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Abstract—The l1-norm sparsity constraint is a widely used
technique for constructing sparse models. In this paper, two zero-
attracting recursive least squares algorithms, which are referred
to as ZA-RLS-I and ZA-RLS-II, are derived by employing the
l1-norm of the parameter vector constraint to facilitate model
sparsity. To achieve a closed-form solution, the l1-norm of the
parameter vector is approximated by an adaptively weighted
l2-norm in which the weighting factors are set as the inversion
of the associated l1-norm of parameter estimates that are readily
available in the adaptive learning environment. ZA-RLS-II is
computationally more efficient than ZA-RLS-I by exploiting the
known results from linear algebra and the sparsity of the system.
The proposed algorithms are proven to converge, and adaptive
sparse channel estimation is used to demonstrate the effectiveness
of the proposed approach.

Index Terms—Adaptive channel estimation, l1-norm, sparse
model, zero-attracting recursive least squares algorithm.

I. INTRODUCTION

ADAPTIVE filtering and system identification algorithms
[1], e.g., the least mean squares (LMS), normalized least

mean squares (NLMS), and recursive least squares (RLS)
algorithms, are widely used in estimation problems such as
channel estimation. In communications, the multipath wireless
channel is characterized by multipath taps that are widely
spread in time, with only a few significant components. Intu-
itively, this inherent sparsity of the channel impulse response
(CIR) should be exploited to improve the quality of channel
estimation. However, neither RLS nor LMS exploits the under-
lying sparsity in the data process, and their achievable system
performance can be seriously impaired.

Alternatively, the sparse representation of an observed signal,
in which the given signal is modeled as a linear combination of
some significant atoms taken from an overcomplete dictionary,
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has been widely researched in the areas of computational biol-
ogy, medicine, neuroscience, and compressive sensing. With re-
gard to sparse modeling for a given dictionary, many algorithms
exist, which are divided into three categories: optimization-
based methods, greedy-based methods, and thresholding-based
methods. Basis pursuit (BP) is a commonly used optimization
method, which uses a convex optimization method to minimize
the l1-norm of the sparse coefficient vector [2], [3]. The com-
putational complexity of the BP is very high, and therefore, it is
not suitable for large-scale problems. In comparison, matching
pursuit (MP), which is a greedy algorithm, has significantly
lower complexity than BP, particularly when the sparsity level
is low [4]. A popular extension of MP is the orthogonal MP [5],
[6], which iteratively refines a sparse representation by succes-
sively identifying one atom at a time that yields the greatest
improvement in modeling quality until an expected sparsity
level is achieved or the approximation error is below the given
threshold. The thresholding-based methods contain algorithms
that do not require an estimation of sparsity. In these algorithms,
the hard thresholding operator gives way to a soft thresholding
operator with a positive threshold, such as in the iterative hard
thresholding algorithm [7] and the hard thresholding pursuit
[8]. Another important sparse modeling method is the message-
passing algorithm studied in [9]. Unfortunately, all of the
aforementioned algorithms are not designed for time-varying
environments, such as vehicular communication applications;
thus, they are not appropriate for the problem of sparse channel
estimation in real time.

The LMS algorithm is one of the most popular adaptive
algorithms for channel estimation since it has very low com-
putational complexity and is easy to implement at the mobile
handset receiver. Several adaptive sparse modeling algorithms
have been recently proposed based on LMS [10]–[13]. A good
example of them is the zero-attracting LMS (ZA-LMS) algo-
rithm proposed in [10]. This algorithm can achieve a faster
convergence rate, while reducing the steady-state excess mean
square error, compared with the classic LMS algorithm. The
ZA-LMS algorithm introduces an l1-norm of the parameter vec-
tor in the cost function of the LMS algorithm, which modifies
the parameter vector update equation with a zero attractor term.
Similarly, the zero-attracting NLMS (ZA-NLMS) algorithm
has been introduced based on NLMS, which yields better per-
formance than the NLMS [12]. The l0-norm, which is defined as
the number of nonzero terms in the parameter vector, is a more
appropriate measure of sparsity, and the work in [13] introduces
an l0-norm of the parameter vector in the cost function of the
LMS algorithm. However, a nonlinear approximation to the
l0-norm is needed in practical implementation, and this requires
an additional tuning parameter [12].
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Recently, sparse solutions have been proposed based on
RLS algorithms [14]–[21]. The so-called SPARLS algorithm
is introduced in [14] using an expectation-maximization (EM)
approach. In [15], an adaptive version of the greedy least
squares method using partial orthogonalization to systems is
proposed. In [16], the RLS algorithm is modified by using a
general convex function of the system parameters, resulting in
the l0-RLS and l1-RLS algorithms. In comparison to the LMS-
based algorithms, the RLS-based algorithms have a faster con-
vergence speed and yield more accurate parameter estimates.

Against this background, in this paper, we propose two zero-
attracting RLS (ZA-RLS) algorithms, which are referred to as
ZA-RLS-I and ZA-RLS-II. Similar to [10] and [16], the l1-
norm of the parameter vector penalty is added to the RLS
cost function. For tractability, we further approximate the l1-
norm of the parameter vector penalty term as an adaptively
weighted l2-norm of the parameter vector term, in which the
weights are readily given by the inversion of the associated
l1-norm of the parameter estimates that are currently avail-
able in the adaptive learning environment. We initially derive
ZA-RLS-I, which, however, has a higher computational cost
than the RLS algorithm, due to the need for a matrix inversion
at each adapting step. To overcome this limitation, ZA-RLS-II
is then designed, which has a computational cost comparable
to the RLS algorithm, and this is achieved by exploiting the
matrix theory and structural properties of the matrices involved.
Additionally, an analysis on the convergence of the proposed
algorithms is given. Sparse channel identification results are
included to demonstrate that our ZA-RLS approach achieves
better performance, in comparison to the existing l1-RLS algo-
rithm in [16] and the SPARLS algorithm in [14].

Throughout this paper, ( )∗ denotes complex conjugate,
whereas ( )T and ( )H denote the vector or matrix transpose and
Hermitian operators, respectively. ( )−1 stands for the inverse
operation, and the expectation operator is denoted by E{ }.
Furthermore, I denotes the identity matrix with an appropriate
dimension, and diag{d0, d1, . . . , dL} is the diagonal matrix
with d0, d1, . . . , dL as its diagonal elements, whereas tr{ }
denotes the matrix trace operation.

II. ADAPTIVE ALGORITHMS WITH l1-NORM SPARSITY

Consider a transmission link that is represented by a finite-
duration impulse response filter of order L. It is assumed that
the channel is inherently sparse in which only a few CIR
coefficients are dominant with large values, but most of the CIR
taps are zero or close to zero. Given the input signal x(k) ∈ C,
the received output signal y(k) ∈ C is described by

y(k) =

L∑
i=0

hix(k − i) + n(k) = xT (k)h + n(k) (1)

where k denotes the symbol index, and n(k) ∈ C is the channel
additive white Gaussian noise with power ofNo=E{|n(k)|2}=
E{n(k)n∗(k)} = 2σ2

n, whereas h = [h0 h1, . . . , hL]
T denotes

the CIR coefficient vector, and x(k) = [x(k) x(k − 1), . . . ,
x(k − L)]T is the input vector.

In adaptive filtering and system identification, the parameters
are computed recursively in time, so that the estimate ĥ(k), as an
estimate of h at time k, is given as a modification of ĥ(k−1),
based on the error signal e(k)=y(k)−xT (k)ĥ(k−1) upon the
arrival of the new data {x(k), y(k)}. Note that model sparsity
can be achieved by adding an l1-norm penalty to its parame-
ters in the cost function and, here, we briefly review several
l1-norm-based adaptive algorithms that will be used in our
comparative studies.

ZA-LMS Algorithm: In [10] minimizing the cost function
given by

VZA−LMS(ĥ) =
1
2
|e(k)|2 + ρZA−LMS

L∑
i=0

|ĥi| (2)

where ρZA−LMS > 0 is a small regularization parameter, is
proposed. It can be seen that the cost function (2) is ob-
tained by adding the l1-norm of the parameter vector, i.e.,
ĥ = [ĥ0 ĥ1, . . . , ĥL]

T, to the LMS cost function based on
the instantaneous squared error, i.e., (1/2)|e(k)|2. This results
in the following simple update equation for the ZA-LMS
algorithm [10]:

ĥ(k) = ĥ(k − 1) + μ · x∗(k)e(k)

− μ · ρZA−LMS · sgn
(
ĥ(k − 1)

)
(3)

where μ > 0 is a preset small learning rate parameter, and
sgn(u) is the component-wise sign function defined by

sgn(u) =

{
u
|u| , if u �= 0

0, if u = 0.

The algorithmic parameters in ZA-LMS can be set by using the
criteria proposed in [22] and [23]. Specifically, these are based
on steady-state mean squares deviation convergence analysis
using white input signal [22] and application of LMS to a
distributed network [22], respectively.

ZA-NLMS Algorithm: The ZA-NLMS algorithm [12] is
given as

ĥ(k) = ĥ(k − 1) + μ · x∗(k)e(k)

xH(k)x(k)

− μ · ρZA−NLMS · sgn
(
ĥ(k − 1)

)
(4)

where ρZA−NLMS > 0 is a small regularization parameter. The
work [22] and [23] can be extended to ZA-NLMS in selecting
its algorithmic parameters.

l1-RLS Algorithm: The l1-RLS algorithm [16] is based on
minimizing the following cost function:

V (ĥ) =

k∑
s=1

λk−s |e(k)|2 + ρ

L∑
i=0

|ĥi| (5)

where λ is a forgetting factor that is slightly less than 1, in
the range of 0.95–0.99, and ρ > 0 is a small regularization
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parameter. The parameters are updated using the following
equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e(k) = y(k)− xT (k)ĥ(k − 1)

P (k)= 1
λ

(
P (k − 1)− P (k−1)x∗(k)xT (k)P (k−1)

λ+xT (k)P (k−1)x∗(k)

)
ĥ(k) = ĥ(k − 1) + P (k)x∗(k)e(k)

−ρ(1 − λ)P (k)sgn
(
ĥ(k − 1)

)
where ĥ(0) is initialized as a zero or a small random vector,
and P (k) is the covariance matrix that is initialized to P (0) =
(1/δ)I, with δ being a very small positive number.

SPARLS Algorithm: The SPARLS algorithm [14] also uses
an l1 penalty, which modifies a wavelet-based image restoration
algorithm [24] into an adaptive filtering setting. It is a probabil-
ity modeling approach based on the Gaussian noise assumption
and the penalized maximum-likelihood estimation. Since this
penalized maximum-likelihood estimation problem is hard to
solve, the idea in [24] is to decompose the noise into a sum of
two Gaussian components, which leads to the use of an iterative
EM algorithm as the solver. The advantage of the SPARLS
algorithm is that it has guaranteed theoretical convergence. The
details of this algorithm can be found in [14].

III. PROPOSED ZERO-ATTRACTING RECURSIVE

LEAST SQUARES ALGORITHMS

We initially introduce ZA-RLS-I by modifying the conven-
tional RLS to include the l1-norm sparsity constraint. ZA-
RLS-II is then proposed to improve computational efficiency.

A. ZA-RLS-I

Similar to the l1-RLS algorithm in [16], the two proposed
ZA-RLS algorithms are also based on the cost function (5).
However, since the cost function (5) does not lend to a
closed-form solution, we use the strategy of relaxation by
approximating (5) as

VZA−RLS(ĥ) =

k∑
s=1

λk−s |e(k)|2 + ρ · ĥH
D(k)ĥ (6)

where D(k)=diag{d0(k), d1(k), . . . , dL(k)} with di(k)=

1/(|ĥi(k − 1)|+ ε) for 0 ≤ i ≤ L, whereas ε > 0 is a very
small positive number, e.g., ε = 10−7, which is introduced
for numerical stability reasons. Denote y(k) = [y(1) y(2) · · ·
y(k)]T , Λ(k) = diag{λk−1, · · · , λ, 1}, and

X(k) =

[
X(k − 1)
xT (k)

]
with X(1) = xT (1) = [x(1) 0 · · · 0]. The cost function (6) can
be equivalently represented as

VZA−RLS(ĥ) =
(
y(k)−X(k)ĥ

)H

Λ(k)
(
y(k)−X(k)ĥ

)
+ ρ · ĥH

D(k)ĥ. (7)

The minimizer of (7) is given by

ĥ(k) = P (k)XH(k)Λ(k)y(k) (8)

where P (k) = (XH(k)Λ(k)X(k) + ρD(k))−1. At time in-
dex (k − 1), (8) is in the form of

ĥ(k − 1) = P (k − 1)XH(k − 1)Λ(k − 1)y(k − 1). (9)

It is easy to verify that

P−1(k) = λP −1(k − 1) + x∗(k)xT (k)

+ ρ (D(k)− λD(k − 1)) (10)

XH(k)Λ(k)y(k) = λXH(k − 1)Λ(k − 1)y(k − 1)

+ x∗(k)y(k). (11)

Substituting (9) and (10) into (11) and noting e(k) = y(k)−
xT (k)ĥ(k − 1) yield

XH(k)Λ(k)y(k)

= λP −1(k − 1)ĥ(k − 1) + x∗(k)y(k)

=
(
P−1(k)− x∗(k)xT (k)− ρ (D(k)− λD(k − 1))

)
× ĥ(k − 1) + x∗(k)y(k)

= P−1(k)ĥ(k − 1)− ρ (D(k)− λD(k − 1)) ĥ(k − 1)

+ x∗(k)e(k). (12)

Substituting (12) into (8) leads to the recursive formula for
updating the parameter vector, i.e.,

ĥ(k) = ĥ(k − 1)− ρP (k) (D(k)− λD(k − 1)) ĥ(k − 1)

+ P (k)x∗(k)e(k). (13)

We now derive the recursive formula for calculating P (k).
Note that by defining Q−1(k) = P−1(k)− ρD(k), (10) is
equivalent to

Q−1(k) = λQ−1(k − 1) + x∗(k)xT (k). (14)

Using the famous matrix inversion lemma, we have

Q(k)=
1
λ

(
Q(k−1)−Q(k−1)x∗(k)xT (k)Q(k−1)

λ+xT (k)Q(k−1)x∗(k)

)
. (15)

On the other hand, if we apply the matrix inversion lemma
based on

P−1(k) = Q−1(k) + ρD(k) (16)

we have

P (k) = H(k)−H(k) (H(k) +Q(k))−1 H(k) (17)
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where

H(k) = (ρD(k))−1

= diag

⎧⎨⎩
(∣∣∣ĥ0(k − 1)

∣∣∣+ε
)

ρ
, . . . ,

(∣∣∣ĥL(k−1)
∣∣∣+ε

)
ρ

⎫⎬⎭ .

(18)

We summarize the proposed ZA-RLS-I algorithm in
Algorithm 1. Clearly, the ZA-RLS-I algorithm has a higher
computational cost than the standard RLS, owing to the fact
that the matrix inversion is still needed to calculate P (k). When
ρ = 0, it reduces to the conventional RLS algorithm since it can
be shown thatP (k) = Q(k)(H(k) +Q(k))−1H(k), in which
the term (H(k) +Q(k))−1H(k) tends to the identity matrix.

Algorithm 1 ZA-RLS-I algorithm

1: Initialize ĥ(0) as a zero or a small random vector. Set
Q(0) = (1/δ)I , with δ being a very small positive
number. Initialize both D(0) and D(1) as a zero matrix.

2: for time step k = 1, 2, . . ., do
3: Calculate⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(k) = y(k)− xT (k)ĥ(k − 1)

H(k) = diag

{
(|ĥ0(k−1)|+ε)

ρ , . . . ,
(|ĥL(k−1)|+ε)

ρ

}
D(k) = diag

{
1

|ĥ0(k−1)|+ε
, . . . , 1

|ĥL(k−1)|+ε

}
, for k>1

Q(k) = 1
λ

(
Q(k − 1)− Q(k−1)x∗(k)xT (k)Q(k−1)

λ+xT (k)Q(k−1)x∗(k)

)
P (k) = H(k)−H(k) (Q(k) +H(k))−1 H(k)

ĥ(k) = ĥ(k−1)−ρP (k) (D(k)−λD(k−1)) ĥ(k−1)

+ P (k)x∗(k)e(k)

4: end for

B. ZA-RLS-II

We now propose a more efficient version of ZA-RLS, which
is referred to as the ZA-RLS-II algorithm, by exploiting the
structural properties of the matrices involved. Note that by
denoting Q[inv](k) = Q−1(k), (14) can be alternatively repre-
sented by

Q[inv](k) = λQ[inv](k − 1) + x∗(k)xT (k). (19)

The basic idea of the ZA-RLS-II algorithm is to calculate
S(k) = (H(k) +Q(k))−1 in terms of Q[inv](k), which can
be easily updated recursively. The ZA-RLS-II algorithm also
makes use of the sparsity property of the channel. Specifically,
we note that as a result of the sparse channel, H(k) has a
low rank, i.e., it is a diagonal matrix with only a few dom-
inant components. We start with introducing a mathematical
theorem [25].

Lemma 1 ([25]): If Q andH are nonsingular square matrices
of the same dimension and H has rank one, then

(Q+H)−1 = Q−1 − 1
1 + g

Q−1HQ−1 (20)

where g = tr{HQ−1}.
Theorem 1 ([25]): Let Q and H be nonsingular square

matrices of the same dimension. Suppose thatH has rank r > 0
and is decomposed as H =

∑r
i=1 H i, where each Hi has rank

one. Denote Qi+1 = Q+
∑i

j=1 Hj with Q1 = Q. Then, by
making use of Lemma 1, we have

Q−1
i+1 = Q−1

i − 1
1 + gi

Q−1
i H iQ

−1
i (21)

where gi = tr{HiQ
−1
i }. In particular

(Q+H)−1 = Q−1
r+1 = Q−1

r − 1
1 + gr

Q−1
r HrQ

−1
r . (22)

Consider applying Theorem 1 to S(k) = (H(k) +Q(k))−1,
by decomposingH(k) as a series of r rank-one matrices, where
r is the number of nonzero taps in ĥ(k − 1). Specifically, at
each time step k, we find the integer set ω as

ω =
{
i|0 ≤ i ≤ L,

∣∣∣ĥi(k − 1)
∣∣∣ > ξ

}
(23)

where ξ is a small positive number, e.g., 10−3, and r = |ω|.
The elements of ω point to the positions of the nonzero
taps in ĥ(k − 1). For example, if r = 2, |ĥ0(k − 1)| > ξ and
|ĥ3(k − 1)| > ξ, then ω(1) = 0 and ω(2) = 3. Clearly, we
can decompose H(k) =

∑r
i=1 Hi(k), where Hi(k) has all

zero elements except |ĥω(i)(k − 1)|/ρ at the diagonal position
(ω(i) + 1, ω(i) + 1), which matches a corresponding diagonal
value in H(k) that is significantly larger than zero.

Similarly, denoting Q
[inv]
i (k) = Q−1

i (k) with Q
[inv]
1 (k) =

Q[inv](k) and applying Theorem 1 yield

Q
[inv]
i+1 (k) =Q

[inv]
i (k)− 1

1 + gi(k)
Q

[inv]
i (k)H i(k)Q

[inv]
i (k)

=Q
[inv]
i (k)−

∣∣∣ĥi(k − 1)
∣∣∣

ρ+
∣∣∣ĥi(k − 1)

∣∣∣ q̃i(k) q̃i(k)q̃
H
i (k)

(24)

for i = 1, 2, . . . , r, in which gi(k) = tr{Hi(k)Q
[inv]
i (k)},

q̃i(k) is the (ω(i) + 1)th diagonal element of Q
[inv]
i (k), and

q̃i(k) is the (ω(i) + 1)th column of Q
[inv]
i (k). Note that we

have S(k) = Q
[inv]
r+1 (k).
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We summarize the proposed ZA-RLS-II algorithm in
Algorithm 2.

Algorithm 2 ZA-RLS-II algorithm

1: Initialize ĥ(0) as a zero or a small random vector. Set
Q(0) = (1/δ)I , with δ being a very small positive number,
and set Q[inv](0) = δI . Initialize both D(0) and D(1) as a
zero matrix.

2: for time step k = 1, 2, . . ., do
3: Calculate⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(k) = y(k)− xT (k)ĥ(k − 1)

H(k) = diag

{
(|ĥ0(k−1)|+ε)

ρ , . . . ,
(|ĥL(k−1)|+ε)

ρ

}
D(k) = diag

{
1

|ĥ0(k−1)|+ε
, . . . , 1

|ĥL(k−1)|+ε

}
, for k>1

Q[inv](k) = λQ[inv](k − 1) + x∗(k)xT (k)

Q(k) = 1
λ

(
Q(k − 1)− Q(k−1)x∗(k)xT (k)Q(k−1)

λ+xT (k)Q(k−1)x∗(k)

)
.

4: Given Q[inv](k), ĥ(k − 1), ξ, find ω according to (23),

set r = |ω| and set Q[inv]
1 (k) = Q[inv](k).

5: for i = 1, 2, . . . , r, do
6: Calculate

Q
[inv]
i+1 (k)=Q

[inv]
i (k)−

∣∣∣ĥi(k−1)
∣∣∣

ρ+
∣∣∣ĥi(k−1)

∣∣∣ q̃i(k) q̃i(k)q̃
H
i (k).

7: end for
8: S(k) = Q

[inv]
r+1 (k).

9: Calculate⎧⎪⎨⎪⎩
P (k)= H(k)−H(k)S(k)H(k)

ĥ(k) = ĥ(k−1)−ρP (k)

× (D(k)−λD(k−1)) ĥ(k−1)+P (k)x∗(k)e(k)

10: end for

C. Convergence Analysis

The exponential convergence of the standard RLS with an
exponential forgetting factor was studied in [26], which focuses
on the “homogeneous” case that if y(k) is exactly given as
xT (k)h, then ĥ(k) converges to h exponentially fast, provided
that x(k) is persistently exciting. Similarly, for the proposed
algorithm, if we define a parameter estimation error vector, i.e.,

h̃(k) = h− ĥ(k) (25)

and consider the “homogeneous” case for (13) with y(k) =
xT (k)h, then

h̃(k)=
(
I−ρP (k) (D(k)−λD(k−1))−P (k)x∗(k)xT (k)

)
× h̃(k − 1) + ρP (k) (D(k)− λD(k − 1))h. (26)

We are ready to provide the exponential convergence of the
proposed ZA-RLS algorithms.

Theorem 2: If P (k) is invertible, then the ZA-RLS algo-
rithms are exponentially stable.

Proof: We choose a Lyapunov function as

V(k) =
(
P−1(k)h̃(k)−ρD(k)h

)H(
P−1(k)h̃(k)− ρD(k)h

)
> 0. (27)

Substituting (10) into (26) yields

h̃(k) = λP (k)P−1(k − 1)h̃(k − 1)

+ ρP (k) (D(k)− λD(k − 1))h. (28)

Substituting (28) into the Lyapunov function (27) results in

V(k)− V(k − 1) = (λ2 − 1)V(k − 1) < 0 (29)

V(k) < λV(k − 1) < · · · < λkV(0). (30)

This proves the exponential convergence of the ZA-RLS algo-
rithms. Finally, we conclude from P−1(k)h̃(k)−ρD(k)h→0
that

ĥ(k) → (I − ρP (k)D(k))h

=
(
XH(k)Λ(k)X(k) + ρD(k)

)−1
XH(k)Λ(k)X(k)h

(31)

exponentially fast. �
Remark 1: The rank-1 updates are a standard way of building

the inversion of the covariance matrix, e.g., used in deriving
RLS algorithms. The process can be unstable for ill-conditioned
data sets. However, in the proposed ZA-RLS algorithms, P (k)
is always invertible due to regularization. Specifically, observe
that the rank-1 updates (24) are guaranteed to be well condi-
tioned owing to the regularization ρ > 0. In fact, the regular-
ization introduced ensures that our ZA-RLS algorithms have
even better numerical stability than the standard RLS algorithm.
The standard RLS algorithm is, of course, well known to be
numerically stable under typical floating-point implementation
that has sufficient precision.

Remark 2: From (31), clearly, ĥ(k) is a biased estimator of
h for nonzero ρ. However, if ρ = 0, the parameter estimate will
have a large variance due to the ill condition of the covariance
matrix, particularly for sparse channels. In statistical estimation
theory, this is well known as the bias and variance tradeoff in
choosing the regularization parameter ρ. Note that the regu-
larization parameter selection criteria for the LMS algorithm
[22], [23] are not applicable to RLS-based algorithms that
have much better performance than LMS-based algorithms. In
this paper, we empirically choose appropriate values of ρ with
respect to the system’s signal-to-noise ratio (SNR) conditions.
It is highly desired to investigate how to choose ρ optimally
by minimizing the estimation error ‖h̃(k)‖2, which is defined
as the squared norm of h̃(k), using, for example, approximate
Bayesian models. This will be our future study.



218 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 1, JANUARY 2017

D. Computational Complexity Analysis

The key difference between ZA-RLS-I and ZA-RLS-II al-
gorithms lies in how to calculate P (k). Each recursive step
of the ZA-RLS-I algorithm has a computational cost on the
order of O((L+ 1)3), but for the ZA-RLS-II algorithm, this is
reduced to a computational cost on the order of O(r(L + 1)2),
where r is the estimated sparsity level at each recursion. This is
because the computation in Algorithm 2 is essentially a series
of r rank-1 updates, each with complexity on the order of
O((L+ 1)2). Moreover, r varies during the recursive updating
procedure. However, since r � L+ 1 all the time, the com-
plexity of the ZA-RLS-II algorithm is approximately on the
order of O((L+ 1)2). This is because the underlying system
that we consider is very sparse, with the true sparsity level
much smaller than L+ 1. Based on the standard initialization
of ĥ(0), i.e., setting the elements of ĥ(0) to zero or, randomly,
to small values, which is the most widely adopted initialization
for recursive identification, it is most unlikely that r at any re-
cursion step will ever reach a high value close to L+ 1. Rather,
it is most likely that r will remain to be much smaller than
L+ 1 all the time. In the simulation study, we will verify this
analysis.

Thus, the computational cost of the ZA-RLS-II algorithm is
only slightly higher than that of the standard RLS algorithm,
which also has complexity on the order of O((L + 1)2). More
specifically, at each recursive step, in addition to update/store
the matrix variable Q(k) as also required by the conven-
tional RLS algorithm, the ZA-RLS-II algorithm is required
to update/store Q[inv](k), but this only involves a negligible
additional computational cost.

It is also obvious that the proposed ZA-RLS-II algorithm, the
l1-RLS algorithm [16], and the SPARLS algorithm [14] all have
similar computational complexity, on the order of O((L+ 1)2)
at each recursive step.

IV. SIMULATION STUDY

Simulations were carried out with the channel input signal
x(k) taking values from the M = 64 quadrature amplitude
modulation symbol set. The transmit signal was normalized
to have a unity average symbol energy, and thus, the average
energy per bit was given by Eb = 1/ log2(M) = 1/6. The
received SNR was defined as 10 log10(Eb/No). The sparse
multipath channel had a length of 100, i.e., L = 99, with its
true sparsity level denoted by rtrue, which was the number of
the nonzero elements in h. Based on the average results over
100 random trials, we tested the performance of the proposed
algorithms in three aspects: 1) the performance comparison
with some other well-known l1-norm-based adaptive algo-
rithms; 2) the effects of the sparsity levels on the proposed
sparse algorithms; and 3) the effects of the regularization pa-
rameter with respect to the SNR. For each trial, the training
data length was set to 1000. The positions of the significant
rtrue taps were randomly selected within the channel length.
The CIR h was kept constant in the first half of the each trial,
and it suddenly changed at the beginning of the second half
of the each trial in terms of both the tap positions and values.

The values of channel taps followed the Gaussian distribution
and were normalized to ‖h‖2 = 1. The estimation performance
was evaluated based on the average mean absolute deviation
(MAD), which is defined as

MAD
{
ĥ(k)

}
= E

{∣∣∣ĥ(k)− h
∣∣∣} = E

{
L∑

i=0

∣∣∣ĥi(k)− hi

∣∣∣}
(32)

and calculated based on the average value over 100 independent
random trials.

Comparison With Other l1-Norm-Based Complex-Valued
Sparse Adaptive Algorithms: First, we compared the pro-
posed algorithms with several known l1-norm-based algo-
rithms under the conditions of SNR = 15 dB and 30 dB,
whereas the number of significant taps was fixed to rtrue = 10.
Specifically, the proposed ZA-RLS-I and ZA-RLS-II algo-
rithms were compared with the ZA-LMS, the ZA-NLMS, the
conventional RLS, the SPARLS algorithm [14], the l1-RLS
algorithm [16], and the oracle-RLS algorithm, which is just the
ordinary RLS given the nonzero tap locations. The oracle-RLS
algorithm obviously will attain the best performance, but it is
impractical as the nonzero tap locations are unknown. The rea-
sons for choosing the SPARLS algorithm [14] and the l1-RLS
algorithm [16] as baseline algorithms are that they are both
based on the l1 cost function with different algorithm designs
and that they have the same computational complexity as
the proposed ZA-RLS-II. Moreover, all these algorithms are
designed for complex-valued channel identification.

For the ZA-LMS algorithm, we set μ = 0.01, and
ρZA−LMS = 0.01, whereas for the ZA-NLMS algorithm, we set
μ = 0.8, and ρZA−LMS = 0.01, since these values were found
to give the best results for the respective algorithms. For all
the RLS-based algorithms, the forgetting factor λ = 0.975. We
also set ξ = 0.0001 in ZA-RLS-II. The parameters used in the
SPARLS algorithm [14] and the l1-RLS algorithm [16] were
empirically tuned to give the best performance possible. In
addition, in the case of the l1-RLS algorithm, the performance
was very bad at the beginning of the data set; hence, the
ordinary RLS algorithm was used for the first 120 data points.
For the ZA-RLS-I and ZA-RLS-II algorithms, we set ρ = 0.5
for SNR = 15 dB and ρ = 0.1 for SNR = 30 dB.

The MAD results obtained by various adaptive algorithms
are compared in Fig. 1(a) and (b), respectively, for the two
SNR settings. As expected, all the RLS-based algorithms at-
tain much better MAD performance than the ZA-LMS and
ZA-NLMS algorithms. It is also seen that the results of the
two proposed algorithms are identical, and they significantly
outperform the l1-RLS algorithm. Fig. 1 also shows that the
ZA-RLS-II algorithm achieves a smaller steady-state error with
a faster convergence rate, compared with the SPARLS algo-
rithm. These results are significant, particularly considering
that the ZA-RLS-II algorithm has similar computational com-
plexity as the l1-RLS algorithm and the SPARLS algorithm.
In Fig. 2, we plot the estimated sparsity level r as recoded by the
ZA-RLS-II algorithm at each recursive step, averaged over the
100 independent random trials. It can be observed in Fig. 2 that
r � L+ 1 all the time.
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Fig. 1. Comparison of the MADs of the parameter estimates for various
adaptive algorithms. (a) SNR = 15 dB and (b) SNR = 30 dB. The channel
input signal is complex valued, and the channel sparsity level rtrue = 10.

Fig. 2. Estimated sparsity level r as recorded by the ZA-RLS-II algorithm
at each recursive step, averaged over 100 runs. The channel input signal is
complex valued, the channel length L+ 1 = 100, the channel sparsity level
rtrue = 10, and SNR = 15 dB.

Fig. 3. Comparison of the MADs of the parameter estimates for various
sparsity levels. (a) SNR = 15 dB and (b) SNR = 30 dB. The channel input
signal is complex valued.

Performance Evaluation for Various Sparsity Levels: To
investigate the performance of the proposed algorithms for
different sparsity levels, we further experimented by changing
the number of significant taps rtrue, also under the conditions
of SNR = 15 dB and 30 dB. Specifically, rtrue = 1, 5, 20, and
50 was experimented. For clarity, only the oracle-RLS and ordi-
nary RLS algorithms were used for comparison, and the results
obtained were plotted in Fig. 3(a) and (b) for the two SNR
settings, respectively. Since the channel taps were normalized in
spite of different sparsity levels, we used different values of ρ as
appropriate for ZA-RLS-I and ZA-RLS-II. Specifically, when
SNR = 30 dB, we empirically set ρ = 0.1 for rtrue = 1, 5,
and 20, but ρ = 0.01 for rtrue = 50. When SNR = 15 dB, we
empirically found ρ = 1 for rtrue = 1 and 5, ρ = 0.3 for
rtrue = 20, whereas ρ = 0.05 for rtrue = 50. The results in
Fig. 3 clearly show that it is most beneficial to use the sparse
adaptive algorithms when the sparsity level is high, i.e., the
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Fig. 4. Comparison of the steady-state MADs of the parameter estimates as
functions of SNR. The channel input signal is complex valued, the channel
sparsity level rtrue = 10, and three different regularization parameter values
are tested for the proposed ZA-RLS algorithms.

value of rtrue is small. As rtrue increases to the full channel
length, the oracle-RLS algorithm becomes the ordinary RLS
algorithm. In this case, there exists no sparsity to be exploited,
and ρ should be chosen as a very small positive number close
to zero just for numerical stability considerations.

Performance Evaluation for Different Regularization Param-
eter and SNR Settings: To study the effects of ρ with respect to
SNR levels for a fixed sparsity level of rtrue = 10, we recorded
the results of MAD{ĥ(300)} as the functions of SNR in Fig. 4,
based on ρ = 0.5, ρ = 0.1, and ρ = 0.01, respectively. It is
shown in Fig. 4 that for the proposed ZA-RLS algorithms, a
relatively larger ρ should be used under a high-noise condition,
whereas when the noise level is low, ρ should be set relatively
small. However, a too small ρ value leads to poor performance.

Comparison With the l1-Norm-Based Real-Valued Sparse
Adaptive Algorithms in [19]: The l1-norm-based sparse RLS
algorithms in [19] are designed for real-valued signals, and they
cannot be directly applied to our application of sparse channel
identification involving complex-valued signals. By contrast,
our algorithm and the other algorithms compared in the above
experiment can deal with both real-valued and complex-valued
signals. To compare our algorithm with the algorithms in [19],
we specifically design an application involving real-valued
signals. The experiment is the same as the experiment in Fig. 1,
but the input signal x(k) is changed to be real valued and
is generated as a uniformly and randomly distributed signal
in [0, 1]. The variance of the noise is set to 0.05, and the
resulting SNR is approximately 21 dB. Note that the two
online algorithms mentioned in [19], i.e., OCCD-TWL and
OCCD-TNWL, only OCCD-TWL is explicitly derived in [19].
Since the work in [19] does not provide how OCCD-TNWL is
actually realized, we implement OCCD-TNWL based on our
understanding from the offline TNWL algorithm given in [19].

Fig. 5. Comparison of the MADs of the parameter estimates for various
adaptive algorithms. The channel input signal is real valued, the channel
sparsity level rtrue = 10, and SNR = 21 dB.

The OCCD-TNWL algorithm is much more complicated than
the OCCD-TWL algorithm. Specifically, at each recursion, the
key adaptive parameter of the algorithm is weighted, and the
weighting factor depends on the full RLS channel estimate.
Therefore, an additional full RLS algorithm is required to run in
parallel to provide the full channel estimate at each recursion.

The MAD performances of our ZA-RLS-II, OCCD-TWL,
and OCCD-TNWL are compared in Fig. 5, where it is shown
that both ZA-RLS-II and OCCD-TNWL outperform OCCD-
TWL. It is also shown in Fig. 5 that our ZA-RLS-II and OCCD-
TNWL achieve the same steady-state performance, but our
ZA-RLS-II has an additional advantage of having slightly better
initial transition performance.

V. CONCLUSION

In this paper, we have introduced two ZA-RLS algorithms for
the sparse channel identification problem by using the l1-norm
sparsity constraint adaptively. The basic idea in achieving a
closed-form solution is to use an adaptively weighted l2-norm
of the parameter vector term to approximate the l1-norm of
the parameter vector in which the weighting factors are readily
calculated as the inversion of the associated l1-norm of the
parameter estimates. As a variant of ZA-RLS-I, the ZA-RLS-II
algorithm has focused on improving the computational effi-
ciency by exploiting the channel sparsity and matrix theory.
Consequently, the computational complexity of the ZA-RLS-II
algorithm is only slightly higher than that of the standard RLS
algorithm. The proposed ZA-RLS-II algorithm is compared
with a number of adaptive algorithms that also use l1-norm
sparsity constraints, and the simulation results have demon-
strated that the proposed ZA-RLS approach is highly effective
in real-time sparse channel estimation. In particular, it has been
shown that the proposed ZA-RLS-II algorithm outperforms the
existing l1-RLS and SPARLS algorithms that have similar com-
putational complexity and also use the same l1 cost function but
with different approximations for algorithm design. Our future
work will study an efficient tuning algorithm for optimizing the
regularization parameter.
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