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Abstract—Massive random access is an important technology
for achieving ultra-massive connectivity in next-generation wire-
less communication systems. It aims to address key challenges
during the initial access phase, including active user detec-
tion (AUD), channel estimation (CE), and data detection (DD).
This paper examines massive access in massive multiple-input
multiple-output (MIMO) systems, where deep learning is used
to tackle the challenging AUD, CE, and DD functions. First, we
introduce a Transformer-AUD scheme tailored for variable pilot-
length access. This approach integrates pilot length information
and a spatial correlation module into a Transformer-based
detector, enabling a single model to generalize across various
pilot lengths and antenna numbers. Next, we propose a generative
diffusion model (GDM)-driven iterative CE and DD framework.
The GDM employs a score function to capture the posterior
distributions of massive MIMO channels and data symbols.
Part of the score function is learned from the channel dataset
via neural networks, while the remaining score component is
derived in a closed form by applying the symbol prior con-
stellation distribution and known transmission model. Utilizing
these posterior scores, we design an asynchronous alternating CE
and DD framework that employs a predictor-corrector sampling
technique to iteratively generate channel estimation and data
detection results during the reverse diffusion process. Simulation
results demonstrate that our proposed approaches significantly
outperform baseline methods with respect to AUD, CE, and DD.
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I. INTRODUCTION

N WIRELESS communications, multi-user random access

is a critical step in establishing initial communication links.
This process involves techniques such as activity user detection
(AUD), channel estimation (CE), and multi-user data detection
(DD). Traditional cellular networks often use scheduling-based
access protocols and orthogonal multiple access methods [1].
As networks evolve, the 6G vision outlines more stringent
performance requirements for scenarios involving massive
communication. This vision necessitates a connection density
ranging from 10% to 108 devices per square kilometer [2].
As the number of users increases, dependence on orthogonal
multiple access will lead to excessive overhead, substantially
affecting communication efficiency.

To overcome the limitations of existing scheduling-based
random access protocols, the grant-free non-orthogonal multi-
ple access scheme has been proposed [1]. By eliminating the
need for complex handshaking between users and the base
station (BS), terminals can directly transmit uplink signals
composed of non-orthogonal preamble sequences and payload
data. This approach effectively reduces communication delays
while enabling more devices to access the network simultane-
ously. However, it also increases the complexity of designing
receiver detection algorithms. Previous studies have proposed
several advanced receiver schemes, notably sourced random
access and unsourced random access [3]. Sourced random
access [4] employs pre-assigned preamble sequences to dis-
tinguish user identities and facilitates user activity detection
and channel estimation using these preambles. In contrast,
unsourced random access employs a common codebook, uti-
lizing codewords to convey information and select coding,
interleaving, and spreading techniques [S]. Moreover, refer-
ence [6] investigates a massive random access scheme utilizing
individual user codebooks. This scheme recognizes the unique-
ness of user codewords and encodes bits during the codeword
selection process, integrating features from both sourced and
unsourced random access mechanisms previously described.
The reference [6] provides an in-depth performance analysis of
massive random access under multiple-input multiple-output
(MIMO) Rayleigh channels, taking into account the presence
or absence of channel state information (CSI) at the receiver
and whether the number of active users is known, thereby
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offering theoretical insights into performance limits. This
paper mainly focuses on sourced random access schemes as in
[4], tackling algorithm design challenges related to AUD, CE,
and DD. For simplicity, we continue to refer to the discussed
approach as massive random access.

A. Related Work

For massive random access, identifying the set of active
users is a prerequisite for executing subsequent transmis-
sion tasks. Studies in [7], [8], and [9] have developed a
covariance-based AUD method. This approach initially derives
the likelihood function of user activity from received signals
using a transmission model, framing AUD as a maximum
likelihood estimation problem. The coordinate descent method
is then employed to iteratively estimate each user’s activity.
However, the algorithm’s computational complexity is high
due to the need for computing the inverse of the covariance
matrix in each iteration and performing serial iterative estima-
tion for multiple users. To address this challenge, the authors
of [10] and [11] proposed advanced neural network-based
AUD methods, which adopt binary cross-entropy as the loss
function and utilize a heterogeneous Transformer to directly
map received signals to the active user support set, achieving
superior active user detection performance and low inference
latency.

The aforementioned research assumes that the channel
between users and the BS is characterized by a multi-antenna
Rayleigh channel, and it does not tackle the scenarios of non-
Rayleigh channels. In non-Rayleigh environments, a common
strategy involves the joint execution of AUD and CE tasks.
This is often framed as a compressed sensing (CS) problem,
which is solved using traditional greedy algorithms, Bayesian
approaches, or deep learning methods. For example, the exist-
ing algorithms, such as orthogonal matching pursuit (OMP)
[12], approximate message passing (AMP) [13], [14], and
orthogonal AMP (OAMP) [15], exploit the inherent sparsity of
user activity to recover the user channel matrix while simul-
taneously identifying active users. To reduce computational
complexity and enhance overall performance, model-driven
deep learning approaches [16], [17] have been developed
based on traditional CS algorithm frameworks. By integrating
learnable parameters with the conventional backbones, such
networks demonstrate superior performance under low pilot
overhead conditions while significantly accelerating conver-
gence. However, since the primary aim of CS is CE, with
activity detection as a secondary outcome, joint AUD and
CE methods typically necessitate higher pilot overhead than
covariance-based techniques, which directly target the active
user set detection [7].

Once the AUD and CE processes are completed, the massive
MIMO DD problem at BS often becomes overdetermined.
Various advanced detection algorithms have been developed
to address this challenge. In addition to traditional methods
like least squares (LS) and linear minimum mean square
error (LMMSE), algorithms such as OAMP [18], expectation
propagation (EP) [19], and deep learning-based techniques
[20], [21], [22], [23] have demonstrated excellent performance.
However, these DD methods rely on the CSI estimated in the
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earlier stage, and errors in CSI estimation will degrade the
detection performance.

Performing joint CE and DD (JCEDD) can enhance overall
achievable performance. The work [21] presents an iterative
JCEDD scheme that accounts for channel estimation errors
during data detection and employs a model-driven OAMP
unfolding algorithm to improve detection. In the CE phase,
demodulated data are used as pilots to augment LMMSE
CE, resulting in superior performance. Additionally, sev-
eral studies have addressed the joint AUD, CE, and DD
problems, where message-passing algorithms or optimization-
based methods have been developed to tackle these tasks [24],
[25], [26]. Despite their strong performance, these algorithms
require elaborate system configurations and dedicated algo-
rithm design, which may not generalize effectively to practical
systems or complex channel environments that are challenging
to model, thus limiting their applicability. Consequently, they
are not included in the comparisons of this paper.

In recent years, generative model-based methods have been
extensively applied to address inverse problems in commu-
nications. Unlike Bayesian algorithms, which require manual
assumptions of prior signal distributions, generative models
employ neural networks to model the signal prior, offering a
more effective representation of complex signal distributions.
As detailed in [27], the score matching with Langevin dynam-
ics (SMLD) framework is used to tackle the CE problem. This
approach involves estimating the score function, defined as the
gradient of a log-probability density function [28]. By combin-
ing the channel prior’s score function, learned from a neural
network, with the likelihood score derived from observations,
the posterior estimate of high-dimensional channels can be
incrementally sampled from Gaussian noise using annealed
Langevin dynamics (ALD) [28], [29]. The SMLD framework
can also address the MIMO detection problem [30], [31], [32].
To handle the non-differentiable symbol constellation prior, a
noise-perturbed version of the symbol’s distribution serves as a
proxy function to derive the score function [31]. Furthermore,
the SMLD framework has been effectively applied to the
JCEDD problem [33] as well as the quantized CE problem
[34], demonstrating improved performance over existing deep
learning and traditional methods.

Another category of generative model frameworks is the
denoising diffusion probabilistic model (DDPM) [35]. DDPM
methods have been widely applied to denoising tasks in
communication systems. For example, the study [36] proposed
a lightweight diffusion model that first obtains an initial CE
using LS and then progressively denoises it to enhance CE
performance. Additionally, the work [37] applied diffusion
models to denoise semantic features at the receiver, thereby
improving semantic transmission performance.

It has been indicated in [38] that the DDPM pro-
cess implicitly calculates score function for each noise
level, and both DDPM and SMLD can be unified under
the framework of score-based generative models. These
models can be described using stochastic differential equa-
tions (SDEs), which model both the forward noise-injection
and reverse generation processes. This SDE approach
offers greater flexibility in sampling algorithms, resulting
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in improved performance compared to existing generative
models.

B. Our Contributions

This paper proposes a new two-stage algorithm to solve the
AUD, CE, and DD tasks in massive random access systems.
The first stage identifies the active users set (AUS) through
a Transformer-based detector, while the second stage utilizes
generative diffusion models (GDMs) to perform JCEDD for
active user equipment (UEs). The existing Transformer-based
deep learning AUD scheme [10] fails to effectively address the
challenges posed by variable pilot lengths in massive random
access problems. Furthermore, the performance of current
JCEDD schemes relying on ALD-based generative methods
[33] has not been comprehensively evaluated and is susceptible
to converging to local optima. To tackle these issues, our
research makes the following key contributions:

e We design a variable pilot length AUD network (VPL-
AUDNet) for AUD task. Specifically: 1) We propose
the variable pilot length transmission framework and
corresponding adaption mechanism that allows a sin-
gle network to be applicable to different pilot lengths
without retraining. 2) We introduce a spatial correlation
mechanism to extract spatial correlation features from the
received signals, thereby improving network-based AUD
performance in complex correlated channels.

e We model the CE and DD tasks as reverse diffusion
processes that sample from a joint distribution. These
processes gradually transform initial noise into the origi-
nal channel and data symbols. By employing advanced
predictor-corrector samplers, our scheme outperforms
existing JCEDD schemes.

e To accommodate the distinct characteristics of unknown
continuous channel distributions and known discrete data
constellation distributions, we propose an asynchronous
iterative CE and DD framework. This framework inte-
grates an LMMSE-based CE initialization method, which
reduces the number of sampling steps and enhances
convergence performance.

The remainder of this paper is organized as follows. Sec-
tion II briefly introduces the massive access system model, and
Section III formulates the problems of AUD and JCEDD. Sec-
tion IV details the proposed Transformer-based AUD scheme,
while Section V elaborates on our generative models-based
JCEDD scheme. Section VI presents the simulation results,
and Section VII concludes the paper.

Notations:Matrices and column vectors are denoted by
uppercase and lowercase boldface letters, respectively. Iy is
the N x N identity matrix, Onx s is the N x M all-zero
matrix, and 1y is the N x 1 all-one vector. (-)T, ()%, (1)},
()7, and E{-} denote the transpose, conjugate, Hermitian
transpose, inversion, and expectation operations, respectively.
| A|. indicates the cardinality of the set .A. diag(a) transforms
vector a into the corresponding diagonal matrix. N (x; a, A)
denotes the probability density function (PDF) of a Gaussian
random vector & with mean a and covariance matrix A,
and the PDF of a complex-valued Gaussian random vector is
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denoted by Ne(-;-,-). X[, 4 (X4, refers to the sub-matrix
comprising the columns (rows) of X identified by the index set
A, while ® and ® denotes Kronecker and Hadamard product
operations, respectively. The operator vec(-) stacks a matrix
column by column into a vector, and [X]; ; is the (4, j)-th
element of X. |-| denotes the integer floor operator.

II. SYSTEM MODEL

In this study, we examine a typical narrowband uplink
random access scenario where K potential UEs are served
by a single BS. The BS is equipped with a uniform planar
array (UPA) of M = M, x M, antennas, with M, and M,
antennas positioned along the z-axis and y-axis, respectively.
For simplicity, each UE is assumed to use a single antenna. In
a specific transmission frame, only K, < K UEs are active
due to the sporadic transmission characteristic of massive
random access. The activity of a UE is represented by the
indicator «y, where ap = 1 indicates that the k-th UE
is active, and ap = 0 otherwise. By defining the AUS as
A={k]ar=1,1<k <K}, we have K, = | A]..

For the k-th active UE, the uplink frame consists of L,, pilot
symbols p, € CL» followed by Ly data symbols x;, € CXe,
These pilot and data symbols form a frame s;, = [p;f, :c;f] Te
CF of length L = L, + L. The channel vector between the k-
th UE and the BS is denoted by h;, € CM, which is assumed
to remain constant throughout the entire transmission frame.
The received signal matrix Y € CL*M over a frame from all
the active UEs is expressed as:

K
Y =) arsphy + W, (1)
k=1
where W € CL*M i the noise matrix, whose elements are
symmetric complex additive Gaussian white noise (AWGN)
with zero mean and variance o2.

Define § £ [s1,8s,...,8x] € CI*K A
diag(a) = diag ([al, g, ...y ozK}T) € CExK H
[hi, ho,... hg]" € CEXM_ and H 2 AH. Then, the
received signal matrix can be expressed as:

Y=SAH+W =SH+W. )

By splitting the pilot and data components in S into two
parts, i.e, P 2 [p;,py,...,Px] € CE»*E and X £

T
[T1,22,..., 2] € CLeXE we have § = [PT,XT} €

> 1>

T
CLXK and YV = Y,T, YdT} € CL*M | where Y, € CLo*M
and Y4 € CLax
components, respectively. We also denote W =

correspond to the received fﬂOt and data
CL*M with W, e CL»*M and W € CLaxM,

Wi, Wie

III. PROBLEM FORMULATION

The proposed massive random access system is depicted in
Fig. 1, where the BS needs to solve the problems of AUD and
JCEDD. Specifically, we divide the AUD, CE, and DD tasks
into the two stages. In the first stage, we use a single model to
derive the AUS information from the received pilots of variable
lengths. In the second stage, we perform the JCEDD using the
powerful generation capability of diffusion models.
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Fig. 1. System diagram of the massive random access with variable-length pilot transmission and corresponding VPL-AUDNet at the receiver.

A. Stage 1-AUD

Due to activity sparsity, existing CS methods [12], [13],
[15], [16], [17] recover the entire sparse channel matrix, which
requires a large pilot overhead to accurately estimate the CSI.
As discussed in Section I, covariance-based methods [7], [8],
[9] have not been successfully generalized to non-Rayleigh
channels. Additionally, current deep learning-based methods
[10], [11] fail to generalize to variable pilot lengths once the
network is trained with a fixed pilot length. To address these
issues, we propose a neural network-based method that can
generalize to variable pilot lengths and perform well with low
pilot overhead in complex correlated channel environments.

We assume that the original pilot sequence for each UE,
denoted as p,, is selected from a large pilot pool P =
(D1, Doy - D] €CH " *K and is pre-allocated by the BS
when the UE initially registers with the BS. The UE identity
is then bound to this pilot sequence until it un-registers from
the network. During the transmission procedure as shown in
the left part of Fig. 1, only the first L, symbols of each
pilot sequence are transmitted. That is, each pilot sequence
is masked by a binary vector m = [1,...,1,0,.. .,O]T €
{0, 1}L;j ", whose first L, elements are ones and the remain-
ing (L;“a" — L) elements are zeros. Here, L, can take a value
in the range [L®, L02X]. Let M =13@m e B * K Then,
at the AUD stage, the BS identifies the active UEs from the
received pilot signals, expressed as:

Y, = (PoM)H+W,. 3)
Here, Y, = {ng O(L;;’aX—Lp)de] e CL™ M s the equiva-
lent received pilot after zero-padding it to the maximum pilot
sequence length. Similarly, Wp = [W;,O( Lmax—L)xM | €

max . . . . .
CL»™ M is the equivalent noise at the receiver. Since

the equivalent channel matrix can be written as H
[arhy, aohs, ... axhg]" € CEXM | estimating the activity
& = [a1,4s,...,ak]" € BEX1 is equivalent to recognizing
the support set of H.

The AUD problem can then be formulated as follows:
mqi)n E{L(a, &)},
st. &= fa (Y,,,P, Lp), VL, € [L L] (@)

where fa (YP,P,LP> is a neural network which maps the
received signal and pilot sequences to &, ® represents the
parameters of the neural network, and £ (o, &) is the loss
function that quantifies the disparity between ¢ and &.

The advantage of variable pilot-length transmission is not
only to avoid training and storing multiple neural networks
for different pilot lengths but also to allow the UE to transmit
different pilot lengths according to varying traffic densities at
different times of the day. This reduces transmission delay
while maintaining flexibility. The proposed AUD scheme is
detailed Section IV.

B. Stage 2-JCEDD

Given the estimated AUS A= {k|d,=1,1<k <K}, the
transmission model can be equivalently formulated as:

Y = S[:,A]H[A,:] + W, (5)

T % . .
A XA € X1>*Ka with X denoting
the quadrature amplitude modulation (QAM) constellation
set, and H 4, € CKaxM For convenience, define S, =
S[:A],PaéP[::A],XaéX[:ZA], and HaéH[A:]. Gin?n the
known observations Y and pilots P,, we find the maximum
a posteriori estimation of both the data symbols X, and
channels H ,, which can be formulated as:

{Xmﬁa} = arg

where S[;,A] = [PT x7T

max p(Xa, Hy|Y,P,). (6)
Xq,exlaxKa H,

The above problem can be divided into the two sub-problems
when one of the two variables is assumed to be known:

X, = arg P (Xa|Y, H,, Pa) ,

max
XanLdXKa

(7a)
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H, =arg max p (HQ\Y,XQ,PQ) : (7b)
Different from typical passing algorithms that factorize the
joint distribution (6) into a factor graph and then inferring
the posterior distribution of each element through message
passing, our proposed scheme directly samples the signals
from the posterior distributions (7a) and (7b). This approach
was first implemented in [27], [31], [32], and [33], where the
ALD sampler is used to sample from the posterior distribution
in the CE or DD problem.

The ALD sampler provides a viable method for sampling
from complex distributions. Recent advances highlight the
significant role of the score function in the ALD sampler,
revealing a strong connection to the denoiser in the widely
recognized DDPM model. Both concepts can be clarified
through the perspective of SDE [38]. Specifically, sampling
from a distribution can be interpreted as solving the reverse
SDE of a corresponding forward SDE in the diffusion process.
Based on this insight, we address the shortcomings of the
existing ALD sampler [33] to provide more reliable estimation
results for the JCEDD problem. The proposed JCEDD scheme
is detailed in Section V.

IV. TRANSFORMER-BASED AUD FOR VARIABLE
PILOT LENGTHS

As illustrated in the right part of Fig. 1, the receiver’s
primary function is to extract correlations between the received
signal and the user pilot sequences, facilitating the identifica-
tion of active users whose pilots contribute to the received
signal. We propose a VPL-AUDNet consisting of three main
blocks. First, in the preprocessing block, we design a unified
method for preprocessing received pilot signals with varying
lengths. In the second block, the feature sequences from the
previous block are concurrently fed into a neural network for
correlation extraction, utilizing a heterogeneous Transformer
network as the backbone [10] to handle the different phys-
ical meanings of the received signal and pilot sequences.
To accommodate variable pilot lengths, we incorporate an
additional pilot length adaptive module (PLAM) to make
the Transformer network cognizant of key information from
the input sequence. In the output layer, the activity decoder
calculates the correlation between the feature sequences of f’p
and the multi-user pilot sequences {p;}r_, to estimate the
user activity vector A. The detailed AUD signal processing
flow at the receiver is presented below.

A. Preprocessing

Before inputting the user pilots and received signals into
the Transformer-network block, preprocessing is required to
ensure dimensional consistency. The user pilots need to be
converted into real-valued representations, resulting in K
sequences, denoted as z £ [?R{i)k}T,S{i)k}T]T e R0,
1 < k < K, each of length 2L;“ax. These sequences are
then processed through a linear layer to produce the pilot
feature sequences {29} |, each of length d. Concurrently, to
handle varying pilot transmission lengths L,, at the receiver,
zero-padding is applied to the received signal Y, € CLr*M
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Fig. 2. Block diagram of the proposed spatial correlation module.

to convert it into f/p e CLy™xM (see (3)). Subsequently,
to leverage the multi-antenna observations at the BS, the
covariance matrix [8], [10] of the received signals is calculated

as C = f’pf’p /M € CEZ™XL5™ | This covariance matrix
is transformed into a real-valued vectorized form, dgnoted
as Zry1 = [?R{Vec(C)}T,%{VeC(C)}T}T e R2E5™)". The
resulting vector undergoes a linear layer transformation to
achieve a dimensionality of d, denoted as 2 ;. Finally, these
K pilot sequences and the received signal sequence, {z%}f;ll,
are collectively fed into the subsequent heterogeneous Trans-
former for further feature extraction.

In scenarios involving spatially correlated channels, directly
mapping the covariance matrix onto a sequence may fail
to effectively capture the antenna correlations. To address
this limitation, we introduce a spatial correlation module
(SCM) between the zero-padding and autocorrelation pro-
cesses. Specifically, the received signal Y, € ClLmaxxM g
first transformed into a real tensor with dimensions L., X
2 x M, x M, and then inputted into the SCM. To prevent
the network parameters from being dependent on the number
of antennas, the SCM uses a fully convolutional residual
network to extract features along the vertical and horizontal
antenna dimensions, as depicted in Fig. 2. The output of
the SCM is reshaped to dimensions Lu.x X 2 x M for
subsequent autocorrelation calculation. For Rayleigh channels
with independent identical distribution (i.i.d.), this module can
be omitted. Simulation results in Section VI demonstrate that
incorporating the SCM significantly enhances the performance
of AUD in correlated channels such as 3GPP channels [39].

B. Heterogeneous Transformer and Activity Decoder

Unlike the traditional Transformer, the heterogeneous Trans-
former introduced in [10] employs distinct sets of weight
matrices for input embedding, multi-head attention (MHA),
and the feed-forward network (FFN) to account for the differ-
ent physical meanings of pilot sequences and received signals.
To facilitate understanding, we illustrate the heterogeneous
Transformer structure and MHA in Appendix A. Since the
relative positional order of different sequences is not mean-
ingful in our AUD task, we do not apply positional encoding
as in conventional Transformers.

Assuming that the heterogeneous Transformer network con-
sists of N encoder layers, we conduct activity estimation for
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Fig. 3. Block diagram of the proposed pilot length adaptive module.

K users based on the K +1 sequences output by the N-th
encoder layer. This task is performed by the activity decoder,
which computes the heterogeneous MHA between the final
output feature sequence of the received signal z%ﬁ and
pilot sequences {zfcv 11K . The resulting MHA output, 2,
represents the synthesized contributions of all pilot sequences
to the received signal. Next, the user activity is estimated as
the weighted correlation between z. and each pilot feature
sequence. It is given by:

2IWozN ! B 1
\/g sy Nk 1 + 6_/\;6’

Here, {)‘k}szl is the output of the activity decoder, W° €
C9*? is a learnable parameter matrix, and C is a hyper-
paramter empirically set to C' = 10. User activity is then
determined by a binary threshold detector: &y = I(A\x >
0.5), Vk, where the indicator I(z) = 1 if z is true, and 0
otherwise.

. = C'tanh ( Vk. (8)

C. Pilot Length Adaptive Module

In variable pilot-length transmission, the input sequence at
the receiver undergoes zero-padding, causing some elements
to carry no useful information. As a result, the significance of
different elements in the input sequence varies. Allowing the
neural network to recognize this variability enables adaptive
optimization of network parameters based on the correspond-
ing pilot lengths.

Inspired by the attention feature module in [40], we propose
a PLAM. By inserting a PLAM module between each pair of
adjacent Transformer encoder layers, we provide additional
pilot length information to the receiver. The structure of the
proposed PLAM module is illustrated in Fig. 3. Its input
consists of (K +1) sequences from the output of the pre-
vious Transformer encoder layer, and its output comprises
(K +1) sequences of the same dimension, which serve as the
input to the next layer. First, an average pooling operation
is applied to the (K + 1) sequences along the sequence
length dimension, producing a sequence of length d. This
d-dimensional sequence is then concatenated with the pilot
length information L, and processed through a two-layer
fully connected network, generating a d-dimensional weight
sequence. Finally, this weight sequence is used for position-
wise dot multiplication with all input sequences, redistributing
the weights of the input feature sequence and allowing the
receiver to recognize the varying importance of different
elements in the inputs.
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D. Loss Function

We use binary cross-entropy as the loss function. The final
loss is computed as the average of the loss values across
different pilot lengths, given by:

Dl K

1 i i
L= WZZ <a§c)log>\,§)

i=1 k=1

+ (1 - a,@) (1 —log /\Ej')) ) )

Here, D denotes the dataset, which consists of training samples
{Yz(f), 13(1), a® } with different pilot lengths L,,, where L,, €

min max
(L5, Lp™].

V. GENERATIVE DIFFUSION MODELS DRIVEN JCEDD
USING PREDICTOR-CORRECTOR SAMPLER

Given the active UE set, we need to recover the channel and
corresponding data symbols of the active UEs. Before intro-
ducing the proposed JCEDD schemes, we briefly review the
relationship between existing generative models and their SDE
descriptions. We then address the CE problem, detailing the
calculation of posterior score functions within the predictor-
corrector (PC) sampler framework. Subsequently, we extend
the application of the PC sampler to the DD problem. Finally,
we combine the CE and DD methods to propose an iterative
algorithm for JCEDD and analyze its complexity.

A. Preliminary: Diffusion Process and SDE

Existing diffusion-based generative models involve cor-
rupting data with multiple noise scales to form a known
prior distribution. These models then learn to transform this
prior distribution back into the data distribution by gradually
removing noise. SDE considers a continuum of distributions
that evolve over time according to a diffusion process. The
forward diffusion process x(t), indexed by the continuous
time variable ¢ € (0, T, progressively diffuses a data point
xo €R? sampled from a dataset with an unknown distribution
Po() = Paaa(x) into random noise x(7') with distribution
pr(x) =N (x;0,0%1). For simplicity in notation, we define
p¢(x) 2 p(x(t)). This process can be described by an SDE
that has no trainable parameters [38], [41], as follows:

dz = f(x,t)dt + g(¢)dw, (10)

where f(x,t): R? xR — R is a vector function called the
drift coefficient, and the scalar function g(¢): R — R is the
diffusion coefficient. Additionally, w is a standard Wiener
process, defined as dw = z(t)dt, where z(t) ~N(2(t);0,I).

In the reverse process, starting from a sample 1 ~pr(x),
random noise is smoothly transformed into a data sample
@0 ~po(x). This reverse process satisfies a time-reversed SDE,
which can be derived from the forward SDE given the score
function V, logpi(x) for the marginal probability of x as a
function of time, i.e.,

de = (f(z,t) — g(t)* Ve logpi(w)) dt + g(t)dw. (1)

Here, p:(x) denotes the probability of x at time ¢, and w
denotes the Wiener process when time flows backward from
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T to 0. Existing generative models like SMLD [28] and DDPM
[35] can be considered specific numerical discretization solvers
of the SDE. For instance, in SMLD, the coefficients are
f(x,t) =0 and g(t) = w, with o(t) serving as a
predefined noise scheduling function. For DDPM, the drift
and diffusion coefficients are given by f(x,t)= —“(% and
g(t) = +/o(t), respectively. By applying the discrete form
of both the forward and reverse SDEs, we can derive the
corresponding iteration equations used in SMLD and DDPM.

B. Channel Estimation

As discussed in [38], the generation process involves solving
the reversed SDE given in Eq. (11), where the unconditional
generation from this equation yields samples that adhere to
the prior probability distribution po (). However, considering
Eq. (5) in the JCEDD problem, since the BS receives signal
Y, we need to consider the conditional generation process
where channel should be drawn from the posterior distribution
P (Ha|Y, Xa, Pa) to produce the CE result that align with
the constraint Y =S, H, + W.

Specifically, we assume that the data symbols X, are
known and represent the initial posterior distribution as
po(H,|Y) 2 p(H,(0)]Y), where H,(0) = H, represents
the ground truth channel to be estimated. The conditional
distribution of H,(t) at time ¢ is expressed as p; (H,|Y) £
p(H,(t)|Y). According to [42], the conditional generation
process involves sampling from po (H,|Y), which is equiva-
lent to solving a reverse SDE represented as follows:

dH, = (f(Ha,t) — g(t)*Va, logpi(H,|Y)) dt

+ g(t)dW. (12)

Due to the equivalence between DDPM and SMLD during
the inference process [43], the remainder of this paper will
examine the SDE in the SMLD form. Discussions on DDPM
are similar and are therefore omitted.

To solve the reversed SDE (12), it is essential to derive
the posterior score function Vg, logp: (H,|Y). By applying
Bayes’ theorem, the posterior score function is given by:

Vi, logp: (H,|Y)=Vg,logp: (Y|H,)

+Vau,logp (H,), (13)

where the likelihood score function Vg, logp: (Y |H,) is
determined by the signal transmission model (5), and the prior
score function Vg, logp, (H,) is determined by the prior
distribution of the channel dataset.

1) Calculation of Prior Score Function: Denote hy
[H a}[T,€7:] € CM, Vk € A. Since the prior distributions of
each active UE’s channel are assumed to be independent
of each other, we have logp; (H,) = log Hf:‘llpt(hk) =
Z,I::“l log pi(hy). Therefore, the prior score function can be
calculated for each UE separately, i.e.,

L

Vi, logp (H,) = [Vm logp; (h1) , Vi, logp; (h2),

T
o, Vhyg, logp: (hk,) (14)
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Therefore, when all the UEs’ channels are generated from the
same dataset distribution py,., (k), we only need to focus on
the prior score function of a single UE.

For simplicity, omit the UE index %k and denote p,(h) =
Paaa(P). Our objective is to derive the score function
Vi log p: (h), where p; (h) is the data distribution diffused by
noise at time ¢. For complex channel distributions, the prior
score function lacks a closed-form expression. Fortunately, the
study [44] has shown that using a neural network to learn the
score function Vp, logp; (k) is equivalent to denoising score
matching (DSM). This can be achieved by training a time-
dependent neural network sg(h(t),t) using the following loss
function:

£.=ENOE|s0(h(t),t) = Vi) log p(A(1) R(0)) 5},

(15)
where the inner expectation is taken over the joint distribution
p(h(t), h(0)) with h(0) sampled from the dataset distribution
po(h), and the time ¢ is uniformly sampled from (0, 1] with
T = 1. while A(t) o< 1/E[|[ Vg logp(h() R(0)[3] is a
positive weight function, and @ collects the neural network
parameters.

Specifically, p(h(¢)|h(0)) denotes the transition kernel from
h(0) to h(t), typically defined by a forward noise diffusion
process given by Eq. (10). For a typical generation model in
the SMLD form [38], with a known drift coefficient f(h,t)=

0 and a diffusion coefficient g(t) = w, the transition

probability function from the original data point h(0) to
h(t) can be derived using Ifo’s Lemma [41]. This is given
by p(h(t)[h(0)) = N(h(f);h(o)v(Uz(t)*UQ(O))tI) ~
N (h(t); h(0),02(t)I), where o(t) = Omin (‘;:*:
predefined noise scheduling function, and the approximation
holds when the initial noise variance 02(0) = oppin ~ 0.
Consequently, we have V) logp(h(t)|h(0)) = —h(?{(}t’)(o)
The final loss function can thus be simplified as:

£, =K, {W ( ) } a6)

which is equivalent to training a denoising neural network
that can recover the scaled noise superposed on the channel.
With sufficient data and model capacity, DSM ensures that
the optimal solution sg-(h(t),t) approximates Vp, log p:(h)
for almost all h(t) and ¢.

Given the powerful expressive capability of the noise con-
ditional score network (NCSN++) [38] in image generation
tasks, and considering that the channel can be viewed as a spe-
cial kind of image, we use NCSN++ to construct sg- (h(t),1).
To adapt the channel dimension to the input of NCSN++, the
original M -dimensional channel vector sample is transformed
into a real representation and reshaped into dimensions 2 x
M, x M,,. NCSN++ then takes the channel of these dimensions
and a time step index ¢ as inputs. The network outputs the
learned channel prior score at time ¢. It should be noted that
during the prior score function learning, no information on the
pilot symbols, data symbols, received signal, or transmission
noise variance is involved in the training process. This means
that once the neural network is trained, it can be applied to

is a

h(t) - h(0)

so(h(t),t) + 2
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Predictor Corrector x M
S..Y 7 S.Y
Posterior score function
V log p(H,'|¥)
VH"logp(Y\H"l”)
2 2
O, —0;
Posterior score fu!lcn'on
d —>®—— v logp(H;|Y) [PQ—
, _ i :
(o $ [ {2
Z~N(Z:0,1)>® o2, - )| [(Z2~N(2:0,1) @2,

Fig. 4. Block diagram of the proposed PC sampler-based CE algorithm.

any dimension of the JCEDD problem as long as the channel
distribution remains unchanged.

One special case where the channel prior score function
does not need to be learned is when the channel distri-
bution has a known closed form, for example, h(0) ~
N (h(0); wp,, Rpp). Then, the prior score function of the
channel in this case can be derived by Tweedie’s formula [45]

_ E{R(0)[R(1)} ~ k(1)

Vil h(t
h(t) ng( ( )) 0'2(t)
-1
=~ (Run +0(t)’T) " (h(t) — p) ,
a7)
where the posterior expectation can be derived
according to Bayes linear Gaussian model,
which is  given 1by]E {R(0)|h(t)} = JS
Ry (Run +0*(0)I) " (h(t) — ).

2) Calculation of Likelihood Score Function: We now
consider how to derive Vg, logp; (Y|H,). Given that the
channels are viewed as three-dimensional real tensors in prior
score learning, we can also transform the transmission model
(5) into its corresponding real-valued representation. For sim-
plicity, we retain the notation Y =S, H ,+ W throughout this
paper. Note that in the SMLD framework, p (H ,(t)|H,(0))~
N (H,(t); Hq(0),02(t)I). Consequently, the transmission
model can equivalently be expressed as:

Y =8, (H,(t)+0(t)’Z) + W, (18)

where Z ~ N (Z;0,1) is the diffusion noise superimposed
on the original channel H ,(0). Therefore, the corresponding
transition probability is given by:

o (Y[H,) ~ N (Y; S H,(t),02I + oZ(t)SaS;F> . (19)
Taking the gradient of the log-likelihood, we obtain:

Vi Jogp (YH,)=SH(021+0° (t)SaSaT>_1(Y—SaHa(t).

(20)
In the considered JCEDD problem, S, = [PQT, X ﬂT con-
tains both the pilot symbol P, and estimated data symbol X,
in the iteration process, and the estimated data symbol can

enhance the CE. When no data symbol is used, the problem
degrades to the conventional pure pilot-aided CE problem.

3) Channel Sampling Process: Utilizing the derived prior
score function and likelihood score function, we numerically
solve the reverse SDE (12). Specifically, by dividing the
interval ¢ € (0, 1] into N discrete steps, indexed as i =
0,1,..., N — 1, we obtain the following iterative rule for the
reverse diffusion sampler (which is also called predictor):

H,=H"—f,  (H") 497,V logp(H,Y)
+ 9i+1Z, (21)
where H|, = Ha(t)|t:'f;’v’ fi(H,) = f(Ha(t)at”t:%’ gi
g(t)|t:ﬁ:, and Z~N(Z;0,I). Given the known drift coeffi-

cient f(H,,t)=0 and diffusion coefficient g(t) =1/ w
in SMLD, Eq. (21) is equivalent to:

I~{Z = Hffl + (afﬂ — O'Z-2) Vit logp(HZ+1|Y)

+ —02Z, (22)

2
Oit1

where 0; =0 (t)|,_ i . Then, starting from a random initializa-
tion HY ~ N(H”Y;0,02,,1I), the iteration process for the
SMLD-based predictor is shown in Fig. 4. The corresponding

discretized form of the score function is given as:

. . T
i i i !
VHfllng(Ha):|:89* ( 1’N> yeeey 80" (hKa’N>:| 3

(23a)
Vi logp (Y|HL) = VET (a,%I + afzzT) B

x (UTY _ EVTHfl) , (23b)
Vi logp (H,|Y) = AV logp (Y|HY})

+ Vi logp (HY) . (23¢)

In Eq. (23b), we apply singular value decomposition (SVD)
to S,=UXV " within Eq. (20) to avoid non-diagonal matrix
inversions, thereby reducing computational complexity. Addi-
tionally, a scaling parameter \;, = 2.5, as suggested in [46],
is empirically chosen to balance the effects of the likelihood
score and prior score, enhancing convergence performance.
However, the numerical predictor in Eq. (22) may introduce
approximation errors when solving the continuous SDE in a
discrete manner. To correct the errors, a score-based Markov
Chain Monte Carlo (MCMC) method is used as the corrector.
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This method corrects the marginal distribution of the estimated
sample during iterations. A well-known MCMC approach is
the ALD, which employs the following iterative process:

H. = H, + eV logp(H,Y) +V26Z, (24
where ¢; = 20; (r||Z||2/||V  log p(H a|Y)H2) is the step

size in the i-th iteration of the ALD algorithm [38]. Addi-
tionally, r is an empirically chosen hyperparameter, set to
r = 0.3 in our simulations. Existing ALD-based studies on CE
[27], DD [31], and JCEDD [33] can be regarded as corrector-
only samplers with potential for performance improvement.
Therefore, we address the JCEDD problem using the PC
sampler illustrated in Fig. 4.

Algorithm 1 PC Sampler-Based Channel Estimation

Input: S,, Y, o2, pre-trained denoising network sg-, step
number N, noise scheduling function o(t), and hyper-
parameter \p;

1: Initialize: HY ~ N (H)Y;0,0%1);

2. Compute: S, = UV,

3: fori= N to 1 do

4 Calculate Vi logp (H,|Y) via (23);

s: Draw Z ~ N(Z;0,1); _

e HI' = H + (02 —0c2 ) Vi logp(H,|Y) +
\/o2 — 0?2 | Z; % Predictor: line 6

7: for j=1to Q do

8: Draw Z ~ N(Z;0,1);
: Calculate V i1 logp (H. 1|Y) via (23);

00 61 =201 (1 Z]a/ |V gy logp(HL 1|Y)||2)

11 H,' = H, "' + ¢ 1V logp(H, '|Y) +
V2€¢i-1Z;

12: end for % Corrector: lines 7-12

13: end for R
Output: Estimated channel H, = H".

4) Overall CE Algorithm: In practical implementations,
each iteration of the PC sampler includes one prediction
step and @) correction steps, where () ranges from 1 to 3.
The complete CE algorithm is listed as Algorithm 1. Com-
pared to traditional Bayesian algorithms, our method derives
prior distribution knowledge through network learning, which
avoids the mismatches associated with manually specified
prior distributions. Moreover, unlike purely data-driven or
model-driven deep learning algorithms based on supervised
learning, this method does not require training separate net-
works for different numbers of active UEs and varying pilot
lengths, offering improved generalization and interpretability.

C. Data Detection

Upon reviewing the formulas (2) and (5), the DD problem
can be characterized as Y ;= X,H,+ W . By transposing
the formula and representing the model in a real-valued form,
the signal transmission model can be reformulated as:

Yi=H,X,+ Wy, (25)

>

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 25, 2026

where f}d, H as X « and Wd are the transposed counterparts
of the corresponding variables in real-valued form. Similar to
the CE problem, assuming that the channel H o 18 known,
data symbols can be sampled from the posterior distribu-
tion p(X,|Y ) by solving the SDE, which also involves
calculating the prior score and the likelihood score of the
data. Since the data symbols are uniformly sampled from

a QAM constellation, the prior score V 4. logp ’SXZ) in
the ¢-th iteration step can be calculated ﬁsing weedie’s
formula [45], i.e
L E{X.X.}-X,
VXQ logp(X,) = = ) (26)

7
where 7; = 7(t)|,—: is the scheduled perturbation noise

Tmax

Tmin

t
for data symbol, and 7(t) = Tmin( is a predefined
scheduling function. Additionally, the postenor distribu-

tion can be derlved using Bayes’ rule as: p(X |X )

P(X,|X, )p(X ) where p(XO):
X x0. L P(XLIXp(X,)’ e
terior mean is derived as

EI Then, the pos-

Dk Xop(X,|X,)

B{X.IX.} = :

ZS(ENXP( a‘Xa)

By substituting (27) into (26), the final prior score the data
symbols at time step ¢ can be expressed as

27)

N
X o, 272
loap(i o L[ Zxia e T
VX; ng( a)*Ti_Q Ixi %02 —Aal
g - 272
) e 7
ZXaNX
(28)

For the likelihood score, the equivalent likelihood function
can be derived from the transmission model (25) as:

° o 4 —1
Vi logp (YalX,) = VSt (o2 + 72535

X (U{ffd - thEXZ) . (29)

where we have used the SVD H «=UpXy, V}: to reduce the
complexity during the iteration. Finally, the posterior score of
the data symbols can be calculated as

VXQ log p (X;|Yd> = )‘IVXZ log p (Yd\XZ)

+ Vi logp(X,),  (30)

where A\, =2.5 is an empirically chosen hyperparameter. The
DD algorithm can also be derived based on PC-sampler. Due
to space constraint, the detailed DD algorithm is omitted, but
its basic iterative procedure is similar to that of Algorithm 1.

D. Overall Algorithm

In the CE and DD algorithms above, the data X, is assumed
to be known during CE, while the channel H, is assumed
to be known during DD. In practical transmission, only the
pilot P, and the received signals Y are known. Therefore,
we design an iterative algorithm to perform JCEDD. The

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on January 09,2026 at 17:30:07 UTC from IEEE Xplore. Restrictions apply.



YING et al.: GENERATIVE DIFFUSION MODEL DRIVEN MASSIVE RANDOM ACCESS IN MASSIVE MIMO SYSTEMS

8219

TABLE I
COMPLEXITY OF ALGORITHM 2

Operation Lines Complexity/Each Time Number of Times
Initialization Line 1 O (KuLZ%ZW3 + L,)K,%M3 + %Lg]\/ﬂ + 2KaM2L?,) 1
SVD Channel | Lines 2 and 13 O (2LK2 + K32) 1+ |i* / Nupdate |
Data Line 7 O (2K M? + M?3) [4* / Nupdate |
Posterior Score | Channel | Lines 4-5 O(L2M + K2M + Kq Faet) (14 Q)
Calculation Data | Lines 10-11 O(M2Lg+ K2Ly + 2KoLg|X],) 6%/ Nupaate] (1 + Q) Nx
Overall Complexity Dominated by Lines 4-5 and Lines 10-11.

Algorithm 2 PC Sampler-Based JCEDD Algorithm

Input: S,, Y, J?L, pre-trained denoising network sg-, SDE
noise scheduling functions o(t) and 7(t), step numbers
Np and Np, hyper-parameters A, and Az;

1: Initialize: Acquire initial CE H, via LMMSE, initial DD
X, via ZF, and start point ¢* via (31);
T 17T T
2. Calculate: S, = [P,, X,| =UXV";
3: fori=1"to 1 do

4 Calculate Vi logp (H,|Y') via (23);

5: H'~' = PC-sampler (i,Hfl,VHz logp (H;|Y)>
6: if 1% Nypdae == 0 then

7: Calculate H. ' = U, X,V };

8: Initialize X, ~ N XiVX ;0, TfﬂaXI);

9: for j = Nx to 1 do ‘

10: Calculate Viri; log p <Xf,|Yd> via (30);

11 Xf;_lzPC—sampler(j7 XZ,VXJ logp(j(ﬂla’d));
12: end for

13 Calculate S, = [PF, (X9)" T =Usv™;

14 end if

15: end for

Output: Estimated channel and data H, = H % and X, =X .

proposed PC sampler-based JCEDD method is depicted in
Fig. 5, and the algorithmic framework is summarized as
Algorithm 2.

The issues we need to address are: 1) A typical SDE
sampling algorithm starts by sampling from random noise,
resulting in a high number of iterations. 2) In the exist-
ing ALD-based JCEDD [33], each CE iteration is followed
by one DD iteration. Due to the different distributions of
the channel and data symbols, their convergence speeds are
inconsistent, causing the DD to fall into local optima before
the completion of the CE iterations. We address these issues
by the following improvements in the proposed sampling
mechanism.

e We conduct the LMMSE estimation [21] of the chan-
nel H, using Y, = P,H,+ W, and determine the
perturbation noise variance that matches the estimated
channel variance as the starting point for SDE sampling.
Let the estimated covariance matrix of the channel h, =
vec (H) ) € CK«M be RA. Then the starting point i*
of the SDE iteration is obtained by identifying o; that is

the closest to the average channel variance according to:

KoM

> [Ral,
=1

By reshaping the estimated h, into matrix H ,, the initial
DD result can be obtained by applying zero forcing (ZF)
t0 (25), ie, Xo=Y HY (H(LHE) .

We design an asynchronous alternating iteration mech-
anism. For channel datasets with complex distributions,
the calculation of posterior score is more complicated
than DD that relies solely on model-based iterations with
closed-form expression. We update the DD results after
every Nypgae Channel iterations (Line 6 in Algorithm 2).
To ensure the optimal DD results under the current
channel error, we conduct Nx steps of PC sampler each
time the data symbols are updated (Lines 9-12).

1
K, M

i* = arg mvi/n o — . 31

E. Computational Complexity Analysis

The complexity analysis of Algorithm 2 is detailed in Tab. L.
The channel is initialized using the LMMSE method before
the iterative process begins. For the channel PC-sampler, ¢*
iterations are necessary. Each PC iteration consists of one
predictor step and @) corrector steps, resulting in a total of
i*(14+ Q) computations of posterior scores, as described in
Lines 4-5 of Algorithm 2. Furthermore, data is updated after
every Nypdaare channel iterations, as outlined in Lines 6-14.

During each data update, Nx data iterations are con-
ducted using another PC sampler. Each iteration includes
one predictor step and () corrector steps, leading to a total
of Nj,;m (14+Q)Nx computations of posterior scores for
data. Additionally, SVD is utilized to reduce computational

i
N, update

complexity. Specifically, 1 + L SVD operations are

performed for the channel in Lines 2 and 13, and {
SVD operations are needed for the data in Line 7.

Specifically, computational complexity of calculating each
channel likelihood score function is O(L?M + K2M),
while the complexity of the channel prior score function is
O(KyFyet), where Fre represents the computational cost of
one time inference of the score network sg(h(t),t). The data
likelihood score’s complexity is O(M 2Ly+ K, ng), and the
data prior score’s complexity is O(2K,Lq|X|.).

For typical simulation parameters, e.g., Nypdae = 50,
L i’ J —5~15, Q=3, Nx = 1500 and Ny = 1500, the

-
[
N, update J

N, update
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overall complexity of Algorithm 2 is primarily determined
by the score function computations in lines 4-5 and 10-11.
Specifically, the neural network NCSN++ [38], employed to
calculate the channel’s prior score function, markedly impacts
the inference complexity. For complex channel distributions,
utilizing a moderately complex network can balance perfor-
mance with computational demands, providing an avenue for
algorithm optimization. Additionally, given that the proposed
approach includes multiple PC-sampler iterations, the use of
higher-order SDE or ordinary differential equation (ODE)
solvers [47], [48] is essential for further reducing complexity
in engineering applications.

VI. NUMERICAL RESULTS

In this section, we first detail the experimental setup, includ-
ing simulation parameters, network configurations, channel
datasets, training conditions, and comparative algorithms. We
then assess the performance of the Transformer-based AUD
as well as the generative diffusion models driven JCEDD.

A. Experimental Setups

We consider a typical uplink random access scenario with
a total of K =128 potential users, where each user’s activity
follows a Bernoulli distribution with an active probability of
0.1. The BS employs a UPA with M, = M, = 8 antennas
on each dimension, while each user operates with a single
antenna. Each element of the pilot sequence p;, Vk, and the
data symbols x;, are randomly sampled from 4QAM constel-
lations. The maximum pilot sequence length is L;*** = 28.
We consider a 3GPP-compliant channel model [39] generated
using Quadriga [49], simulating the 3GPP 38.901 UMa NLOS
scenario at a carrier frequency of 3.5 GHz. The minimum
pilqt sequence length is Lg‘i“ = 8 for Rayleigh channel, and
Lg‘m = 10 for 3GPP channel, since 3GPP channel is more
complicated and it needs more pilots to estimate AUS.

1) VPL-AUDNet Setup: A total of 64,000 channel sam-
ples are generated using Quadriga. For each training batch,
the pilot lengths for the UEs are randomly selected from
[Lg‘i“, L;***]. In addition to the input preprocessing layer
and output layer, the VPL-AUDNet contains 5 heterogeneous
Transformer encoder layers, each featuring a hidden state
sequence length of d =512 and 8 attention heads. Training
is conducted over 200 epochs, with the learning rate warming
up to 10~* during the initial 15 epochs and then decaying to
0.1 of this original value every 75 epochs. The batch size is
set to 128.

Future networks are expected to support millions of devices per square
kilometer. However, such high user density can only be achieved within spe-
cific time-frequency resources. For anticipated 6G massive communications, it
is generally necessary to divide limited resources into different time-frequency
resource groups. For example, within the coverage area of a single macro
base station (approximately S = 772 = 7 x 0.52 = 0.7854 km?), 128 users
can be grouped to share the same resource block, such as 12 subcarriers
and 14 OFDM symbols. Considering a system with 1 frame = 10 ms =
140 OFDM symbols and 512 resource blocks (providing approximately 92.16
MHz bandwidth for 15 kHz subcarrier spacing), the system can theoretically
supgort up to 512x10x 128 = 655, 360 UEs, corresponding to a user density
of 852.800 LBssector X3 5ectors 1 9 5 x 109 UEs/km? for the 100 MHz x 10 ms
time-frequency resources, effectively meeting the massive communication
requirement.
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2) Channel Prior Score Network Setup: The NSCN++
architecture [38] is employed to model the prior score function
sg(h(t),t). A 3GPP training dataset consisting of 160,000
channel samples is utilized. The time step ¢ is uniformly
sampled from the interval [0, 1], and the perturbation noise

t
variance is determined using o(t) = Omin (%) , with
Omax = 30 and opin = 0.01. The network is trained with a
learning rate of 10~° and a batch size of 64, over 20 epochs.

During the testing phase, the reverse SDE process for CE
is discretized into Ny =1, 500 steps. Given that an LMMSE
initialization is employed, only ¢* of the Ny steps are exe-
cuted. The reverse SDE process for DD is also discretized into
Nx =1,500 steps, using a noise scheduling function defined

e t, where Tyax = 1 and 7yin = 0.01.
Additionally, the hyperparameters are set to A, =\, =2.5.

3) Evaluation Metrics: We utilize activity error probability
(AEP), normalized mean square error (NMSE) and bit error
rate (BER) to evaluate the performance of AUD, CE and
DD, respectively. These metrics are defined respectively as

AEP=E{ LY |ak_@k|}, NMSE=E {M} and

[ Hall?
BER=E ﬁ’m }, where E, denotes the total number
of error bits for active UEs.

4) Comparative Schemes: For AUD, the proposed method
is compared with two baseline algorithms: AMP [13] and
OMP [12]. Additionally, we also assess the performance of
the VPL-AUDNet scheme trained with a fixed pilot length.
For CE and DD, the following algorithms are included in the
comparisons:

¢ LS-CE & Perfect-Data: The data X, is perfectly known,
and jointly utilize pilots P, and data X, for LS CE;

o Perfect-CSI & ZF-DD: The CSI H,, is perfectly known,
and employ ZF for DD;

e Perfect-CSI & OAMP-DD: The CSI H, is perfectly
known, and utilize OAMP [21] for DD;

e Pilot LS-CE & ZF-DD: Utilize pilots to perform LS CE,
and use the estimated channel for ZF DD;

e Pilot LS-CE & OAMP-DD: Utilize pilots to perform LS
CE, and use the estimated channel for OAMP [21] DD;

e Iter LMMSE-CE & OAMP-DD: Employ LMMSE for
CE and OAMP for DD, with CE and DD iteratively executed
to enhance the performance of each other [21];

e Iter Langevin CE & DD: Conduct iterative CE and DD
using ALD [33];

e SDE-CE & Perfect-Data: The data X, is perfectly
known, and apply SDE solver (i.e., PC sampler) for CE, which
corresponds to Algorithm 1;

e Perfect-CSI & SDE-DD: The CSI H, is known, and
apply SDE solver for DD;

e Our Iter SDE CE & DD: The proposed Algorithm 2.

as 7(t) = Tmin (—T""‘“‘>

B. Performance of AUD

Fig. 6(a) illustrates the AUD performance of various
schemes as the functions of the transmission pilot length,
L™, under iid. Rayleigh channels, where the channel
between each potential UE and the BS is modeled as hj ~
Ne(hy;0,I,), Vk. The simulation is conducted under the
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Fig. 5. Block diagram of the proposed PC sampler-based JCEDD algorithm.
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Fig. 6. AEP performance with respect to the transmission pilot length of
different AUD schemes.

2
received SNR = % = 10dB. The results indicate that

that the VPL-AUDNet-based schemes outperform traditional
CS algorithms based on AMP and OMP, in terms of AEP.
Furthermore, the VPL-AUDNet models trained with fixed pilot
lengths and without the PLAM module, e.g., VPL-AUDNet
(w/o PLAM), Lg“i“: 15, exhibit degraded performance when
tested on pilot lengths different from the training pilot length.?
Conversely, VPL-AUDNet (w/o PLAM), Lg“i“ € [10, 28]
exhibit better generalization performance. Moreover, the pro-
posed VPL-AUDNet (W/PLAM), Liuin € [8, 24], outperforms
VPL-AUDNet (w/o PLAM), Lyin € [8, 24], demonstrating the
effectiveness of the PLAM. Additionally, under i.i.d. Rayleigh
channels, the proposed VPL-AUDNet scheme achieves an
AEP performance close to 1072 even when the pilot number
is less than the average number of UEs (L;fSt < 12), whereas
the AMP and OMP algorithms exhibit a AEP of 10~!. These
results demonstrate that the proposed scheme achieves optimal
overall performance across various pilot lengths within a single
model, thereby confirming its effectiveness.

Fig. 6(b) compares the AUD performance of various
schemes as the functions of the number of transmission
pilots Li7** under 3GPP channels, given a received SNR of

2For models trained with a pilot length of Lgai“, if the test length is shorter
than the training length, the received signals are padded with zeros to align
with Lg“‘“ before being input into the VPL-AUDNet network. Conversely, if
the test length exceeds the training length, the received signals are truncated
to Lg‘“" before network input.

= B = VPL-AUDNet (w/o PLAM, w/o SCM), L[" = 25, M= 64
VPL-AUDNet (w/o PLAM, w/o SCM), LI" ¢ [10, 28], M = 64

—— VPL-AUDNet (w/ PLAM, w/ SCM), LI*" & [10, 28], M= 64
VPL-AUDNet (w/ PLAM, w/ SCM), LI®" ¢ (10, 28], M= 144

(
(
VPL-AUDNet (w/o PLAM, w/ SCM), L1" < [10, 28], M = 64
(
(

=@ AMP, M =64
=g AMP, M = 144
OMP, M =64
OMP, M =144

P

md

Fig. 7. Pr,-Ppg performance of different AUD schemes under 3GPP channel.

10dB. The results show that the performance curves of the
different schemes are similar to the trends observed under
Rayleigh channels. Compared to traditional CS algorithms
like AMP and OMP, the VPL-AUDNet-based scheme achieves
better performance with significantly reduced pilot length by
avoiding completely CE. Additionally, a comparison between
the curves of VPL-AUDNet (w/o PLAM, w/SCM), Lgai“ =
[10, 28], and VPL-AUDNet (w/o PLAM, w/o SCM), Lgai“ =
[10, 28], reveals that the SCM significantly enhances AEP
performance under 3GPP channels. Moreover, VPL-AUDNet
(W/PLAM, w/SCM), Lgai“ = [10, 28] scheme attains optimal
performance at low pilot numbers.

Fig. 7 depicts the curves for the probability of false alarm
(Pr,) and the probability of missed detection (FPy,q) for various
schemes under 3GPP channels. Simulations are conducted
with a received SNR of 10dB and a test pilot length of
Lyt = 25. All VPL-AUDNet models are trained with an
antenna number of M = 64. The results indicate that the
proposed VPL-AUDNet (w/PLAM, w/SCM), Lgai“ =10, 28],
achieves an optimal trade-off between Py, and P4. Moreover,
testing the model trained with M =64 antennas on the chan-
nels with M = 144 antennas results in further improvements
in Pp,-Phg performance, demonstrating the scheme’s robust
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Fig. 8. AEP performance with respect to the active probability of different
AUD schemes under the 3GPP channel.
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Fig. 9. Computation latency of AUD schemes under different pilot lengths.

generalization capability across varying antenna configura-
tions. In contrast, the performance gains for OMP related to
an increased number of antennas are less significant.

Fig. 8 compares the AEP performance curves of different
schemes as a function of active probability of UEs p, under
the 3GPP channel. The simulation assumes a received SNR
of 10 dB, a total potential number of UEs of 128, a user
activation probability of [0.06,0.2], and a test pilot length of
L™ = 25. The simulation results indicate that although AMP
achieves marginally better AEP performance when the active
probability is low, its performance deteriorates more rapidly
as the active probability increases. In contrast, our scheme
based on VPL-AUDNet exhibits a more gradual performance
degradation, indicating better generalization capabilities in
adapting to variations in activity probability.

Fig. 9 illustrates the computational latency required to
process a batch of 128 samples across different schemes with
varying pilot lengths. The results show that the computational
latency of the VPL-AUDNet scheme remains approximately
constant regardless of the pilot length due to a specialized
receiver structure accommodating variable pilot length inputs.
In contrast, as the pilot length increases, compressed sensing
algorithms based on AMP or OMP experience increased com-
putational complexity because of the corresponding growth in
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Fig. 10. NMSE and BER performance with respect to the received SNR for
different CE and DD algorithms under 3GPP channels.
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Fig. 11. NMSE and BER performance with respect to the received SNR for
different CE and DD algorithms under the MIMO Rayleigh channel.

the dimension of the sensing matrix. The overall computational
delay of the proposed VPL-AUDNet scheme is lower than that
of the AMP scheme but higher than that of the OMP scheme.
Nevertheless, the AUD performance of the VPL-AUDNet
scheme is generally superior to that of OMP, highlighting the
advantages of a neural network-based approach.

C. Performance of JCEDD

In this subsection’s simulations, unless otherwise specified,
the BS is equipped with M =64 antennas, and a total of K, =
12 active UEs access the system simultaneously. Moreover,
apart from Fig. 11, which utilizes a Rayleigh channel model,
all other simulations are conducted using the 3GPP channel
model.

Fig. 10 illustrates the performance curves of CE and DD
under varying SNRs for different schemes. In the simulations,
each user is allocated a pilot length of L, =15 and a data
length of L;=>50. As shown in Fig. 10(a), the iterative CE and
DD schemes (i.e., Iter Langevin CE & DD, Iter LMMSE-
CE & OAMP-DD, and Our Iter SDE CE & DD) achieve an
NMSE gain of approximately 7 and 10 dB when compared to
the non-iterative Pilot LS-CE & ZF-DD, and Pilot LS-CE &
OAMP-DD schemes. This indicates a significant gain in CE
performance by using detected data to refine CE. As SNR
increases, Iter LMMSE-CE & OAMP-DD’s performance
approaches that of LS-CE & Perfect-Data. Similarly, the per-
formance of Our Iter SDE CE & DD (Algorithm 2) matches
SDE-CE & Perfect-Data (Algorithm 1) for SNR > 8dB.
When the data is not perfectly known, OQur Iter SDE CE
& DD outperforms Iter LMMSE-CE & OAMP-DD because
it more effectively utilizes the prior distribution of the channel
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through a learned prior score function, whereas Iter LMMSE-
CE & OAMP-DD relies only on the channel’s second-order
statistical information via LMMSE. Additionally, Qur Iter
SDE CE & DD implements a PC sampler to enhance SDE
solution performance beyond what Iter Langevin CE & DD
algorithm can achieve with only a corrector.

Fig. 10(b) compares the BER performance of various algo-
rithms. Similar to Fig. 10(a), the non-iterative Pilot LS-CE &
ZF-DD and Pilot LS-CE & OAMP-DD algorithms perform
worse than the iterative algorithms. OQur Iter SDE CE &
DD scheme achieves performance close to that of Perfect-CSI
& SDE-DD and surpasses the Iter LMMSE-CE & OAMP-
DD and Iter Langevin CE & DD algorithms. At a BER of
10~%, Our Iter SDE CE & DD offers a 3dB SNR gain
over Iter LMMSE-CE & OAMP-DD. Furthermore, Perfect-
CSI & SDE-DD outperforms Perfect-CSI & OAMP-DD and
Perfect-CSI & ZF-DD algorithms. This is likely because
the channel matrix elements for the 3GPP scenario do not
meet the i.i.d. distribution assumptions for DD tasks, causing
OAMP algorithms to underperform. On the other hand, the ZF
algorithm does not exploit the prior distribution information
of the constellation. In contrast, Perfect-CSI & SDE-DD
thoroughly leverages the prior distribution of the data and
the likelihood information of the received signals, resulting
in superior performance.

In Fig. 11, we conducted simulations using the MIMO
Rayleigh channel model, where the channel prior is assumed to
follow N(0, I). Instead of utilizing a neural network-learned
score, we substituted the derived prior score (17) into the
process of Algorithm 2. The results indicate that OQur Iter
SDE CE & DD scheme outperforms traditional two-stage
algorithms such as Pilot LS-CE & ZF-DD and Pilot LS-
CE & OAMP-DD. However, it is less effective compared
to the Iter LMMSE-CE & OAMP-DD algorithms. This is
because, in a simple Rayleigh channel distribution, the mean
and covariance matrix—representing first and second-order
statistical information—are adequate to capture the channel’s
distribution characteristics. Consequently, the LMMSE-CE
and OAMP-DD achieve near-optimal performance, while the
prior score offers limited additional information. Addition-
ally, numerical errors in solving the SDE process can affect
the scheme’s final performance. This suggests that the pro-
posed scheme excels with more complex channel distributions,
whereas existing methods already perform well in simple
Rayleigh channels.

Fig. 12 compares the performance curves of CE and DD
as the functions of pilot length L, for different schemes.
In the simulation, each user’s data length is Ly = 50, and
the received SNR at the BS is set to 10dB. As shown in
Fig. 12(a), when L, > 12, Our Iter SDE CE & DD can
achieve the performance of SDE-CE & Perfect-Data, whereas
the LS algorithm, which relies solely on pilots, exhibits a
notable performance gap relative to iterative CE and DD
algorithms. This suggests that additional computation can
potentially reduce communication pilot overhead. Also Iter
LMMSE-CE & OAMP-DD and LS-CE & Perfect-Data
exhibit similar performance, indicating that the estimated data
is sufficiently robust to enhance CE. Fig. 12(b) shows that the
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Fig. 12. NMSE and BER performance with respect to the pilot symbol length
Ly, for different CE and DD algorithms.

NMSE

(a) NMSE (b) BER

Fig. 13. NMSE and BER performance with respect to the data symbol length
L for different CE and DD algorithms.
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Fig. 14. NMSE and BER performance with respect to the step numbers N g
and Nx of our Iter SDE CE & DD algorithm.

BER performance of Qur Iter SDE CE & DD is considerably
better than that of Perfect-CSI & OAMP-DD, which relies on
the perfect CSI. As expected, Perfect-CSI & SDE-DD attains
the best performance.

Fig. 13 depicts the performance curves of CE and DD across
various schemes as the functions of data length L,4. In the
simulation, the pilot length for each UE is fixed at L, =15,
with the received SNR =10 dB at the BS. As can be seen from
Fig. 13(a), the iterative algorithm improves CE performance
as data length increases. For L;> 30, the NMSE of Our Iter
SDE CE & DD matches that of SDE-CE & Perfect-Data,
offering an NMSE gain of 1 to 2 dB over Iter LMMSE-CE &
OAMP-DD. As depicted in Fig. 13(b), increasing L4 improves
the accuracy of CE, thereby enhancing the BER performance
of Iter LMMSE-CE & OAMP-DD and Our Iter SDE CE
& DD. Moreover, when L;="70, the BER of Iter LMMSE-
CE & OAMP-DD approximates that of Perfect-CSI &
OAMP-DD, while Our Iter SDE CE & DD surpasses
Perfect-CSI & OAMP-DD, in terms of BER.
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Fig. 14 compares the performance of CE and DD of Our
Iter SDE CE & DD scheme as the function of the maximum
algorithm iteration numbers Ny and Nx. In the simulation,
each UE’s pilot length is set to L, =15 and the data length
is Ly = 50, with the received SNR fixed at 10dB. For
the predefined noise diffusion functions o(¢) and 7(¢), the
interval ¢ € [0, 1] can be divided into segments with different
values of Nx and Ny to control the noise variance gap
between adjacent steps, thereby balancing generation speed
and performance. As shown in Fig. 14(a), as the channel
sampling steps Ny increase, the NMSE performance improves
gradually due to a more elaborate denoising process, resulting
in more accurate SDE solutions. When Ng =1000, the NMSE
of Our Iter SDE CE & DD approximates that of SDE-CE &
Perfect-Data. Moreover, under the same N7, CE performance
remains similar for different Np, possibly due to SDE-based
CE not being sensitive to DD errors. Additionally, Fig. 14(b)
shows that as the data sampling steps N increase, the BER
performance of DD gradually improves. However, the BER
curves vary for different Ny, indicating that for DD problems,
SDE-based DD methods are more sensitive to CE errors.

Fig. 15(a) illustrates the NMSE performance curve of Our
Iter SDE CE & DD relative to the iteration index ¢ with
varying pilot lengths L,. The maximum number of iterations
is set to Ng = 1500 (z < 1500). The simulation results
indicate that as the pilot length L,, increases, the convergence
iteration count for the proposed algorithm decreases from
approximately 400 iterations at L, = 12 to about 100
iterations at L,, = 27. Additionally, the final converged NMSE
improves from —17.1 dB to —18.5 dB. Likewise, Fig. 15(b)
demonstrates that with different SNRs, both the convergence
speed and the final DD outcome of our algorithm improve as
the SNR increases. Despite employing a maximum of 1500
iterations, the simulation results reveal that under favorable
conditions, such as L, = 27 and SNR = 16 dB, the proposed
scheme requires only about 50 to 100 iterations to achieve
satisfactory results.

In Tab. II, we present the average computation latency
for one single realization of Our Iter SDE CE & DD
algorithm, both with and without LMMSE initialization, across
various pilot lengths. Simulations were performed using an
NVIDIA GeForce GTX 4090 GPU and an AMD EPYC 7J13
CPU. As the pilot length L, increases, the computational
latency of the method with LMMSE initialization gradually
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TABLE 11
COMPUTATION LATENCY OF ALGORITHM 2 AT DIFFERENT PILOT
LENGTHS
Metrics Methods Ly=12 | Lp=15 | L, =18 | L, =21 | L, =24 | L, =27
w/ LMMSE init 232 2.14 1.99 1.87 1.76 1.70
Latency [s] | w/o LMMSE init 4.89 4.88 4.88 4.87 4.86 4.88
relative time cost 47.41% 43.86% 40.84% 38.42% 36.14% 34.79%
TABLE III
COMPUTATION LATENCY OF ALGORITHM 2 AT
DIFFERENT SNRS
Metrics Methods SNR=0dB | SNR=4dB | SNR=8dB | SNR=12dB | SNR = 16 dB
w/ LMMSE init 2.62 2.39 2.16 1.84 1.44
Latency [s] | w/o LMMSE init 4.87 4.89 4.88 4.89 4.88
relative time cost 53.76% 48.82% 44.37% 37.61% 29.52%

104,
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Fig. 16. Computation latency of different CE and DD schemes.

decreases, whereas the latency without LMMSE initialization
remains relatively constant. This occurs because a longer pilot
results in more accurate initial channel estimation, which
corresponds to a smaller diffusion noise-level in the iteration
process, resulting in fewer required iteration steps. Similarly,
Tab. III illustrates the differences in computational latency
across various SNRs when LMMSE initialization is applied
or not. Notably, our approach requires only 29%-53% of the
original scheme’s complexity, underscoring the effectiveness
of the LMMSE initialization strategy.

Fig. 16 compares the computational latency of various
methods for processing a batch size of 64 in CE and DD
tasks. Due to its asynchronous update mechanism and LMMSE
initialization, Our Iter SDE CE & DD algorithm demon-
strates significantly lower computational latency compared
to Iter Langevin CE & DD algorithm. Furthermore, the
latency of Our Iter SDE CE & DD is comparable to
that of Iter LMMSE-CE & OAMP-DD, while the previous
simulations have shown it outperforming Iter LMMSE-CE
& OAMP-DD in both CE and DD. Although the latency
of iterative CE and DD algorithms is higher than that of
two-stage algorithms, such as Pilot LS-CE & ZF-DD and
Pilot LS-CE & OAMP-DD, existing researches indicate that
diffusion-based algorithms can reduce the number of steps
from thousands to tens, or even to as few as 1 to 2 steps,
through acceleration methods such as higher-order algorithms
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Fig. 17. Block diagrams of (a) the heterogeneous transformer network and the PLAM in the intermediate layer of the proposed VPL-AUDNet, and (b) the

heterogeneous MHA within the heterogeneous transformer encoder layer.

[48] and consistency models [50]. Therefore, accelerating dif-
fusion algorithms still holds significant potential for addressing
CE and DD problems.

VII. CONCLUSION

We have proposed techniques for addressing the challenges
of AUD and JCEDD in massive random access, where stan-
dard deep learning often struggles to generalize across various
problem dimensions using a single model. Our VPL-AUDNet
architecture has been designed for variable pilot length trans-
mission, enabling a single model to adapt to different pilot
lengths and antennas, thereby achieving superior AUD perfor-
mance in both 3GPP and Rayleigh channels. Furthermore, we
have introduced a generative diffusion models-driven JCEDD
scheme using PC samplers, which significantly enhances
CE and DD performance through an asynchronous iterative
algorithm. These proposed schemes have demonstrated the
potential of utilizing deep learning and generative models to
address signal detection and estimation challenges in massive
random access. A future research direction of interest is to
consider accelerating generative model methods to further
reduce inference latency.

APPENDIX A
STRUCTURE OF THE HETEROGENEOUS
TRANSFORMER NETWORK

Fig. 17(a) illustrates the structure of the intermediate layer
in the proposed VPL-AUDNet network. First, for the input
pilot feature sequences {z%}fzo, and the received signal
feature sequence 29 41, two distinct linear layers are employed
for linear embedding. This process results in the sequences,
{z}}K |, with dimensions (B,K + 1,d), where B is the
batch size, K + 1 is the sequence length, and d is the feature
dimension. Subsequently, the sequence undergoes processing
through N alternating heterogeneous Transformer encoder lay-
ers and PLAM networks, and finally produce {zj "'}/, for
the output layer of the VPL-AUDNet. Fig. 17(a) also demon-
strates that the unique aspect of the heterogeneous Transformer
network, in contrast to the traditional Transformer, is its use
of distinct linear matrix weights for input embedding, MHA,
and FFN components.

Fig. 17(b) details the computation process of heterogeneous
MHA. In the traditional Transformer, the query matrices Q,
for the ¢-th head are calculated using the same weight matrices
W across all K + 1 input sequences, that is, Q, = Wz,
where k € {1,..., K+1}. In contrast, we employ two distinct
sets of matrices, VVZ and vi/f, to separately derive the query
results for the pilot sequence and the received signal sequence,
as illustrated at the bottom of Fig. 17(b): g, = Wiz, for
ke {1,...,K}, and i1t = WSZK-H' Subsequently,
we concatenate the sequences {qk,t}szl and qp +1,t into
Q, = [ql,t,...,qK_’t,qKH’t] for further calculations. A
similar procedure is applied to compute the key matrices K
and value matrices V. Finally, after matrix multiplication
and the softmax operation, the output across different heads
is divided into the first K sequences and the (K + 1)-th
sequence. Different linear layers are utilized for multi-head
fusion, resulting in {Ek}f:f, which are then forwarded to
the subsequent module.

Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
reflect the views of National Research Foundation, Singapore.
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