite graph illustrated in

Figure 1(b). A cycle in a graph refers

to a particular chain of nodes form-

ing a closed loop where the initial

and final nodes are same and no

edge is used more than once. The

number of edges in a cycle is then

called the length of the cycle, and the

shortest cycle length of the graph

corresponds to the girth. The girth

in a bipartite graph is always even

and its smallest value is four. The

graph depicted in Figure 1(b) has a

girth of four, and the corresponding

cycle of four is shown by the dashed

bold edges. A cycle of six is shown

by the continuous bold edges.

LDPC codes are decoded using the sum–product algo-

rithm (SPA) where messages are iteratively exchanged

between the nodes residing at both sides of the bipartite

graph. The girth influences the achievable BER/BLER in the

waterfall region because short cycles prevent the decoder

from gleaning independent parity-check information. There-

fore, the higher the girth, the faster the iteration-aided BER/

BLER improvement, and this is why many construction tech-

niques (collectively referred to by the term girth conditioning)

attempt to maximize the girth of the underlying graph

(see [7] and the references therein). Specifically, Gallager [3]

demonstrated that the number of independent iterations

T for an LDPC code having a girth of g, i.e., the iterations

that provide valuable extrinsic information, is bounded by

T5 g=4�T þ 1. Clearly, for the girth to be high, the block

length also has to be sufficiently high. It was, in fact, proven

in [3] that the maximum girth of the bipartite graph is

bounded by a logarithmic function of the block length as well

as the row and column weights of the underlying PCM. Gall-

ager [3] also provided the loose lower bound on the required

block length for achieving a specific girth, which is shown in

Figure 3(a) for girths of 6, 8, 10, and 12 and assuming regular

LDPC code constructions associated with a PCM having a

column weight of c ¼ 3. For example, it can be observed from

Figure 3(a) that a rate R ¼ 0:75 regular LDPC code associated

with a PCM having c ¼ 3 must have a block length of at least

N ¼ 6, 084 b to have a girth of 12. In Figure 3(b), we have

sought to portray the relationship among the PCM column

weight, girth of the underlying graph, and Gallager’s lower

bound on the block length N . For instance, it can be verified

from Figure 3(b) that a block length of at least N ¼ 12,195 b

will be required to realize a similar rate R ¼ 0:75 regular

LDPC but having a PCM associated with c ¼ 4; i.e., increasing

the column weight by one will require at least twice the block
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FIGURE 3 (a) Gallager’s loose lower bound [3] on the value of the block length N that is required

to realize an LDPC code having a code rate of R and girths of 6, 8, 10, and 12. These bounds

have been calculated for regular LDPC codes that are associated with a PCM having a column

weight of c ¼ 3. (b) A comparison of Gallager’s loose lower bound [3] on the value of the block

length N that is required to realize a regular LDPC code associated with a PCM having column

weights of c ¼ 3 and c ¼ 4 and girths of 10 and 12.
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length to realize an LDPC code having the same girth. As will

be discussed in the ‘‘Code-Construction Attributes Affecting

the Error Floor’’ section, increasing the column weight c and,

subsequently, the row weight q may be beneficial in some

other aspect; however, at this stage we can reasonably con-

clude that increasing the PCM weights degrades both the

girth of the corresponding graph as well its BER/BLER

performance in the waterfall region.

Code-Construction Attributes Affecting the Error Floor

The performance in the error floor region depends on three

main factors, namely 1) on dmin as well as the presence of

particular graphical structures in the underlying graph,

which are referred to as 2) stopping sets and 3) trapping sets.

We note that whilst having a large dmin is always beneficial,

the performance of the LDPC codes in the error floor region

is largely dependent on the presence of stopping and trap-

ping sets. We further notice that stopping sets characterize

the performance of the code on erasure channels, whereas

trapping sets play an analogous role for noisy channels,

such as the additive white Gaussian noise (AWGN) and

binary symmetric channels. (In addition to the attributes

mentioned in this article, contemporary research is also

focusing on the effects of pseudocode words, instanstons,

and absorbing sets; however, these issues go beyond the

scope of our contribution. The interested reader is referred

to [8] for relevant pointers to the related literature.) We will

continue our discourse by discussing each of these factors

in more detail.

Classical coding theory has always placed strong empha-

sis on trying to design codes that have a large dmin, which is

clearly justified when one recalls the fact that a code can cor-

rect up to dmin � 1ð Þ=2b c errors when using a bounded dis-

tance decoder, where xb c denotes the floor function that

gives the largest integer less than or equal to x. Tanner [9]

derived the lower bounds on the achievable dmin of an LDPC

code and demonstrated that these increase with both the

PCM column weight as well as girth of the underlying graph.

(According to these bounds, a regular LDPC code having a

girth of 10 and with a c ¼ 3 will attain a dmin� 10 whereas that

code having the same girth but with a c ¼ 4 will attain a

dmin� 17. Moreover, a regular LDPC code having the same

c ¼ 4 but with a higher girth of 12 will achieve a dmin� 26.)

However, the relationship between these parameters is quite

intricate. Whilst increasing the girth or column weight of the

associated PCM improves the minimum distance, we have

seen in the ‘‘The Girth of the Underlying Graph’’ section that

an increase in the column weight (for a given constant N) will

degrade the girth. Hence, if we consider two LDPC codes hav-

ing the same rate but different column weights, the code hav-

ing the higher column weight will exhibit a lower error floor

owing to its higher dmin (if it was carefully designed) but a

worse BER/BLER in the waterfall region due to its lower girth.

Another interesting point to make is that whilst a code having

a high girth is always preferred, ironically, completely cycle-

free codes constitute bad codes due to their low minimum

distance [10]. Another deficient family of LDPC codes is con-

stituted by those having a PCM with c ¼ 2. It was established

in [9] that such codes have dmin ¼ g=2. Moreover, Gallager

[3] also indicated that the PCM of LDPC codes must have

c� 3 for the minimum distance to increase linearly (rather

than logarithmically) with the block length, albeit we will dis-

cuss later in the ‘‘Structured versus Pseudorandom Parity-

Check Matrices’’ section that this statement is not applicable

for some structured LDPC codes.

In the ‘‘Preliminaries’’ section, we argued that a code

having a small dmin is characterized by the presence of

low-weight code words. These will cause undetected

errors since the decoding process will find a code word

that is not the originally transmitted one. However, given

the fact that dmin of most LDPC codes increases linearly

with N , undetected errors are relatively uncommon,

unless the block length is short (less than a few hundred

bits) or the code rate is high. Nonetheless, it is was

shown in [11] that it is computationally complex to

directly design codes having a high dmin.

An indirect way of increasing dmin is to increase the girth

of the bipartite graph. However, rather than using the afore-

mentioned conventional girth conditioning techniques,

which only focus on increasing the shortest cycle length,

Tian et al. [11] revealed that it is also important to consider

the specific connectivity of the cycles with the other parts

of the bipartite graph, rather than only the length of the

cycles. This is because not all cycles are equally harmful.

Those that are well connected to the rest of the graph are

acceptable whereas poorly connected long cycles may be

more detrimental. This technique, which is referred to as

cycle conditioning—as opposed to girth conditioning—

requires the identification of stopping sets, which are a par-

ticular group of variable nodes that is connected to a group

of neighboring parity-check nodes more than once. One

example of a stopping set exemplified in Figure 1(b) is con-

stituted by the variable nodes v2, v3, and v6 because all the

neighboring parity-check nodes c1, c2, and c3 are connected

to this variable node set twice. By means of avoiding small

stopping sets, the technique of Tian et al. [11] succeeded in

significantly reducing the error floor of irregular LDPC

codes whilst only suffering from a slight BER degradation in

the waterfall region.

The trapping sets have a direct influence on the error

floor of LDPC codes. A trapping set (a, b) refers to that par-

ticular set of a variable nodes in the associated bipartite

graph that induces a subgraph that contains b odd-degree

and an arbitrary number of even-degree parity-check nodes.

For example, a trapping set (5, 4) can be observed in the

bipartite graph of Figure 1(b) constituted by the variable

nodes v1, v2, v3, v4, and v6 and the parity-check nodes

c1, c2, c3, and c4. When the values of a and b are relatively

small, the variable nodes in the trapping set are not well

connected to the rest of the graph, and therefore, the
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corresponding bits have a weak protection. In some

research literature, trapping sets are described as near code

words because when the parameters a and b are relatively

small, an incorrectly decoded code word may only be

slightly different from the transmitted code word. We

emphasize that the errors resulting from the presence

of small trapping as well as stopping sets are detected by

the decoder; i.e., the decoder will be aware that the no

legitimate code word was found owing to having some

unsatisfied (nonzero-valued) parity-check nodes after the

affordable maximum number of decoding iterations. The

problems that arise from the presence of trapping sets/

near-code words can be mitigated by either altering the

PCM (without changing the actual code) or modifying the

decoder [12].

Structured Versus Pseudorandom

Parity-Check Matrices

Another dilemma that code designers face is that of hav-

ing a pseudorandom or a structured PCM. The pseudoran-

dom allocation of the logical one values in the PCM was

considered to be an important feature in the LDPC design

since it was demonstrated in [13] that these codes exhibit

excellent error correction capabilities. On the other hand,

structured LDPC code constructions [7] impose addi-

tional constraints on their PCM, and hence, they may

potentially suffer from some BER/BLER performance

degradation. In respect of Figure 2 and our discussions at

the beginning of this section, where we have attempted to

show the intricate tradeoffs among the block length, girth,

minimum distance, and PCM weights, it is also worth men-

tioning that some structured constructions may further

constrain the aforementioned attributes. For example, the

minimum distance of the structured construction pro-

posed in [14] does not increase linearly with the block

length as in other pseudorandom constructions, instead it

is bounded by (cþ 1)!, where ( � )! denotes the factorial

operator. This implies that the only way to increase dmin is

to increase the column weight, which comes at the

expense of reducing the associated girth and increasing

the complexity. (The relationship between the PCM

weights and decoding complexity will be explained in the

‘‘Decoder Characteristics’’ section.) Furthermore, it was

also demonstrated in [14] that the maximum girth

achieved by these constructions is at most 12. There are

other designs, such as [15] (amongst others), that over-

come these limitations. Given their practical encoder and

decoder implementations, it is not surprising that struc-

tured codes managed to make their way into a number of

standards [e.g., digital video broadcast by satellite (DVB-

S2), DVB-T2, IEEE WiMAX and IEEE 802.11n [19]–[22]].

Encoder Characteristics

The standard encoding operation requires the calculation of

the GM G from the PCM H using Gaussian elimination and,

finally, multiplying the input message sequence with the calcu-

lated G. An important aspect to point out in this context is that

whilst the PCM of an LDPC code is sparse, its GM G is not. For

this reason, this encoding process becomes significantly more

complex than that of the competing turbo codes, considering

that the latter have a low encoding complexity—which

increases linearly with the block length. Several complexity

reduction measures have been proposed to address this

issue. One of the frequently used techniques rearranges the

PCM in the approximate lower triangular form, which reduces

the encoding complexity to (N þ g2), where g is referred to as

the gap [16]. (For example, a regular LDPC code associated

with a PCM having c ¼ 3 and q ¼ 6 has a normalized gap of

g0 ¼ g=N ¼ 0:017 [16]. Note that this definition of the gap

assumes normalization to N . So, for this specific regular code

with N ¼ 10,000 b, a gap of approximately 170 will result.)

Nevertheless, the matrices used for encoding do not possess

any strict internal structure, and therefore, the location of all

the logical ones in the matrices must be enumerated.

The family of structured codes, which were introduced in

the ‘‘Structured versus Pseudorandom Parity-Check Matrices’’

section, also benefits from efficient encoder implementations.

Typically, such structured codes are either cyclic or quasi-

cyclic (QC) and thus possess a PCM and a GM that is com-

posed from a number of circulant matrices. (A QC code is

defined as a code in which any cyclic shift of a constituent

code word by x number of bits is also a code word. For a cyclic

code, we have x ¼ 1. We define a circulant matrix as a binary-

valued square matrix where each row is constructed from a

single right cyclic shift of the previous row, and the first row is

obtained by a single right cyclic shift of the last row.) This

distinctive characteristic provides two main benefits. First, it

will significantly reduce the amount of memory required to

store the GM as well as simplify the memory address genera-

tion (MAG) since only the first row of each circulant matrix will

be stored and memory shifts corresponding to the cyclic/QC

structure will be used to address the messages. Second, the

encoding can be carried out by means of linear shift regis-

ters—thus simplifying the required hardware—whilst attain-

ing a linearly increasing block-length-dependent encoding

complexity. For a number of QC LDPC codes, such as the

codes proposed for the 802.11n and the 802.16e [22]

standards, encoding may be realized using the PCM through

back substitution, thus eliminating the need to store the GM.

Decoder Characteristics

The first challenge to be tackled when implementing the

SPA in hardware is that of effectively managing the

exchange of extrinsic messages between the check and

variable nodes. In this regard, there is always a tradeoff

between choosing a parallel or a serial implementation,

whereby the former offers a higher throughput at the

expense of an increase in the required silicon area whereas

the latter requires a smaller chip area but attains slower

decoding speeds. The inherent suitability of the SPA to
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parallel architectures enables LDPC codes to achieve a

higher degree of parallelism. Some constructions, such as

the structured or QC codes, possess a PCM that allows for

the simultaneous update of a large number of parity-check

nodes. However, one must also be aware that the BER/

BLER performance may be degraded if the code’s structure

is severely restricted so as to increase the degree of paral-

lelism. Other codes, such as those based on protographs

[17], [18], have a construction that can favor both serial as

well as parallel architectures (referred to as semiparallel)

and thus strive to achieve a better compromise between

the decoding speed versus area tradeoff.

Our second challenge is constituted by the memory

requirements, which are dependent on both the type of

information to be stored and the number of bits used to

represent them (i.e., the numerical precision) as well as

the block length. A considerable amount of memory is

needed to store the information messages that are

exchanged between the nodes located at the opposite

sides of the bipartite graph at every iteration of the decod-

ing process. These memory requirements can be signifi-

cantly reduced using suboptimum algorithms, such as the

min–sum algorithm, or by passing reduced-precision mes-

sages, although this might slightly degrade the achievable

BER/BLER performance. We also have to store the code’s

description, which defines the specific interconnections

of the edges between the nodes. Whilst it can never be

denied that pseudorandom codes, such as the classic reg-

ular MacKay LDPC codes [13] and conditioned irregular

codes [11], exhibit an excellent BER/BLER performance,

the random selection of the connections between their

parity-check and variable nodes makes it, particularly,

hard to create a convenient description for the code.

Hence, their implementation often results in either inflexi-

ble hard-wired interconnections or large inefficient LUTs.

On the other hand, structured codes benefit from simpli-

fied descriptions as well as from facilitating efficient read

and write operations from/to memory.

Furthermore, we must not ignore the complexity

imposed by the variable and parity-check nodes, when

computing the messages to be exchanged. Specifically, the

number of additions processed by each variable node in

the graph is twice the PCM column weight. The number of

additions and multiplications required by the parity-check

nodes is a linear function of the PCM row weight, where the

specific function depends on whether we employ optimal

or suboptimal decoding algorithms. We have demonstrated

in the ‘‘Code-Construction Attributes Affecting the Error

Floor’’ section that increasing the PCM weights increases

the minimum distance of the code, but it is now also clear

that this consequently increases the computational com-

plexity. However, this decoding complexity can be reduced

by increasing the girth, since this will decrease the number

of iterations required to arrive at a code word (please refer

to the ‘‘The Girth of the Underlying Graph’’ section).

Conclusions

In this article, we have characterized the interplay of

parameters influencing the design of LDPC codes as tran-

spires from Table 1. Naturally, the BER/BLER performance,

TABLE 1 The effect on the BER/BLER performance or the girth, minimum distance,
and the complexity if certain adjustments are made.

Adjustments

Effect on the Regular PCM Irregular PCM Increasing N Increasing g Increasing c

Waterfall
performance

Generally worse
than irregular
counterparts

Generally better
than regular
counterparts

Improves Improves Improves (if code is
carefully designed)

Error floor
performance

Generally better
than irregular
counterparts

Generally worse
than regular
counterparts1

Improves Improves2 Improves (if code is
carefully designed)

Girth — — Increases, except
for some QC codes
(e.g., [14])

— Decreases

Minimum distance — — Increases, except
for some QC codes
(e.g., [14])

Increases Increases (if code is
carefully designed)

Computational
complexity3

— — Increases Decreases (fewer
iterations required)

Increases

Hardware
complexity

Generally easier to
implement than
irregular
counterparts

Generally more
difficult to
implement that
regular counterparts

Increases — Increases

— Stands for inconclusive/not applicable/no change.
1 Much of the contemporary research is focused on improving the error floor of irregular LDPC codes (cf. [8]).
2 Whilst increasing the girth is certainly beneficial, the error floor performance is more dependent on stopping sets and trapping sets (cf. the ‘‘Code-Construction

Attributes Affecting the Error Floor’’ section).
3 This is dependent on the girth and the total number of edges of the underlying graph.
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the construction attributes, as well as the complexity are

closely coupled, and beneficial designs maintain a good

BER/BLER performance when transmitting over both

AWGN and Rayleigh channels, whilst still having hardware

friendly implementations. The ideas presented may also be

extended to the design of arbitrarily wireless transceivers

using diverse modulation schemes, which constitutes our

future research objective.
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