11240

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

Knowledge and Data Dual-Driven Channel
Estimation and Feedback for Ultra-Massive MIMO

Systems Under Hybrid Field Beam Squint Effect

Kuiyu Wang, Zhen Gao", Sheng Chen", Life Fellow, IEEE, Boyu Ning"~, Member, IEEE,
Gaojie Chen”, Senior Member, IEEE, Yu Su™, Senior Member, IEEE,
Zhaocheng Wang™, Fellow, IEEE, and H. Vincent Poor™, Life Fellow, IEEE

Abstract— Acquiring accurate channel state information (CSI)
at an access point (AP) is challenging for wideband millimeter
wave (mmWave) ultra-massive multiple-input and multiple-
output (UM-MIMO) systems, due to the high-dimensional
channel matrices, hybrid near- and far- field channel behavior,
beam squint effects, and imperfect hardware constraints, such
as low-resolution analog-to-digital converters, and in-phase and
quadrature imbalance. To overcome these challenges, this paper
proposes an efficient downlink channel estimation (CE) and CSI
feedback approach based on knowledge and data dual-driven
deep learning (DL) networks. Specifically, we first propose
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a data-driven residual neural network de-quantizer (ResNet-
DQ) to pre-process received pilot signals at user equipment
(UEs), where the noise and distortion brought by imperfect
hardware can be mitigated. A knowledge-driven generalized mul-
tiple measurement vector learned approximate message passing
(GMMYV-LAMP) network is then developed to jointly estimate
the channels by exploiting the approximately same physical
angle shared by different subcarriers. In particular, two wide-
band redundant dictionaries (WRDs) are proposed such that
the measurement matrices of the GMMV-LAMP network can
accommodate the far-field and near-field beam squint effect,
respectively. Finally, we propose an encoder at the UEs and
a decoder at the AP by a data-driven CSI residual network
(CSI-ResNet) to compress the CSI matrix into a low-dimensional
quantized bit vector for feedback, thereby reducing the feedback
overhead substantially. Simulation results show that the proposed
knowledge and data dual-driven approach outperforms conven-
tional downlink CE and CSI feedback methods, especially in the
case of low signal-to-noise ratios.

Index Terms— Ultra-massive multiple input multiple output
(UM-MIMO), hybrid near- and far- field channels, orthogonal
frequency division multiplexing (OFDM), channel estimation,
knowledge and data dual-driven, CSI feedback.

I. INTRODUCTION

ASSIVE multiple-input multiple-output (MIMO) is a

key technique to significantly improve spectral effi-
ciency and energy efficiency, owing to its good angular-domain
resolution and large array gains in the fifth generation (5G)
cellular networks [2], [3]. To provide seamless human-to-
everything interactions, the sixth generation (6G) communi-
cation system is expected to achieve even higher spectral
efficiency and energy efficiency for supporting reliable ultra-
high-definition video delivery, extremely low access latency,
and real-time interaction with user equipment (UEs) [4].
As one of the most disruptive evolution techniques in 6G,
ultra-massive MIMO (UM-MIMO) is capable of providing
higher flexibility in degrees of freedom and communica-
tion capacity. Moreover, by utilizing higher frequency bands,
such as millimeter-wave (mmWave) and Terahertz (THz),
UM-MIMO is envisioned to support larger transmission band-
width and shorter latency [5], [6], [7]. However, the massive
number of antennas results in extremely large array sizes,
and the far-field electromagnetic (EM) wave propagation
assumption becomes inaccurate [8], [9], [10]. Moreover, the
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ultra-wide bandwidth brings the beam squint effects, which
is non-negligible in UM-MIMO systems [11]. Thus, there is
a new urgent need for signal processing algorithms that are
aware of and can cope with these challenges.

The acquisition of the downlink channel state information
(CSI) at an access point (AP) is particularly challenging for
UM-MIMO systems, since estimating the complete CSI at
the AP associated with a massive number of antennas at
AP would lead to excessive pilot overhead. In the literature,
there have been various downlink CSI acquisition schemes
proposed for massive MIMO systems [12], [13], [14], [15],
[16], [17], [18]. In time division duplexing (TDD) massive
MIMO systems adopting the fully-digital array and serving
dozens of UEs, the AP can easily estimate the uplink CSI at
an affordable pilot overhead thanks to the relatively limited
number of antennas at the UEs as well as the good chan-
nel reciprocity between uplink and downlink channels. For
conventional sub-6GHz frequency division duplexing (FDD)
massive MIMO systems adopting fully-digital arrays, since
the uplink and downlink channel reciprocity does not exist,
the UEs have to first estimate the downlink CSI based on
pilot signals transmitted by the AP and then feed them back
to the AP [18]. However, since the radio frequency calibration
in mmWave/THz systems becomes difficult, the uplink and
downlink reciprocity in TDD mmWave/THz-based systems
deteriorates [19]. Moreover, mmWave/THz MIMO systems
usually adopt hybrid analog-digital arrays, and the pilot over-
head for uplink channels is also proportional to the number
of receiver antennas. By contrast, the downlink channel esti-
mation (CE) training time can be relatively smaller, since
multiple UEs can simultaneously perform CE according to the
downlink pilot signals broadcasted by the AP.' Furthermore,
the sparsity of mmWave/THz MIMO channels can be utilized
to substantially reduce CSI feedback overhead. Since for TDD
mmWave/THz MIMO systems, it becomes difficult to directly
acquire the downlink channels by using the estimated uplink
channels with affordable pilot overhead, APs have to ask UEs
to perform downlink CE and CSI feedback [20].

A. Prior Work

There exists extensive work on the problem of acquiring
downlink CSI with affordable pilot overhead. By utilizing
the sparsity of mmWave/THz massive MIMO channels rep-
resented in the delay domain and/or angle domain, various
compressive sensing (CS) based CE algorithms, including
greedy and Bayesian inference algorithms, were proposed
[12], [13], [14], [15], [16], [17], and [21]. As typical greedy
algorithms, orthogonal matching pursuit (OMP)-type algo-
rithms construct the ‘best matching’ projection of the signal
from the redundant measurement matrix in a greedy man-
ner [12], [13], [14], [15], [16]. For example, considering the
spatio-temporal common sparsity of delay-domain in FDD
massive MIMO systems, the authors in [13] proposed a
structured CS-based CE scheme, where an adaptive structured

ISince the AP usually has sufficient transmit power, the downlink CE
signal-to-noise ratio (SNR) is sufficient to ensure the good estimation
accuracy.
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subspace pursuit algorithm was developed to improve the CE
accuracy. However, the near-field propagation was not con-
sidered. To this end, in [15], a simultaneous OMP algorithm
was utilized to solve a purely near-field CE problem, where a
dedicated dictionary was designed. The CE scheme of [15]
was further extended to cater to the hybrid near- and far-
field channels of UM-MIMO systems in [16], where a variant
of OMP was proposed but the wideband communication was
not involved. On the other hand, Bayes-based algorithms can
utilize a priori distribution on sparse matrices to improve CE
performance. Specifically, the generalized multiple measure-
ment vector (GMMYV) approximate message passing (AMP)
algorithm was proposed to realize both active user detection
and CE in [17]. Considering the practical hardware constraints
at the receiver, the authors in [21] proposed two CE schemes
with low-resolution analog-to-digital converters (ADCs) based
on the generalized AMP (GAMP) and vector AMP, respec-
tively. Bayes-based algorithms are able to approach Bayesian
optimal performance, but the iterative convergence time is
unaffordable in practical implementation.

In addition to CS-based CE schemes, subspace-based CE
schemes exploiting multiple signal classification (MUSIC)
or estimation of signal parameters via rotational invari-
ant techniques (ESPRIT) algorithms can directly estimate
the dominant channel parameters such as angles of depar-
ture/arrival (AoDs/AoAs) and path delays [22], [23], [24].
In [22], the authors proposed a beam training strategy to
measure the AoD and AoA by cooperatively sweeping both
wide beams and narrow beams. To deal with the hard-
ware imperfections of low-cost devices, the work [23] used
the root-MUSIC algorithm in AoD estimation for a receive
array with low-resolution ADCs and derived the correspond-
ing Cramér-Rao lower bound. The aforementioned research
focuses only on incident angle estimation, which neglects
parameters such as delay. To this end, in [24], a multi-
dimensional unitary ESPRIT algorithm was proposed to
estimate AoAs, AoDs, and the corresponding delays at dif-
ferent stages.

B. Motivation

Although wideband UM-MIMO systems can significantly
improve the system throughput to support future 6G networks,
several practical challenges beyond the capability of conven-
tional CE schemes need to be addressed.

1) Hardware imperfections: To support ubiquitous ser-
vice in future 6G networks, low-cost and energy-saving
designs will be widely considered for APs and UEs.
Thus, flash ADCs with high sampling speed but mod-
erate resolution are expected to be widely employed in
wideband UM-MIMO systems [25]. However, this will
lead to the received signal suffering from non-negligible
information loss. Moreover, in-phase and quadrature
(IQ) imbalance will further deepen the distortion of the
received signals.

2) Hybrid near- and far- field effect: In conventional
MIMO systems, the planar-wave propagation approx-
imation is commonly assumed and the CSI exhibits
sparsity in the virtual angular domain. However, the
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hybrid near- and far- field scenario where far-field and
near-field scatterers co-exist is commonly encountered
in UM-MIMO systems. Consequently, conventional CE
algorithms based on the virtual angular sparsity will
work poorly.

3) Beam squint effects: In conventional wideband MIMO
systems, the incident virtual angles of EM waves are
approximated to be the same across all subcarriers. How-
ever, when the system bandwidth increases dramatically,
virtual angle offsets appear due to the significant dif-
ference in the wavelengths across different subcarriers.
If the frequency-flat dictionaries of conventional CE
algorithms are still adopted, the virtual angle offsets
across different subcarriers will result in severe CE
accuracy loss.

With dedicated mathematical modeling and accurate prior
knowledge, conventional algorithms have so far performed
well in various CE scenarios. However, the performance of
conventional algorithms will degrade considerably in envi-
sioned 6G applications due to the environment mismatch and
unaffordable time overhead. Recently, deep learning (DL) has
been considered as a key enabling technology in various
applications of communication systems [26], e.g., CE [20],
[27], [28], [29], [30], CSI feedback [31], [32], [33], [34],
[35], precoding [36], beam training and prediction [37], [38],
[39], scheduling [40], and detection [41], [42]. By training
a neural network model with a predefined objective function
using DL, it can learn features adapted to real-world data,
and the trained model can perform prediction in real-time
with low complexity. DL-based CE networks can be roughly
categorized into data-driven and knowledge-driven according
to the adopted mechanisms. In [27], a data-driven end-to-
end deep neural network (DNN) was proposed based on
the angular sparsity in massive MIMO channels. Further,
DL networks have also shown promise in addressing practical
issues such as hardware imperfections. For instance, in [28],
the authors designed a data-driven CE network to address
pilot contamination, synchronization errors, and channel aging.
In [29], a conditional generative adversarial network (cGAN)
was designed to overcome the challenging quantization noise
in a sparse CE problem.

Beyond these results, and in order to circumvent the over-
whelming complexity in conventional iterative algorithms such
as sparse Bayesian learning (SBL) and AMP, extensive DL
algorithms have been proposed by replacing hyper-parameters
with learnable variables, which are known as knowledge-
driven algorithms [43]. In [44], LampResNet was proposed
as a combination of a learned AMP (LAMP) network
and a residual neural network (ResNet) to provide coarse
and refined estimation results, respectively. Furthermore, the
authors in [20] unfolded a multiple measurement vector
AMP (MMV-AMP) algorithm and designed a learnable phase
shifter network at the receiver in an orthogonal frequency
domain multiplexing (OFDM) system. By designing a specific
shrinkage function, the network leverages the exactly common
support across different subcarriers effectively. However, the
algorithm requires an identical measurement matrix on dif-
ferent subcarriers and works poorly in the case of hardware
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imperfections. To address these issues, the authors of [45]
proposed a few-bit massive MIMO channel estimation net-
work to achieve CE and pilot training at the AP and UEs
simultaneously, but the network is limited to narrowband
systems and cannot be easily applied to wideband systems.
To handle the beam squint effects in mmWave wideband
systems, the authors in [46] proposed a learnable itera-
tive shrinkage thresholding algorithm-based channel estimator
by transforming the beam-frequency mmWave channels into
sparse representations, but the impact of near-field propagation
was not considered.

In addition to performing the downlink CE, UEs are
required to feed the received pilot signal or estimated CSI back
to the AP. However, if the CSI matrix is quantized directly and
fed back to the AP, it will result in non-negligible quantization
noise. To this end, the authors of [31] utilized the virtual
angular sparsity to improve massive MIMO CSI compression.
However, this early work did not consider the impact of
existing knowledge at the AP. To this end, in [32], the
time correlation of time-varying massive MIMO channels was
utilized by introducing a long short-term memory structure,
and the network was demonstrated to outperform schemes
not considering this effect. Besides, in [33], the authors took
advantage of the partial channel reciprocity between uplink
and downlink channels in FDD massive MIMO systems.
However, the input of the aforementioned schemes is assumed
to be noiseless, which is impossible to obtain in practical
transmission systems. For this reason, in [47] a two-module
neural network termed an anti-noise CSI compression network
was developed to achieve noisy CSI feedback compression,
where the first module removed the noise and the next module
compressed the CSI and eliminated the residual noise in
the compression. However, the training is not end-to-end
in the CSI feedback and training takes a long time. More-
over, the beam squint effects make the essential information
extraction more complicated and degrades the performance of
the aforementioned schemes.

In machine learning terminology, purely data-driven
modeling is known as black-box modeling, while pure
knowledge-driven modeling is referred to as white-box model-
ing. A fundamental principle in data modeling is to incorporate
available a priori information, i.e., a priori knowledge,
regarding the underlying data-generating mechanism into the
modeling process. Knowledge-and-data dual modeling, also
known as grey-box modeling, is capable of incorporating prior
knowledge and typically outperforms purely data-driven mod-
eling [48], [49], [50]. Thus, a knowledge and data dual-driven
approach should offer a much better method for the CE and
CSI feedback. However, few studies have considered this
approach in the present context. In [51], the authors proposed
a scheme that includes a data-driven noise level detecting
network to aid a knowledge-driven LAMP CE network, while
the scheme of [52] includes a knowledge-driven Gaussian
mixture LAMP CE network and a data-driven residual learn-
ing network for CSI-denoising. However, the aforementioned
research is limited to the case of narrowband transmission. The
authors in [53] proposed a hybrid driven channel estimation
scheme for a reconfigurable intelligent surface aided wideband

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on September 13,2024 at 06:56:59 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: KNOWLEDGE AND DATA DUAL-DRIVEN CHANNEL ESTIMATION AND FEEDBACK

11243

TABLE I
COMPARISON OF EXISTING DEEP LEARNING-BASED CE SCHEMES AND PROPOSED WORK
Contents Estimation Drive Type Transmission Hardware Hybrid-Field
Researd Method Direction Imperfection Beam Squint Effect
Literature Subspace Compressed | Data | Knowledge | Dual Uplink | Downlink Low-bit Other Far | Near | Hybrid
sensing | driven driven driven ADC | Imperfections | Field | Field | Field
[20] v v v v v
[27] v v v
[28] v v v v
[29] v v v v
[30] v v v
[44] v v v
[45] v v v
[46] v v v v v
[51] v v v
[52] v v v
[53] v v v v
Proposed work v v v v v v v v

system, but the wideband beam squint effect and near-field
effect are not considered. Furthermore, the scenarios with
near-field propagation and hardware imperfections are not
addressed in these schemes either.

C. Our Contributions

Against the above background, this paper proposes a novel
knowledge and data dual-driven downlink CE and uplink CSI
feedback approach for UM-MIMO systems, where an AP
serves multiple single-antenna UEs using wideband OFDM
transmission. We assume that the scatterers between the UE
and the AP can be located in either the near or far field with
respect to the AP. The AP adopts hybrid beamforming and
all UEs use low-bit ADCs as a cost-effective solution for
practical deployment. Our main contributions are summarized
as follows.

« A data-driven de-quantizer (DQ) module is proposed
to combat hardware imperfections. All UEs exploit
the oversampled received pilot signal to mitigate the sig-
nal distortion caused by the low-bit ADCs. Specifically,
a data-driven ResNet DQ (ResNet-DQ) is developed
to mitigate signal distortion caused by quantization
and additive white Gaussian noise (AWGN). Simulation
results demonstrate that ResNet-DQ can eliminate both
AWGN and quantization noise effectively, especially in
low-SNR regions. To the best of our knowledge, this is
the first attempt to achieve time-domain OFDM signal de-
quantization based on deep learning, where the intrinsic
correlation of oversampled signals at a practical receiver
is exploited.

e Two wideband redundant dictionaries (WRDs) are
proposed to sparsify UM-MIMO channel matrices.
Two customized WRDs are designed for far-field and
near-field, respectively. The former is derived based on
the discrete Fourier transform (DFT) matrix, while the lat-
ter is obtained by data-driven methods. Both dictionaries
aim at compensating for the virtual angle-domain support
offsets under beam squint effects, so that the almost

identical physical AoA/AoDs across different subcarriers
can be exploited.

o A knowledge-driven network is utilized to estimate
the channels. By using the designed WRDs, the sparse
angle-domain vectors on different subcarriers exhibit
exactly the common sparse support. This enables us to
formulate the downlink wideband CE as a sparse signal
recovery problem and develop a GMMV-LAMP network
to estimate the channels with low pilot overhead. As the
de-quantization procedure in ResNet-DQ is highly non-
linear, the received signals from different subcarriers
suffer from different noise levels and we derive a shrink-
age function to deal with this. Simulation results verify
the excellent CE performance in a wideband mmWave
system with the beam squint effects.

e A data-driven module is proposed to efficiently
perform bit-vector CSI feedback. It consists of a
CSI-ResNet auto-encoder with encoding and decoding
components deployed at the UEs and AP, respectively.
With dedicated designed network structures, the encoder
at a UE can compress CSI and transform it into a compact
bit-vector, then the AP reconstructs the high-dimensional
CSI once the feedback vector is received by a decoder
with a similar structure. Simulation results verify this
module’s effectiveness in CSI feedback especially in low-
SNR regions, which outperforms the widely considered
CSI-Net [31].

Notation: We use lower-case bold letters for vectors, e.g., a,
and capital bold letters for matrices, e.g., A. The conjugate,
transpose and conjugate transpose operators are denoted by
()%, ()T and ()M, respectively. The ith element of a is given
by [a]; and the (¢, j)th element of A is denoted as [A]; ;. For
a diagonal matrix 33, 3% denotes the diagonal matrix in which
each diagonal element is the square root of the corresponding
element in 3. (a) R(A)) and I(a) (3(A)) denote the real
part and imaginary part of a (A), respectively. [a| rounds a to
the nearest integer greater than or equal to a. a ~ CN (a,V)
denotes a random vector a following the complex Gaussian
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Access Point

Structure of the knowledge and data dual-driven network: the whole network is divided into data-driven de-quantization, knowledge-driven

GMMV-LAMP, and data-driven CSI feedback modules. Time-domain quantized oversampling samples are first inputted into the de-quantization module,
and the output is utilized in GMMV-LAMP for CE. Finally, the estimated CSI is compressed and reconstructed in the CSI feedback module.

distribution with mean vector a and covariance matrix V.
U (a,b) denotes the uniform distribution within the range of
[a, b]. 0 and I denote the zero vector and identity matrix of

appropriate dimension, respectively. ||al|, denotes the [ norm

of a. ||A||  denotes the Frobenius norm of A. o a(i)]J denotes

the partial derivative of the jth element of a vector-valued
function f(r) with respect to variable x. E[] denotes the
statistical expectation operator.

II. PRELIMINARIES

We first present the system model which consists of the
transmission model and entire neural network structure for CE.
Then, the mmWave wideband channel model that considers
the hybrid near- and far- field effect and beam squint effect is
detailed.

A. System Model

We consider the downlink CE and CSI feedback problem
in a single-cell multi-user mmWave wideband UM-MIMO
system. The carrier frequency and the corresponding wave-
length are denoted by f. and ., respectively. The AP adopts
the hybrid analog-digital MIMO architecture with Nrp radio
frequency (RF) chains and an Njp-element uniform linear
array (ULA). The antenna spacing is half of the carrier
wavelength, i.e., d = \./2. Without loss of generality, each
UE is equipped with a single antenna and a @Q-bit ADC to
reduce hardware cost and power consumption. The center of
AP is positioned at (0 0), and the coordinates of antennas are
(0,—2e 4 (i — Ma2)2e) i € {1,..., Nap}. The number of
scatterers L is assumed to be the same for all UEs. OFDM
modulation with K subcarriers is adopted to combat the
multipath channels.

We design a transmission frame that includes two stages:
the first G pilot slots with K subcarriers are utilized for CE,
and the rest (T — G) slots with Sy subcarriers are used for data
transmission. Note that the pilot symbol length is much smaller
than the data symbol length, and the CE overhead is relatively
small compared with the data transmission, in which the
subcarrier spacing becomes larger. Assume that the maximum
number of delay taps is [Tmaxfs], and the number of pilot
subcarriers satisfies K > [Tnaxfs|, where Tiax denotes the
maximum delay of the wideband channels. At the CE stage,
the AP broadcasts the pilot signals to all UEs. After the
received signal is quantized with a low-bit ADC, it is inputted
into the proposed network illustrated in Fig. 1. Specifically,

it is first de-quantized by ResNet-DQ. Then, the recovered
high-resolution signal is utilized for CE using GMMV-LAMP.
After the UE obtains the complete CSI estimated by GMM V-
LAMP, a dedicated encoder compresses the CSI matrix into a
low-dimensional bit vector which is then fed back to the AP.
Finally, the AP reconstructs the CSI of UEs with an identical
decoder. It is worth noting that UEs’ propagation environments
are similar. Without loss of generality, we can focus on the CE
and CSI feedback of a single UE, and indices of UEs can be
omitted.

Denote the signal transmitted by the AP on the kth subcar-
rier and the gth pilot slot by Frr[g]s[g, k] € CN2P*1, where
Frelg) = —A—el=l9l ¢ C¥an*Nar and s[g, k] € CNarx1
denote the anafog precoder on the gth pilot slot and the
baseband pilot symbol on the kth subcarrier and the gth
pilot slot, respectively. The elements &; ;[g] = [E[g]];; for
1 <i < Npp and 1 <[ < Ngyp are uniformly distributed
in U(0,27) and the (¢,[)th element of the precoding matrix
el=ll s el€ildl, Furthermore, s[g, k] ~ CA(0,TI). To avoid
the peak-to-average power ratio issue, s|g, ] # slg, j],Vi,j €
{1,2,...,K} and i # j. At the UE, the received signal under
the multipath channels on the kth subcarrier and the gth pilot
slot can be formulated as

= h{ [k]Frrlg]sy, )

where hpp[k] € CNar*l denotes the downlink chan-
nel on the kth subcarrier, and the frequency-domain
channel AWGN 17ipi[g,k] ~ CN (0,52), whose power
5% is frequency-independent and time invariant. Col-
lecting the signals on all subcarriers into yprlg] =
[ipL[g, 1], - .., UpLlg, K]]" € CE*1, the received time-domain

samples y4; [g] € CE*1 can be written as

ypLlg, k] k] + nprlg, k],

ybulgl = FgFT,KyDL[g]u 2

where Fppr, i represents the K-dimensional DFT matrix.
However, in practical systems there exist several factors
that can cause the distortion of the received signal, e.g.,
IQ imbalance and low-resolution ADC. Denote the gth perfect
analog baseband signal vector by yp1,(g, t), which is generated
by y4; [g] with the aid of shaping filters. As described in [54],
the analog baseband signal with IQ imbalance ypr, 1q(g,t) can

2As different UEs have the same network structure, the time overhead of
CE and CSI compression for all UEs should be similar. Thus, we assume
that all UEs feed their own bit vectors back to the AP simultaneously for
convenience.
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Fig. 2. TIllustration of the de-quantization: the top subfigure depicts the

analog perfect received signal without noise or distortion and the analog
distorted received signal; the middle subfigure depicts the sampled distorted
received signal and its quantized version under 4-time oversampling; the
bottom subfigure compares the analog perfect received signal with the sampled
signal after ResNet-DQ, which demonstrates that most of the information has
been recovered.

be formulated as

yoLiq(g,t) = (cos (¢o/2) +iCasin (¢a/2)) ¥pr (g, t)
+ (Cacos (Co/2) —jsin (¢o/2)) ¥hr.(9: 1),
3)

where (4 and (p denote the gain and phase error factors,
respectively, ypr.1q(g,t) is sent to an ()-bit ADC to obtain
the Q-bit quantized signal Y} [g] € C"*X with W-times
oversampling:

Y l9) = Q(ypriq (9:t); W, Q), 4

where Q(-; W, Q) denotes the complex-valued @Q-bit quantiza-
tion function. As illustrated in the top and middle subfigures
of Fig. 2, the analog baseband signal is quantized by @Q-bit
with W times oversampling. Specifically, each element of
R(ypriq(g,t)) and H(ypr,1q(g,t)) is approximated by the
closest value within the quantized set C,, which consists of
the 29 candidates, given by

290-1 201 201
Cy: {QAZ” ( - + 1)Ab,...,2Ab} , 9
where Ay = 2% (Yinax — Ymin)  With  Yiax =
1§i§%%}§ng{%([YDL’IQ(g’ 8)]:1):S([Yoriale, t)]i,l)}
and Yo =__min _ {R([Yoria(.0)];,).

%( [YDL,IQ (9, t)] i,l) }

B. Channel Model

In UM-MIMO systems, the large array aperture leads to
a significant increase in the Rayleigh distance, causing the
transmission region to be split into far-field and near-field
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Fig. 3.
regions.

The transmission region can be split into far-field and near-field

regions, as illustrated in Fig. 3. We first present the near-field
channel model and then introduce the far-field channel model.
Next, the impact of the hybrid near- and far- field scenario is
discussed, and the beam squint effects caused by a very large
bandwidth are considered.

1) Near-Field Channel Model: For the near-field scenario,
the channel model can be derived based on the accurate
spherical-wave propagation model. According to the mmWave
multipath Saleh-Valenzuela channel model [55], if there is
no angle spread and only one ray for each scatterer, the
frequency-domain channel between the ith antenna at the AP
and the UE on the kth subcarrier, hpr, ;[k] = [hpri[k]] . can

be written as
—]27rdl i
Z Be 3w 6)
Nap

where 3; ~ CN(0,1) is the channel gain of the [th path,
A denotes the wavelength of the kth subcarrier, and d;; =

\/xf (=2 + (i — Mge) 2 —y)? defines the distance of
the [th path between the UE and the ¢th antenna at the
AP with (z;,y;) denoting the Cartesian coordinate of the
lth scatterer. Collecting the channel response associated with
all the antennas of the AP, the channel vector on the kth
subcarrier, hpp[k] = [hprilk],. .., hoLvap[k]] . can be
written as

L
1 —j2nkfsT
hpy [k] = \V INsp Y be K ag kD
=1

where 7; represents the delay of the Ith path associated with
the reference antenna, and f, is the system bandwidth, while
a(z,,y,)[K] is the near-field array steering vector for the /th path
on the kth subcarrier, which can be written as

hor,,i[d]

.2mD
- -] -

e Moo, e T e L e Ak

.2mD; 27DN,p,1q T
)

Ay ) (K] =
(8)

where D;; = d;; — dy, defines the relative distance of the ith
path between the ith antenna and the UE.

2) Far-Field Channel Model: The far-field channel model
is based on the planar-wave approximation. When the path
distances between the UE and AP are relatively large, the
phase differences across different antennas can be determined
merely by AoDs. Let the AoD of the [th far-field path be
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Fig. 4. Far-field beam squint effect for the case of 2 multipath components.

Near-field Scenario

Virtual Angle

20 40 60
Subcarrier Index

Fig. 5. Near-field beam squint effect for the case of 2 multipath components.

¢ = arctan (£-). Then the array steering vector (8) can be
approximated by

_TAcsin (@) 7j(NAP—1)7r)\csin(4pl) T
asin(w)[k]:[l,e %k ,...,e Xk

(€))

When the path distances are larger than the Rayleigh distance,
the channel vector on the kth subcarrier hpp[k] can be
regarded as a function solely associated with the AoDs of all
scatterers. In this case, hpy,[k] exhibits sparsity in the virtual
angular domain, which can be exploited in CE.

3) Hybrid Near- and Far- Field Channel Model: In UM-
MIMO systems, the Rayleigh distance can reach dozens or
even hundreds of meters, and scatters can be located in
both the near-field and far-field regions of the AP. Hence,
both far-field scatterers and near-field scatterers coexist, which
is termed a hybrid near- and far- field effect in channel
modeling [16]. In such a scenario, the channel vector on the
kth subcarrier can be expressed as (10), shown at the bottom of
the next page, where L,, and L denote the number of near-field
and all scatterers, respectively. Ly = L — L, denotes the
number of far-field scatterers. As the near-field scatterers are
determined by the Cartesian coordinates of scatterers rather
than solely by AoDs, the CE system that is based on the
angular sparsity will suffer severe performance loss. Note that
the array steering vectors in (8) are related to the Cartesian
coordinates of scatterers, which can be transformed into the
AoD-distance pairs. This transformation plays a crucial role in
our data-driven dictionary design discussed in the next section.
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4) Beam Squint Effects: In narrowband systems, all the
subcarriers have almost the same wavelength, and the antenna
spacing is designed to be the half wavelength of the center
subcarrier. Consequently, for both the near-field and far-field
cases, the array steering vector is regarded to be the same for
all the subcarriers, that is, a(,, ,,)[k] and a,,, [k] are identical
for all the subcarrier indices k. However, for very large
wideband systems with a bandwidth comparable to the carrier
frequency, the array steering vectors are frequency-selective
in both the near-field and far-field cases. This phenomenon is
commonly known as the beam squint effects, which is also
called as beam split effect in [56], [57], and [58]. When
the frequency-flat dictionary is employed in MMV sparse
signal recovery algorithms, the virtual angular-domain support
shifts across different subcarriers as illustrated in Fig. 4 and
Fig. 5, respectively. Consequently, this phenomenon will lead
to severe performance loss.

III. KNOWLEDGE AND DATA DUAL-DRIVEN
CE AND FEEDBACK NETWORK

A. Data-Driven De-Quantization Module

Recall that in most receivers with high-speed low-resolution
ADCs, multiple times of time-domain oversampling and
phase-locked loops are applied to identify the optimal sam-
pling moment. In this case, there is a correlation between
different branches of the oversampled signal, which is retained
even after quantization. Since it is difficult to design a
knowledge-driven network for utilizing the correlation above
accurately, we propose a data-driven de-quantization network
called ResNet-DQ as depicted in Fig. 6. ResNet-DQ is com-
posed of three identical ResNet blocks and a CNN dimension
adjustment layer, in which we can take advantage of the
time-domain correlations across multiple sets of quantized
samples. Based on this feature, how to recover the noiseless
signal is equivalent to a classic super-resolution problem,
in which multiple sets of distorted copies are used to recon-
struct the target signal. For convenience, we use quadruple
oversampling, i.e., W = 4, as an illustrative example.

The UE first removes the cyclic prefix of each OFDM
symbol. Let the gth OFDM symbol be the input to ResNet-
DQ. As DL networks do better in real-valued computations,
we stack the real and imaginary parts of the quadruple samples
of the gth OFDM symbol, denoted by yprov,, € C*X,
as an 8-channel input ypr, ov re,g € C¥*X, and set the output
channels of the ResNet block to 8. For the CNN layer, the
input and output channels are 8 and 2, respectively, and its
2-channel output signal yprre,q € C2*K s recast as a
complex-valued vector yp , € CX*!. Finally, G OFDM
symbols are collected and reshaped as a matrix YEL’g €
CE*K | which is then transformed into the frequency domain
signal Ypr, for wideband CE. To make ResNet-DQ fulfill
de-quantization well, we design a training strategy which
is detailed in Subsection III-D. As the bottom subfigure of
Fig. 2 shows, although there still exists some residual noise
in the time-domain signal after ResNet-DQ, most of the
essential information has been recovered, which significantly
contributes to the accuracy of CSI acquisition.
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Fig. 6. Structure of ResNet-DQ.

B. Knowledge-Driven CE Module

By considering quantization and de-quantization, the trans-
mission model (1) for 1 < g < G can be collected together
as

YDL [k‘] = S[k‘]hDL [k‘] + IlDL[k’], (11D
where S[k] = [Fgre[ls[Lk],...,Fre[Gls[G, K]]" €
CG&*Nar denotes the pilot signals transmitted from the AP, and
youlk] = [ypL[L.K],...,ypL[G.K]|" € COX! denotes the
noisy received signal vector on the kth subcarrier after ResNet-
DQ. Note that the effects of quantization and non-linear
de-quantization on the channel output are all considered in the
noise np[k] = [npL[1, k],...,npL[G, k]]T € CE*1. As the
procedure of ResNet-DQ is highly complex, we posit that the
noise on different subcarriers k follows an AWGN distribution
with different power o2[k], i.e., npr[k] ~ CN (0,02 [K]I).
If there is no quantization and de-quantization process,
npLlg, k] = npulg, k] and ypr[l, k] = ¥prlg, k], Vg, k. In
order to harness the sparsity features of UM-MIMO channels
illustrated in Section II-B, while simultaneously avoiding the
prohibitive computational burden caused by an excessively
high number of iterations in the conventional iterative channel
estimation algorithms, we propose a generic knowledge-driven
deep learning network. Specifically, under the beam squint
effect, the conventional frequency-flat DFT dictionary widely
used in massive MIMO systems would cause the severe
virtual angle-domain support shift across different subcarriers.
To solve this problem, we firstly propose two WRDs. The
DFT-based WRD is tailored to the case of only far-field
scatterers, and the data-driven WRD can be used for all cases
including near-field scatterers. In this way, we can rewrite the
channel estimation problem as a unified GMMV-CS problem,
and the only difference is that the two dictionaries result
in different measurement matrices. Secondly, we propose a
generic GMMV-LAMP network by integrating trainable mod-
ules in the conventional GMMV-AMP algorithm to achieve
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1) DFT-Based WRD: The utilization of the DFT dictionary
for sparse representation is effective when all scatterers are
far-field for the AP as it uniformly divides the virtual angular
domain into Nap grids. However, there are two issues when
the DFT dictionary is used directly across all subcarriers
in wideband UM-MIMO systems. First, the virtual angular
resolution of the DFT dictionary is limited to Nap, which may
result in insufficient precision for off-grid scatterers. Second,
the DFT dictionary works based on the assumption that the
antenna spacing is approximately half of the wavelength for all
subcarriers. However, when the bandwidth becomes ultra-wide
and the beam squint effects appear, the frequency-flat DFT
dictionary is not suitable. To address these issues, a frequency-
dependent DFT-based WRD is proposed to accommodate the
redundant virtual angle offsets on different subcarriers. In this
way, (11) can be rewritten as

YDL[k] = S[k]DADm[k]hSParse [k] +npr, [k‘],

where hgparse[k] € CPNaPX1 denotes the sparse channel
vector in the virtual angular domain on the kth subcarrier.
The DFT-based WRD Dp ,[k] € CNar*PNar js composed
of several columns determined by the redundant factor p and
subcarrier index k, which can be written as

(12)

DADJ)[]C}: ao[k],a 1

PNAP

[k] yee.ydpNpp-1 [k] y

PNAP

13)

where a_  [k] can be computed by (9). In this way, the

virtual arfgﬁfar domain is uniformly divided into pNap grids.

2) Data-Driven WRD: Although the above DFT-based
WRD fits the purely far-field scenario well, utilizing this
DFT-based WRD in the hybrid near- and far- field scenario
still leads to the degraded sparsity result. We further pro-
pose a data-driven frequency-dependent WRD to adaptively
capture the sparsity characteristics of the near-field scattering
propagation environment. Recall that the near-field array steer-
ing vectors (8) are defined by Cartesian coordinates, which
can be transformed into the AoD-distance pairs. Specifically,
given the Cartesian coordinate (x;,%;) of the lth scatterer,
the corresponding AoD-distance pair can be calculated as
(di, 1) where di = \/af +y; and ¢, = arctan(Z).
Correspondingly, z; and y; are given by x; = d; cos(y;) and
y; = d;sin(¢;). In light of this, we propose to introduce
the trainable parameters c; = [d07d17...,dv,1}T € RV*1

and ¢, = [@o,%, e ,<PV—1]T € RV*! as the AoD-distance
pairs to generate the corresponding columns in the data-driven
WRD. The CE problem is then formulated as follows:

min

charn»(cd,cw [k] ||hsparse [k] HO’

s.t.  ypL [k] = S[k}Dlearn,(cd,CV,)[k]hsparse [k]

acceleration and performance improvement. + npy,[k], (14)
1 Ln 27k f L 2k f
—JemRIsTy —J2TRIs Ty
hpy, [k] = 4 /m <;ﬁle K Ay, K] + Z Bre™ K agn (o) K] ) (10

l=L,+1

near—field part

far—field part
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Fig. 7.

where the data-driven WRD Dicarn (cy,c,) [K] is given by

Dlearn,(cd,c(p) [k]
= [a(do cos(po),do sin(po)) (K], -

A(dy _1 cos(py—1),dv_1sin(pv_1)) [k]] S (CNAP XV_

15)

The vth column a(g, , cos(py_1),dv_1 sin(py_1)) k] 18 com-
puted by (8). It should be noted that as the degrees of freedom
of the data-driven WRD increases, the number of columns V'
necessarily increases to V' >> pNap.

3) GMMV-LAMP: In (11), measurement matrices A[k] =
S[k]DJk] vary with k when the frequency-dependent pilot sig-
nals and WRDs are employed, where D([k] is either Dap ,[k]
of Dicarn,(cy,c,) [K]. To take advantage of the exactly common
support across all subcarriers, our GMMV-LAMP algorithm is
proposed. The structure of the ¢th layer of this neural network
is depicted in Fig. 7, where Ypr, = [ypL[l],...,¥ypL[K]] €
(CGXK, while Hsparse,t = [hsparse,t[l]a RRI 7hsparse,t[K] S
CV*E and V; = [v¢[1],...,v¢[K]] € C¥*E denote the
estimate and residual after the tth layer, respectively.

To describe our development of the GMMV-LAMP
algorithm, we begin by offering an overview of the single mea-
surement vector (SMV)-AMP algorithm. Specifically, we first
ignore the common support feature and focus on an SMV CE
problem on the kth subcarrier, which is formulated as

min

hgparse K] Hhsparse [k] ||07

st y[k] = AlE]haparse[k] + n[k]. (16)

With the initialization hyparse.0[k] =0 and vo[k] =ypr[k], Yk,
the tth iteration of SMV-AMP for ¢t = 1,2, ... is as follows:

hsparsc,t[k] = lAlsparsc,tfl[k] + AH [k}vtfl[k]v (17)
1
o}k = & Ivi-alKlll3 (18)
flsparse,t[k] - n(flsparse,t[k]; etvat [k})a (19)
vV 9 n lTls arse, [k]70 ) O [k]
bilk] = = 1 (B 501 >] (20)

G ) a[flsparse,t [kHU

vilk] = y[k] — A[k]hSparse,t[k] + be[k]ve_1[K], (21)

where 1(-; 04, o¢[k]) is the shrinkage function with the param-
eter set @, that is designed according to the chosen shrinkage
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The tth iteration/layer architecture of the proposed GMMV-LAMP network with trainable parameters.

function.> The SMV-AMP algorithm consists of two main
operations, the shrinkage function of (19) and ‘Onsager cor-
rection’ of (21). With the aid of the Onsager correction term
bi[k]vi—1[k] in (21), the input to the shrinkage function can
be modeled as an AWGN-corrupted signal vector* In addition,
(19) achieves denoising based on the prior assumption of the
noiseless signal.

Since there exists the common support characteristic across
all the subcarriers, conventional AMP-type algorithms require
a large number of iterations to converge. We propose the
GMMV-LAMP network, which is summarized in Algorithm 1,
to utilize the common support across all the subcarriers in
a knowledge-driven DL manner. Compared with the con-
ventional GMMV-AMP algorithm which takes tens or even
hundreds of iterations to converge, our GMMV-LAMP utilizes
a very small number of 7T iterations/layers’ We now explain
our GMMV-LAMP algorithm in detail.

From Fig. 7, it can be seen that there are three inputs to the
tth layer of the GMMV-LAMP: the estimated sparse channel
matrix I:Isparsc,tfl and the updated residual V;_; from the
previous layer, and the received signal Y py, which is common
to all the layers. We initialize flsparse,o =0 and Vo=Ypy
in line 1, which is similar to the SMV-AMP algorithm. In the
tth layer for 1 < ¢t < T, we design a shrinkage function
to leverage the exactly common support feature across all the
subcarriers. Specifically, for each sul%carrier, the corresponding
flsparsm[k] = [ﬁlyt[k}, . fzvf[k}] € CV*! is computed in
line 4. Motivated by [60], we introduce a trainable matrix set
B, [k] € C9*V Vke{l,...,K}and Vt€{1,...,T} in which
B.[k], VE are initialized as A[k] for all layers at the beginning
of training.

Inspired by the SMV-AMP algorithm, we view ﬁsparse,t[lﬂ]
as an AWGN-corrupted sparse vector, and consider a denoising
problem for the vth element of Bsparse,t[k], Vk. In line 9,
we collect the vth elements of flsparse’t[k], Vk, into fls,m, =

3In the common AMP-I; algorithm, (+; O¢, o¢[k]) represents the ‘soft-
thresholding’ shrinkage and @; = « is a preset constant value [59]. But
0 can also be designed as layer-aware according to different shrinkage
functions [60].

4In the 1st iteration, flsparseyl[k}} can also be regarded as corrupted by
AWGN, as we can imagine that there exists the Oth iteration with v_1 [k] = O.

5This will be demonstrated in the simulation results section. to achieve
CE by combining neural networks and expert knowledge of transmission
functions.
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Algorithm 1 Proposed GMMV-LAMP Algorithm
Input: De-quantized signal Ypp, measurement matrices
Alk], Vk € {1,2,..., K}, number of layers T’

Qutput: Estimated sparse matrix I:Isparse,T;

1: Initialize Hyparse0 = 0 and Vo = Ypr;

2: for t =1to T do

33 for k=1to K do

hsparso,t[k] — hsparsc,tfl[k‘] + B?[k]vtfl[k];

P (k] — & [[vea[k]lI3;
end for
3 — diag(of[l],af[?], ce JE[K]);
forv=1t0 V do T

hs,t,'u — [hv,t[l]v RN hv,t[K]i| ;

10: fls,t,v — TNcs (fls,t,v§ Y5 € 275) ;
11:  end for
122 for k=1to K do

D A

A ~ N T

13 Baparses[k] — [hu[k],...’hv,t[k]l :

7 v 9mes(hs,evi.eSe)],

o k= LYV, [ cs(a 2ot Ji.
o],

15:  end for_ ~ .

16: th [bt[lL,bt[K” r,r

17 by = [b[l],...,0:[K]]
denotes an FC;

18: for k=1to K do .

19: Vilk] — y[k] — A[k]hsparseyt[k] + belk]vi—1[k];

20: e_nd for

21: Vt(_ [\_ft[l],,\_/t[K]],

22 V< Vi+ [, (Vi_1), where f;(-) denotes an FC;
23: Hsparse,t — {hsparse,t[l]a s hsparse,t[Kﬂ 5

24: end for R

25: Return sparse matrix Hgparse, 7.

— g (bs), where g(-)

8 . T
[hvyt[l], . hv,t[K]} € CE*1, which can be modeled as

— 1
hs,t,’u = hs,v + 2152 ng ), (22)
where hg, = [hy[1],. .., hy[K]] " € CK*T denotes the noise-
less sparse vector, i.e., i, [k] is the noiseless version of ., ;[k],
and n;, € CEX1 ~ CN(0,TI). As aforementioned, owing
to the nonlinear quantization and de-quantization process
in obtaining Ypr, the noise power on different subcarriers
should be different. In this way, we use the diagonal matrix
3, =diag(o?[1], 07[2], ..., 07[K]) € CE*X to represent the
equivalent frequency-dependent noise power, where o2[k] are
computed in line 5, and typically o?Z[i] # o?[j], Vi,j €
{1,...,K} and i # j.

To recover Bsﬂ, from ﬁs)t,v, we design a minimum mean
square error (MMSE)-based denoiser. According to the com-
mon support property, h,[k] occupies the identical sparsity
for arbitrary subcarrier index k. Assume that l_ls’v follows
the Bernoulli-Gaussian distribution, the prior of ﬁsyv can be

modeled as

1- s if BS,U = 07

1jls’u; ,€) = - 23
p( ’ 76) {’y, if hg , ~ CN(0,€l), 23)
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a bit vector and a CSI-ResNet decoder reconstructs the CSI matrix.
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Fig. 9. Structures of E-ResNet block and D-ResNet block.

where 7 is the probability that Ev[k] # 0, Vk, and € is
the variance of h,[k] when h,[k] # 0, Vk. The shrinkage
function based on the MMSE denoiser 1.g (flsyt’v; v, €, Et> :

CExL — CEX1 j5 given by

fls,t,v = [ﬁv,t[l]v ceey ilvt[k]] ' = TMNcs (fls,t,v; v, € Et)
24)

— ¢(ﬁs,t,v)diag(6 ST ;?[K] )Bs,t,v7

(25)

€
+op[1]

where Qﬁ(flsyt’v) is detailed in Appendix based on [61]. In
line 10, we compute hy;, € CK*! for 1 < v < V.
It should be noted that v and € are independent of the indices
k and v due to the random distribution of scatterers. Besides,
in a relatively stable environment, v and e tend to remain
invariant for a long period, i.e., these two hyper-parameters
can be regarded as independent of ¢. Therefore, v and € are
set as global trainable parameters, and they are learned from
the existing datasets. It should be noted that we initialize ~y
and € to 79 = 0 and ¢y = 1 at the beginning of training,
and all the layers utilize the same « and € in the shrinkage
function 7g fls,t’v; v, €, Et) , Vt. After computing fls’tyv, Yv,
we reshape all the vectors to obtain the updated sparse channel

T

estimate ﬁsparsc,t[k] = }Azl’t[k], ce ith[k]] , Vk, in line 13.
In line 14, lines 16 and 17, we employ DL networks to
compute by = [b,[1],. .., b [K]]". Specifically, b [k] for all the
subcarriers are first calculated by utilizing the partial deriva-
tives of the shrinkage function in line 14, which is similar
to (20) in the SMV-AMP, and they are collected together as
b, = [b[1],... ,Bt[K]]T in line 16. In line 17, by is utilized
as the input of an FC layer g;(-) : CE*! — CE*1 (o obtain
a refined result b, = ¢, (Bt). In line 19, we update a coarse
residual v;[k] with the aid of the Onsager correction term
be[k]vi—1[k] for each subcarrier, which is the same as (21) in
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the SMV-AMP. Here, inspired by the concept of momentum
in DL, we utilize the residual V;_; from the (¢ — 1)th layer to
assist in accelerating convergence in the ¢th layer. Specifically,
we collect v[k], Vk, into V; = [v4[1],..., v, [K]] € CE*K,
and utilize an FC layer fi(-) : CE*K — C“*K (o obtain
Vt = [Vt[IL e ,Vt[KH ZVt + ft (Vt—l)-

After T iterations/layers, the GMMV-LAMP network
outputs the final estimated sparse matrix ﬂsparse,T =

[ﬁsparse,T[l]y-~-a1jlsparse7T[K]i| € CVXK: and the CSI in
the spatial-frequency domain can be computed as Hpp, =
D baparse.r[1; s DIK Bgpareer [K]] € ¥ <K,

C. Data-Driven CSI Feedback Module

After the UE has estimated I:IDL, the CSI matrix is fed
back to the AP for downlink beamforming. However, if the
CSI matrix is fed back to the AP without compression, the
feedback overhead is unaffordable. For example, assume that
a system with Nap = 64 and K = 64 is achieving CSI
feedback and 32-bits accuracy of floating-point numbers is
considered. Then, the total feedback overhead are 2 x 64 x
64 x 32 = 264144 bits, where the factor 2 is owing to the fact
that each channel coefficient has real and imaginary parts. One
feasible CSI feedback method is to compress the floating-point
numbers into low-bit types, such as 3 or 2 bits, but this results
in significant quantization noise.

The autoencoder is a widely utilized deep neural net-
work structure [42], [62] to perform feature extraction for
CSI feedback [31], [32]. The autoencoder is designed to
be an end-to-end system, with the goal of reconstructing a
noiseless version of the target. In this paper, we propose a
data-driven autoencoder called CSI-ResNet which consists of
a CSI-ResNet encoder and a CSI-ResNet decoder as depicted
in Fig. 8.

1) CSI-ResNet Encoder: The estimated CSI I:IDL is divided
into ?I%(PIDL) and %(ﬂDL), and then stacked as the input to
the CSI-ResNet encoder. Two ‘E-ResNet’ blocks are utilized
for feature extraction. The structure of E-ResNet, as illustrated
in Fig. 9, is inspired by ResNet-DQ but with a higher
kernel size and more channels. It includes three subblocks,
each consisting of a ‘Conv’ layer, a ‘BatchNorm’ layer, and
a ‘Mish’ activation layer. The first subblock increases the
number of channels from 16 to 32, and the second subblock
reduces the number of channels to 24. Then a ‘Channel
Attention’ layer is used to find the correlation across different
channels. In the third subblock, the input is convolved to
generate a 16-channel output for the final skip connection.
After the two E-ResNet blocks, a ‘Convbn’ block which
includes a ‘Conv’ layer and a ‘BatchNorm’ layer performs
further feature extraction. Although most of the information
has been retained, the dimension of output is reduced for
CSI compression. The ‘Linear’ block then compresses the CSI
as a floating-point vector. Finally, the floating-point vector is
quantized into a bit vector using the ‘Sigmoid+Quantization’
block. Specifically, the sigmoid function limits the value range
of the floating-point number to [0, 1], and the floating-point
vector is quantized into a bit stream. For example, if the
number of quantization bits is set to 2, the output range of each
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element in the floating-point vector is divided into [0, 0.25),
[0.25, 0.5), [0.5, 0.75) and [0.75, 1], and the corresponding
bit vectors are ‘00’, ‘01°, ‘10’ and ‘11’.

2) CSI-ResNet Decoder: The ‘De-quantization’ block trans-
forms the bit vector into a floating-point vector with 32 chan-
nels. Subsequently, a ‘Linear’ block and three ‘D-ResNet’
blocks are utilized. The D-ResNet block, shown in Fig. 9,
has a similar structure to the E-ResNet block but with dif-
ferent dimensions in its subblocks. The output after the three
D-ResNet blocks is real-valued and contains both real and
imaginary parts. With the aid of the ‘Tanh’ activation layer and
an amplitude adjustment operation, the 2-channel real-valued
tensor is then recast as the complex-valued CSI matrix ﬂbL.

D. Training Strategy

Due to large fluctuations in the multipath component gains,
we consider the normalized mean square error (NMSE) as the
cost function, which is written as

R 2
X—XH
F

Loss = NMSE(X;X) =E . (6)

2
X

where X and X denote the estimated signal and the true signal,
respectively. There are three distinct modules in the whole net-
work. Specifically, ResNet-DQ is data-driven, GMMV-LAMP
is knowledge-driven, and CSI-ResNet is data-driven, and they
have different designs and training targets. Therefore, an end-
to-end training approach may not be appropriate. Therefore,
we apply separate training procedures for the ResNet-DQ,
GMMV-LAMP and CSI-ResNet modules, and train them in
sequence with different loss functions.

First, the loss function of ResNet-DQ is the NMSE

between the output Ypr, = [ypr[l],...,ypr[K]]
and the infinite-resolution noiseless signal Ypr =
[¥ou[l],...,¥pr[K]] in the frequency domain, i.e.,

LossresNet-DQ = NMSE(Ypr; Ypr). (27)

After ResNet-DQ is trained, it is set to the evaluation
mode, and the GMMV-LAMP network is trained with the cost
function chosen to be the NMSE between the estimated CSI
ﬂDL and the perfect CSI Hpi, namely,

Lossaynvv-ravp = NMSE (Hpy; Hpr). (28)

The parameters in our GMMV-LAMP network are divided
into global parameters, such as -, €, and layer-level parameters,
such as B;[k]. The training of the GMMV-LAMP network is in
an all-layer manner. Specifically, when the ¢th layer is trained,
the layer-level parameters in all ¢'th (1 < ¢’ <) layers and
global parameters are trained. Note that when the data-driven
WRD is trained, Cq and C, are only activated for training
the first and second layers. Once the second layer has been
trained, Cq and C, remain fixed.

After the GMMV-LAMP is trained, we generate the esti-
mated CSI in the training and validation sets based on the
trained ResNet-DQ and GMMV-LAMP for CSI feedback.
For the CSI-ResNet, which is composed of both the encoder
and decoder, an end-to-end training strategy is employed,
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and the cost function i§ defined as the NMSE betyveen
the reconstructed CSI Hp; and the perfect CSI Hpp,
ie.,

Losscsi-neser = NMSE (HpiHp) . (29)

IV. SIMULATION RESULTS

This section provides simulation results to verify the effec-
tiveness of the proposed approach in a typical mmWave
wideband UM-MIMO system. There are Nap = 128, 256 and
512 antennas at the AP with Ngr = 2 RF chains,® and the
number of pilot symbols is set as G = 32, 64. The IQ gain and
phase error factors are set as (4 = 0.1 (y = 5°, respectively.
The carrier frequency is 70 GHz, the bandwidth is 10 GHz
while there are K = 64 subcarriers at the CE stage. For purely
far-field, purely near-field, and hybrid near- and far- field
scenarios, we generate different datasets for training. Each
sample of the aforementioned datasets is composed of several
near-field or far-field or hybrid multipath components that are
generated with different policies. Specifically, each far-field
path is generated with a random AoD within [-%, %] and
path delay within 6.4 x 10~ seconds. Based on the effective
Rayleigh distance [15], we generate near-field paths within the
effective Rayleigh distance area. More specifically, a random
AoD is selected and the corresponding effective Rayleigh
distance is calculated, and one distance is generated within
the effective Rayleigh distance so that one AoD-distance pair
can be obtained.

Unless stated otherwise, the number of scatterers in one
sample is L = 6, and each CSI sample in the hybrid near-
and far- field dataset is composed of 3 far-field scatterers and
3 near-field scatterers, while the CSI samples in the purely
far-field dataset and the purely near-field dataset include 6 far-
field scatterers and 6 near-field scatterers, respectively. In all
simulations, the CSI samples in the training sets and the
validation sets have identical features. Moreover, the number
of antennas at the AP is Nap = 128, and the number of pilot
symbols is G = 32. In the rest figures, the x-axis represents the
SNR level of AWGN which ranges over -10dB to 10dB, that
is, the power ratio of the perfectly received signals to AWGN.
For different modules, we choose the NMSE of different
outputs as the metric for performance evaluation. Specif-
ically, we utilize NMSE(YDL;YDL), NMSE(I:IDL;I:IDL)
and NMSE (I:IjDL; Hpy, ) as the metrics of the de-quantization
NMSE, estimation NMSE and reconstruction NMSE, respec-
tively. The number of training samples and test samples are
150000 and 30000, respectively. In the training stage, there
are 20, 10, and 80 epochs for Res-DQ, GMMV-LAMP, and
CSI-ResNet, respectively. The batchsize is set as 180, and the
Adam optimizer with a learning rate of 0.001 is employed.
The experiments are performed in Visual Studio Code (Python
3.9.7 and pytorch 1.10) on a computer with Nvidia TITAN
RTX.

5The Rayleigh distance of the 128-element and 256-element ULAs in such a
parameter setup is respectively around 8.8 meters and 35 meters, whose array
aperture can be regarded to be extra-large for most indoor communication
scenarios [64].
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A. Data-Driven ResNet-DQ

Figure. 10 depicts the performance of ResNet-DQ as the
function of SNR. The y-axis denotes the NMSE between the
de-quantized signal matrix Ypr, and the perfectly received
frequency-domain signal Ypr, which is a measure of the
equivalent noise in the received signal. When there is no
quantization as shown in Fig. 10 (a), ResNet-DQ achieves
the NMSE improvements of 10dB and 4dB at the SNRs
of —10dB and 10dB, respectively. Compared to infinite-bit
ADCs, the presence of quantization noise from 2-bit ADCs
greatly impacts the quality of the output signal, especially at
high SNRs. Specifically, there exists a large NMSE loss when
no de-quantizer is utilized, even at the SNR of 10 dB. However,
once ResNet-DQ is employed, the NMSE can be reduced
to —9dB at the SNR of 10dB, and moreover ResNet-DQ
achieves the NMSE improvements of 13dB and 5dB at
the SNRs of —10dB and 10dB, respectively, as shown in
Fig. 10 (b). When 1-bit quantization is considered, as depicted
in Fig. 10(c), the NMSE can be reduced to -7dB at the
SNR of 10dB with the aid of ResNet-DQ, and the NMSE
improvements of 15dB and 7dB are achieved at the SNRs of
—10dB and 10dB, respectively. The results of Fig. 10 clearly
demonstrate the effectiveness of our ResNet-DQ. Addition-
ally, in the presence of IQ imbalance, the neural network
shows negligible performance loss in all the cases, which
can be attributed to the robustness of our design to detect
the correlation between the real and imaginary parts of the
signal in the time domain. In the following simulations (e.g.,
Fig. 12-22, Table II, and Table III), the IQ imbalance and 2-bit
quantization are considered.

To verify the performance gain of utilizing multiple sets
of time-domain oversampling samples, Fig. 11 shows the
de-quantization performance of ResNet-DQ given different
numbers W of input sets of samples when 2-bit ADCs are
employed. The results clearly demonstrate that as the number
of input sets W increases, the de-quantization effect becomes
better and the NMSE decreases significantly. In particular,
the NMSE reduction between the W =4 input sets and the
W =2 input sets is considerably larger than that between the
W =2 input sets and the W =1 input set. Considering this
de-quantization performance, the number of input sets is set
to W =4 in the rest simulations.

B. Knowledge-Driven GMMV-LAMP

1) Purely Far-Field Scenario: The NMSE performance of
different CE approaches is compared in Fig. 12. It should
be mentioned that for all methods the redundant factor is
set as p = 4. The abbreviations ‘F/d codebook’ and ‘F/i
codebook’ in the legend denote the frequency-dependent DFT
WRD and the frequency-flat DFT WRD, respectively, while
‘w/ ResNet-DQ’ and ‘w/o ResNet-DQ’ represents that the
input signal is the de-quantized signal by ResNet-DQ and
the raw signal, respectively. The benchmark MMV-LAMP
network [20] assumes that the identical pilot matrices and
frequency-flat DFT WRD are utilized, that is, the network is
designed based on the same measurement matrices for all sub-
carriers. It can be seen that the MMV-LAMP network fails to
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(b) 2-bit quantization
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Fig. 10. De-quantization NMSE with different resolutions of ADCs: (a) infinite-resolution ADCs, (b) 2-bit ADCs, (c) 1-bit ADCs.

NMSE (dB)

=—©— 1 set of samples used
10 | |="%2 sets of samples used 1
4 sets of samples used

0 5 10
SNR (dB)

Fig. 11. De-quantization NMSE given different sets of time-domain
oversampling samples.

T T
—6—GMMV-LAMP (F/d codebook, 5 iterations, w/ ResNet-DQ)
GMMV-LAMP (F/d codebook, 5 iterations, w/o ResNet-DQ)
—¥—GMMV-AMP (F/d codebook, 100 iterations, w/ ResNet-DQ)
—=&— GMMV-AMP (F/d codebook, 80 iterations, w/ ResNet-DQ)
—o—GMMV-LAMP (F/i codebook, § iterations, w/ ResNet-DQ)
MMV-LAMP (F/i codebook, 5 iterations, w/ ResNet-DQ)

NMSE (dB)

-10 -5 0 5 10
SNR (dB)

Fig. 12.  Comparison of the estimation NMSE for different CE schemes in
the purely far-field scenario.

work. As aforementioned, the GMMV-AMP [17] suffers from
slow convergence and has difficulty effectively coping with
hardware imperfections, which is self-evident in the results
of Fig. 12. Clearly, the proposed GMMV-LAMP network
(F/d codebook, 5-iterations, w/ ResNet-DQ) outperforms the
above two candidate approaches, in terms of CE accuracy and
convergence speed. Additionally, the results of Fig. 12 also
confirm that it is important to utilize the frequency-dependent

—6—SNR=-10dB.
—6—SNR =-5dB
SNR = 0dB
—6— SNR=5dB
—6—SNR = 10dB |1

NMSE (dB)

Iteration

Fig. 13. Estimation NMSE as the function of number of iterations/layers
given different SNRs.

DFT WRD and perform ResNet-DQ in the GMMV-LAMP
network.

With the identical system setup to Fig. 12, the convergence
performance of the proposed GMMV-LAMP network with the
frequency-dependent DFT WRD is investigated in Fig. 13.
It is observed that the CE accuracy improves most in the
first iteration/layer, and this can be attributed to the fact
that the learnable parameters accelerate the convergence in
the GMMV-LAMP network. It can also be seen that the
GMMV-LAMP network converges after 7' = 5 iterations.
Since our GMMV-LAMP network can converge in just a few
iterations, its time complexity is very low.

We next investigate the impacts of the number of pilot
symbols G and the number of AP antennas Nap on the
achievable CE performance in Fig. 14 for our GMMV-LAMP,
with the redundant factor of Dap fixed to p = 4. Given
G = 32, the NMSE for the case of 128 AP antennas is
slightly better than that of 256 AP antennas. This is due to
the fact that although the dimension of CSI with 256 antennas
is doubled compared to that with 128 antennas, the virtual
angular sparsity also improves as Nap increases. Additionally,
it can be seen that by doubling the pilot symbols from 32 to 64,
significant performance improvement can be achieved. This is
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TABLE II
ESTIMATION NMSE (DB) VERSUS BANDWIDTH, THE NUMBER OF AP ANTENNAS Nap AND THE NUMBER OF PILOT SYMBOLS G
1GHz 5GHz 10GHz
Nap &G Proposed Proposed Proposed

WRD Flat GMMV-AMP | SOMP WRD Flat GMMV-AMP | SOMP WRD Flat GMMV-AMP | SOMP
Nap = 128, G = 32| -12.7182 | -11.3321 -8.7002 -8.2498 | -12.5793 | -9.2145 -8.5594 -3.7001 | -12.6653 | -8.2210 -8.5961 -2.0672
Nap = 256, G = 32 |-11.2955| -7.9770 -4.8413 -5.8990 | -10.4080 | -2.4824 -5.2741 -1.2284 | -11.3075 | -0.9361 -5.2918 -0.6148
Nap = 256, G = 64 | -13.3765 | -10.8847 -10.1446 -6.6207 | -13.0043 | -7.5848 -9.9922 -1.9813 | -13.2604 | -5.0731 -10.1782 -1.0638
Nap = 512, G = 32[-10.1422 | -1.6620 -5.5594 -2.2167 [ -10.0240 | -0.0261 -5.7251 -0.1122[-10.1653 | -0.1053 -5.6037 0.2998
Nap =512, G =64 |-12.1427 | -9.2477 -6.1474 -4.0434 | -11.8233 | -1.5348 -6.0643 -1.0466 | -12.6653 | -0.9088 -6.0502 -0.2407

because more pilot symbols provide more information with the
same prior distribution. In the rest simulations, the number of
antennas at the AP and the number of pilot symbols are set
to Nap = 128 and G = 32, respectively.

In Table II, the influence of Nap and the system bandwidth
is systematically presented. Moreover, we also provide the
results of simultaneous OMP (SOMP) mentioned in [17],
where the pilot symbols are set to be the same across all
subcarriers for convenience. We set the damping factor in
GMMV-AMP with frequency-dependent WRDs to 0.9 to pre-
vent the algorithm’s divergence, and the number of iterations
is set to 80. It should also be noted that the redundant factors
p are set to 4 for all candidate values of Naps, and the
training and testing SNRs are both set to 10dB. Firstly,
we can observe that utilizing frequency-dependent WRDs
guarantees the effectiveness of GMMV-LAMP under all set-
tings compared with the frequency-flat dictionaries. It should
be noted that the simulation results with frequency-dependent
WRDs will be an essential assessment of the beam squint
effect. We can find a discernible exacerbation of the beam
squint effect concurrent with the escalations in both the
system bandwidth and the number of antennas. On the one
hand, by fixing the system bandwidth and other parameters,
an increment in Nap results in a larger gap between utilizing
frequency-dependent WRDs and frequency-flat dictionaries in
GMMV-LAMP. For example, when Nayp = 128, G = 32 and
the system bandwidth is 1 GHz, the estimation NMSE gap
between two kinds of dictionaries is around 1.4 dB, while the
gap reaches around 3.3 dB when Njp increases to 256. Even
if the number of pilot symbols G' becomes 64, the estimation
NMSE gap is still larger than 2 dB. Furthermore, for almost
all candidate values of Nap and G, the estimation NMSE
gap increases with the growth of bandwidth from 1 GHz
to 10GHz. Specifically, when Nap = 256 and G = 64,
the estimation NMSE gap increases from 2.4dB to 8.2dB.
However, the estimation NMSE gap is around 10dB when
Nap = 512 and G = 32 in both 5GHz and 10 GHz. On the
other hand, it can also be observed that the estimation NMSE
of the SOMP algorithm degrades and the gap between SOMP
and GMMV-AMP becomes larger with the increase of Nap
and bandwidth. The aforementioned analysis demonstrates that
both the increase of Nap and system bandwidth can intensify
the beam squint effect, which can be eliminated well by the
proposed approach.

We further investigate the computational complexity. In the
case of offline training, the computational complexity is not
a major concern. Therefore, we focus on the computational

T
——o— GMMV-LAMP(256-antenna AP/32 pilot symbols) | |

GMMV-LAMP(128-antenna AP/32 pilot symbols)
—f&— GMMV-LAMP(256-antenna AP/64 pilot symbols)

-24

NMSE (dB)

14 . . .
-10 -5 0 5 10

SNR (dB)

Fig. 14. Estimation NMSE as the function of the number of antennas at the
AP Nap and pilot symbols G.

TABLE III

COMPUTATIONAL COMPLEXITY OF DIFFERENT
CHANNEL ESTIMATION SCHEMES

Schemes Complexity
O(GVKI + 1I*(I + 1)?
+3GI(I+1)(21 +1)
1GKI(I+1)+ VKI)
O(GVKTO -+ GNAPK)

SOMP with I layers

MMV-AMP with Tj iterations
MMV-LAMP with T" layers O(GVKT + GNapK)
GMMV-AMP with Ty iterations O(GVKTy + GNapK)

Proposed GMMV-LAMP with T layers O((GVK + K2)T + GNapK)

complexity in the testing stage. The computational complexity
of all candidate channel estimation approaches is compared
in Table III. The GMMV-AMP and MMV-AMP algorithms
share similar complexity under identical numbers of itera-
tions. Moreover, when T, = T\, MMV-LAMP, GMMV-AMP,
and MMV-AMP have similar complexity as the operations
in one layer/iteration are similar. The extra computational
complexity of the proposed GMMV-LAMP compared with
other candidates comes from the fully-connected layers in
each layer. Since GV > K, the computational complexity
of the GMMV-LAMP is dominated by GV K'T'. Based on the
discussion above and the fact that Tj is typically much larger
than 7', we can conclude that the proposed GMMV-LAMP
network has much lower computational complexity than the
conventional GMMV-AMP algorithm. Finally, the SOMP
algorithm requires several operations such as correlation,
project subspace and update residual operations. Therefore,
the proposed network outperforms the SOMP algorithm since
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Fig. 15.  Estimation NMSE given three different dictionary redundant
factors p.
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Fig. 16. Estimation NMSE given different training datasets.

the complexity of SOMP increases with the fourth power
of I.

The influence of the redundant factor p of Dap on the
achievable CE performance for the GMMV-LAMP is illus-
trated in Fig. 15. Compared with the non-redundancy DFT
WRD of p = 1, utilizing the redundant DFT WRDs of
p = 2 significantly improves the CE accuracy, in particular
achieving more than 4 dB reduction in the NMSE at the SNR
of 10dB. Utilizing the redundant DFT WRDs of p = 4 further
brings about a 2dB reduction in the NMSE over the case
of p = 2. However, a larger p also indicates that there
are more trainable parameters, e.g., the dimension of B[k]
is proportional to p. Therefore, when the number of AP
antennas Nap is small, we can employ a larger p such as
p = 4. Nevertheless, if the number of antennas equipped at
the AP further increases, the spatial resolution of the array has
also been improved, so we can utilize a smaller p to obtain
satisfactory estimation accuracy.

2) Hybrid Near- and Far- Field Scenario: Fig. 16 illus-
trates the influence of different datasets on the achievable
CE accuracy of the proposed GMMV-LAMP network in the
hybrid near- and far- field scenario, where V = 1280 data-
driven WRD is considered. The legend ‘Training sample
purely far-field” means the purely far-field dataset. ‘Training
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Fig. 17. Locations of the columns in the data-driven WRD: (a) the untrained
WRD, and (b) the WRD after training.

sample far-near hybrid-field’ means that the CSI samples in
the utilized dataset are composed of 3 far-field and 3 near-field
scatterers, and ‘Training sample purely near-field and purely
far-field’ means that a mixed dataset is utilized, where the CSI
samples are randomly selected from the purely far-field dataset
and purely near-field dataset. As expected, the GMMV-LAMP
achieves its best performance when the hybrid near- and far-
field dataset is employed, since the real system is a hybrid
near- and far- field one. The performance losses for the other
two cases are clearly attributed to the model mismatch of the
purely far-field and purely near-field CSIL.

To evaluate the effectiveness of the data-driven WRD,
Fig. 17 illustrates the locations of columns in the data-driven
WRD when V' = 1280 and the hybrid near- and far- field
dataset are utilized. Recall that the columns in a data-driven
WRD represent the steering vectors determined by the dis-
tance/AoD pairs or Cartesian coordinates. Therefore, it is
natural that a WRD performs better when its coordinates
of the columns are closer to the scatterers’ locations, since
the sparsity of support is enhanced in this case. The left
subfigure depicts the Cartesian coordinates of the columns
in the untrained data-driven WRD, while the right subfigure
shows the Cartesian coordinates’ distribution of the data-driven
WRD after training. It can be observed that the trained WRD
converges to a conical area within the AoDs of [—%, Z],
where the red and yellow lines correspond to the AoDs of
—% and 7, respectively. This demonstrates that the data-driven
WRDs can learn a better sparse representation from the
training dataset adaptively.

The impact of the number of columns V' in the data-driven
WRD on the achievable CE performance is investigated in
Fig. 18. It can be seen that the CE accuracy improves as
V' increases, because a larger WRD can learn the sparse
representation of CSI with more degrees of freedom. How-
ever, the performance gain by increasing V' from 640 to
1280 is not as pronounced as that obtained by increasing
V from 256 to 640. This can be attributed to the leak-
age issue of the off-grid scatterers, similar to increasing
the redundant factor p in Fig. 15. In this case, the value
of V for data-driven WRDs should be carefully selected
according to the tradeoff between complexity and perfor-
mance. Based on the analysis above, taking the value of V'
between 4Nap and 10Nap can guarantee a good estima-
tion performance without bringing excessive computational
complexity.
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Fig. 18. Estimation NMSE with different numbers of the columns V' in the
data-driven WRD.
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Fig. 19. Estimation NMSE with different numbers of far-field scatterers Lz
in the hybrid near- and far- field scenario.

To evaluate the robustness of the proposed data-driven WRD
in the hybrid near- and far- field scenario, Fig. 19 shows
the CE NMSE when the proportion of far-field scatterers and
near-field scatterers varies while fixing the number of all the
scatterers to L = 5 and using the V' =768 data-driven WRD.
As the number of far-field scatterers Ly increases, the CE
accuracy improves. Specifically, for the case of Ly = 4 far-
field scatterers and L,, = 1 near-field scatterer, the CE
accuracy is the best and the NMSE is smaller than -10dB at
the SNR of 10 dB. By contrast, when only 1 scatterer is located
in the far-field region but there are 4 near-field scatterers in
the near-field area, the NMSE is around 2dB worse than
the best case, but the CE accuracy is still acceptable in this
worst case. The aforementioned results demonstrate that the
proposed approach can handle different hybrid near- and far-
field scenarios.

3) Purely Near-Field Scenario: The CE performance
obtained using different WRDs in a purely near-field scenario
is shown in Fig. 20. The DFT WRD attains the worst CE
performance because there exists severe sparsity loss when the
near-field scatterers are transformed into the virtual angular
domain. The simulation results indicate that the proposed
data-driven WRD can achieve comparable performance with
the polar-domain WRD [63], which demonstrates the effec-
tiveness of our data-driven WRD. It is also worth noting that
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Fig. 21. Reconstruction NMSE for CSI-Net [31] and our CSI-ResNet in the

hybrid near- and far- field scenario.

even when V of the polar-domain WRD is doubled, there is
no noticeable performance enhancement.

C. Bit-Vector CSI Feedback

The results of Fig. 21 verify the effectiveness of the pro-
posed CSI-ResNet in the hybrid near- and far- field scenario
where the V' = 1280 data-driven WRD is used in CE.
The legend ‘float-number feedback’ means that the output
is directly compressed as a floating-point-number vector, and
‘bit-vector feedback’ means that the output is first compressed
as a floating-point-number vector with a larger dimension and
then quantized as a bit vector. It can be seen that with Ny =
1600 feedback bits, when the benchmark CSI-Net [31] outputs
floating-point-number vectors, the reconstruction NMSE is
much worse than that of the bit-vector feedback policy, which
demonstrates the effectiveness of the bit-vector CSI feedback
approach. Moreover, our proposed CSI-ResNet with Ny =
1200 feedback bits achieves significantly better reconstruction
accuracy than CSI-Net with Ny = 1600 feedback bits. Around
1dB further reduction in the NMSE can be attained by our
CSI-ResNet with Ny = 1600 feedback bits.

Figure. 22 evaluates the CSI feedback performance of
CSI-ResNet in the purely far-field and purely near-field sce-
narios, respectively. It should be noted that the p = 4 DFT
WRD and V' = 2560 data-driven WRD are used in CE for

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on September 13,2024 at 06:56:59 UTC from IEEE Xplore. Restrictions apply.



11256

(a) Pure Far-field Scenario

(b) Pure Near-field Scenario

— V= Esimation NMSE
—— i

NMSE (1200 bits)
NMSE (1600 bits)

NMSE (dB)
NMSE (dB)

SNR (dB) SNR (dB)

Fig. 22.  Reconstruction NMSE for our CSI-ResNet in purely far-field
scenario and purely near-field scenario.

the aforementioned scenarios, respectively. It can be observed
that at the high SNR range of 3 to 10dB, there exists the
reconstruction NMSE loss in the far-field region due to the
information loss during compression. However, at low SNR
regions, the reconstruction NMSE presents better performance
than the estimation NMSE because of the denoising effect of
CSI-ResNet. In the purely near-field scenario, the denoising
effect of CSI-ResNet is even more pronounced, and the
reconstruction NMSE is lower than the estimation NMSE
at all SNRs. In terms of the impact of feedback bits, when
Ny = 1200 is used, the performance degrades compared with
Ny = 1600, due to discarding more information.

V. CONCLUSION

In this paper, we have proposed a novel knowledge and
data dual-driven CE and CSI feedback approach for downlink
mmWave wideband UM-MIMO systems considering hard-
ware imperfections. To mitigate the distortions caused by
imperfect hardware, a data-driven ResNet-DQ has been pro-
posed which is inspired by the time-domain correlation of
multiple sets of oversampling samples. After de-quantization,
we have proposed a DFT WRD and data-driven WRD. The
former can eliminate the far-field beam squint effect and the
latter can deal with both the near-field propagation effect
and beam squint effects. In this way, we can obtain the
exact common support across all the subcarriers in different
propagation scenarios. Then, we have proposed a knowledge-
driven GMMV-LAMP network based on a carefully designed
shrinkage function to leverage the common support feature.
Finally, we have designed a data-driven CSI feedback module
called CSI-ResNet to achieve low-cost bit-vector feedback.
Simulation results have indicated that the proposed approach
achieves effective, accurate, and low-cost downlink CE and
CSI feedback in mmWave wideband UM-MIMO systems,
under a wide variety of propagation scenarios. We release
our code at https://gaozhenl6.github.io/ to facilitate further
research and reproducibility.

APPENDIX
DERIVATION OF THE MMSE DENOISER

Consider the denoising problem for the signal model given

by
X=X+ 3°n, (30)

where x and x € CX*! denote the noisy and noiseless signals,
respectively, n € CK>1 ~ CN(0,1) is an AWGN vector, and
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¥ = diag ([0?[1],0%[2],...,02[K]]) is the diagonal matrix
depicting the noise power with o2[k] > 0,Vk € {1,2,..., K}.
Because the support across different subcarriers appears or
disappears at the same time, X follows a Bernoulli-Gaussian
distribution as (1 — 7)do + ypn.. Here, &y denotes the point
mass measure at zero and py, denotes the distribution of h, ~
CN(0, €I).

In this way, the probability when x = x’ = h. +
>2n is 7, and the probability is 1 — v when X = Xz2n.
According to standard estimation theory, defining © =

the mean and covariance matrix

: 1 1
dlag e+o2[1]7 """ e+0?[K]

of h, can be computed respectively as
Elh|x = x] = eOx,
Elh.hfl|x’ = x] = I — 20 + 20xx"0.

€1y
(32)

Furthermore, we can compute the mean of X as

E[xjx =%'] = /ipxb;(i =x|x = %')dx

1 _ A4
= oo [ Pas(x=xlx= X')(ypn, (he = x)
+ (1 =7)do(x))dx
px (X' = %) ’ ’
- Elh|x' = %], (33
P& =X =) P =X G
. AN 1 —
By defining ¢(%X) = T and P =
diag (02[1](;2[1]+6) ey UQ[K](UGQ [K]+€)) , the shrinkage func-
tion neg(X’;7, €, X) can be rewritten as
nes(X57,6,8) =Exjx =% =¢x)O%". (34

It should be noted that when taking the derivative of (34),
we can approximate ¢(X) as a constant since the dimension

of X is quite large, and the derivative becomes Ef;(f&]
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