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Distributed Cooperative Positioning in Mobile
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Abstract—Future mobile wireless networks will catalyze sub-
stantial demand for precise distributed cooperative positioning
(DCP), especially when the global navigation satellite systems
are unavailable. However, conventional message passing based
DCP methods may suffer considerable performance degradation
due to message approximation and sparsity/mobility of nodes.
In this paper, we first present a high-accuracy parametric
message approximation method, which achieves closed-form
representations of all types of messages involved and reduces
the computational complexity of message passing procedures.
Using these representations, we propose a model- and data-
driven hybrid inference approach, dubbed graph neural network
enhanced spatio-temporal message passing (GNN-STMP), which
fine-tunes parametric messages passed on factor graph and
obtains more accurate a posteriori distribution of nodes’ positions
by exploiting GNN-generated messages. Furthermore, we develop
a universal framework for the parametric message passing
based DCP problem, by integrating GNN-STMP with the extend
Kalman filter based node’s state prediction and refinement.
This framework significantly reduces the positioning ambigu-
ity caused by insufficient spatial ranging measurements from
neighbor nodes. Simulation results and analyses demonstrate
that, compared with state-of-the-art methods, our proposed
approaches achieve the best and near-best positioning accuracy
when insufficient and sufficient spatial ranging measurements
are available, respectively, while incurring modest computational
complexity.
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I. INTRODUCTION

CCURATE location information plays a crucial role
in many emerging applications of mobile wireless net-
works. For example, one of the major visions for future 6G
mobile networks is to provide ubiquitous integrated communi-
cation and sensing services. Location information is typically
provided by the global navigation satellite systems (GNSS).
However, in harsh environments where GNSS is unavailable
or denied, it remains a great challenge to obtain high-accuracy
location information. In this context, distributed cooperative
positioning (DCP) offers a means of improving the localiza-
tion capability of agents (nodes with unknown positions) by
solving an inference problem based on probabilistic graphical
model [1], [2], [31, [4], [5], [6], [7]. Specifically, agent can ben-
efit from cooperation with other agents (spatial cooperation)
or cooperation with itself between successive time slots (tem-
poral cooperation), upon exploiting inter-agent or intra-agent
measurements, respectively. When provided with the true data
generating process, the standard belief propagation (BP) [8]
is capable of providing the correct posterior probabilities for
the DCP problem in the singly connected graph [9], [10],
[11], [12], [13] by locally marginalizing the joint a posteriori
distribution. More recently, a generalized BP approach, dubbed
sum-product algorithm over a wireless network (SPAWN) [1],
has been extensively explored [2], [3], [6], [7], [14], [15],
[16] due to its computational complexity advantages in dis-
tributed wireless network. Specifically, each agent broadcasts
an approximation of the standard BP messages (real value
functions of the associated variables') to its neighbors in the
SPAWN procedure, in contrast to the standard BP where each
node transmits a different message to each of its neighbors.
In all message passing procedures, the message repre-
sentation employed in transmission and computation on the
probabilistic graphical model is the determining factor for
the computational complexity and positioning performance

I'These associated variables refer to the position states of the agents and the
inter-agent measurements, which are used to compute the messages exchanged
between nodes in the belief propagation process.
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of DCP. The development of efficient and exact message
representation methods in DCP has garnered significant atten-
tion [3], [5], [6], [7], [14], [15], [17], [18]. Conventional
methods for message representation can be mainly divided
into two types: sample-based methods [3], [14], [17], [18] and
parametric methods [5], [6], [7], [14], [15]. The sample-based
methods utilize thousands of weighted samples to represent
each message, and it can achieve highly accurate message
representations. However, these methods impose heavy com-
putational complexity on agents [6], [14], [18]. The parametric
methods represent each message as a set of parameters tailored
to specific problem. In the two-dimensional scenario, the
authors of [1], [14] considered the incoming message (message
received by agent) as a two-dimensional circular distribu-
tion, and used six parameters to represent the messages.
Unfortunately, this representation does not yield a closed-
form representation for the a posteriori distribution of agent’s
position, and it requires the use of a numerical particle-
based optimization method to approximate the a posteriori
distribution. The lack of a closed-form solution increases the
computational burden and makes real-time implementation
more challenging, especially in distributed systems where
efficiency is critical. Closed-form solutions allow for faster
and more efficient message computations, which are essential
for the practical deployment of DCP in large-scale dynamic
networks. The authors of [6], [7], [15] considered the incoming
messages as a one-dimensional Gaussian distribution. How-
ever, this assumption is not accurate and leads to positioning
bias.

In some practical applications of mobile wireless networks,
the agents are sparsely distributed and the number of neighbors
for some agents may be insufficient, which can significantly
degrade the positioning accuracy, resulting in increased posi-
tioning error over time. To achieve more accurate location
estimation in this challenging scenario, several existing studies
[71, [17], [19] advocated to utilize the extended Kalman filter
(EKF) to estimate the velocities or positions of agents as the a
priori information. However, they adopted different methods
to deal with the nonlinearity involved. To elaborate a little
further, the authors of [19] proposed a state-transition and
observability constrained extended Kalman filter (STOC-EKF)
scheme, which approximates the nonlinear system as a linear
model around selected linearization points, thus the positioning
accuracy is degraded. In [17], a DCP scheme that combines
the sum-product algorithm (SPA) and EKF was proposed,
which requires a large number of samples to approximate the
nonlinear messages that pass on the graphical model, imposing
a high computational complexity. Therefore, this scheme is
impractical in either energy-constrained wireless networks or
real-time mobile wireless networks. In our previous work
[7], a low-complexity parametric message passing algorithm
was proposed, which employs mean and variance based mes-
sage representation, in contrast to the particle-based message
approximation used in [17]. However, the algorithm in [7]
assumes that the individual message components follow a one-
dimensional Gaussian distribution, which is inconsistent with
the ranging model, leading to a relatively poor confidence in
the estimates [9], [10], [13].
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In recent years, the potential of data-driven deep learning
techniques for refining the accuracy of messages passing on
graphical model has attracted intensive research interest [13],
[20], [21], [22]. Graph neural network (GNN) [23], [24], [25],
[26], [27], [28] is a connectionist model which is capable
of capturing the dependence of graphs via message passing
between the nodes of graphs. To combine the benefits of
model-based inference and data-driven neural network for
molecular prediction tasks in quantum chemistry, the authors
of [20] proposed a general framework that abstracts the
commonalities between neural networks for graph structure
data, dubbed message passing neural network (MPNN). The
authors of [13] extended GNN to factor graph (FG) and
proposed a message passing approach called neural enhanced
belief propagation (NEBP), which exploits the trained GNN
model to refine the original BP message on the FG and
applies the NEBP approach to error correction decoding
tasks. In addition, the authors of [29] applied NEBP to the
susceptible-infected-recovered epidemic model. However, the
aforementioned approaches cannot be applied to distributed
wireless positioning directly, since they require the global
graph structure as a priori, which is not available for each
agent in distributed wireless networks. Recently, the NEBP
approach was applied to particle-based DCP [21] and particle-
based network navigation [22], respectively. Unfortunately,
both algorithms require thousands of weighted samples to
represent each message and suffer from high computational
complexity caused by massive particles and iterative message
computations. Recent studies have explored the use of GNN
at the signal level to address DCP. The authors of [27] applied
GNNss to improve localization accuracy in large-scale networks
under mixed non-line-of-sight (NLoS)/line-of-sight (LoS) con-
ditions, while the authors of [28] introduced an attentional
GNN to enhance robustness and flexibility. Most recently, the
authors of [30] proposed a data-driven model that integrates
the long short-term memory (LSTM) modules with MPNN.
This model employs a message-passing-like mechanism to
enable nodes to perform DCP with acceptable efficacy in loopy
networks. However, the works [21], [22], [30] ignore both
internal ranging measurements’ based temporal information
and state constraints.’ As a result, the methods proposed
in [21], [22], and [30] are inapplicable to scenarios where
agents have insufficient neighbors, as they fail to provide
accurate localization in such situations, leading to significant
performance degradation in the entire network.

Against the above background, in this paper we propose a
GNN-aided joint model- and data-driven framework with high-
accuracy closed-form message representation for solving the
DCP problem in mobile wireless networks. Our emphasis is
on improving message representation accuracy and exploiting
agents’ state constraints. The contributions of this paper are
summarized as follows.

2These messages correspond to the internal measurements of the distance
an agent moves between time slots. Agents can measure this distance using
pedometers.

3These constraints are applied during state estimation, based on the pre-
diction and update steps of the EKF, to regulate state variables (e.g., position
or velocity) and ensure accurate positioning, especially when agents have
insufficient neighbors.
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e We propose a high-precision parametric message repre-
sentation method, which enables efficient computation
of the SPAWN message passing procedure, upon using
the Taylor polynomial (TP) to approximate the nonlinear
terms of each SPAWN message passed on the associated
FG. This allows us to derive the closed-form representa-
tions for each message and the a posteriori distribution
of agent’s position. The derived TP-SPAWN algorithm
outperforms other parametric DCP algorithms or even
particle-based algorithms, while incurring modest com-
putational complexity, given that the number of neighbor
nodes of the individual agents considered is sufficient.

e Building upon the above high-accuracy message repre-
sentation method, we propose a model- and data-driven
hybrid inference approach, dubbed GNN enhanced
spatio-temporal message passing (GNN-STMP). This
approach gleans the benefits of both the FG (model-
driven) and the GNN (data-driven). To the best of our
knowledge, it is the first time that a parametric message
passing algorithm has been coherently integrated with
GNN in the context of DCP. More fundamentally, our
GNN-STMP is capable of obtaining closed-form expres-
sions of the a posteriori distributions, thus dramatically
reducing the computational complexity of message mul-
tiplication [14] involved in a wide range of applications.
This has not been fulfilled by the existing GNN enhanced
message passing algorithms [13], [21], [22]. Additionally,
in the context of DCP, our GNN-STMP fine-tunes para-
metric messages passed on FG and leverages temporal
information to obtain a more accurate a posteriori distri-
bution of agents’ positions by exploiting GNN-generated
messages, thereby substantially improving the positioning
accuracy of agents when they have sufficient neighboring
nodes.

e We develop a universal framework, named EKF-GNN-
DCEP, for the parametric message passing based DCP, by
integrating GNN-STMP with the EKF based agents’ state
prediction and refinement. This framework significantly
reduces the positioning ambiguity caused by insuffi-
cient spatial ranging measurements from neighbor nodes.
Therefore, it is valuable for improving the position-
ing performance in the challenging sparsely distributed
mobile wireless networks.

The remainder of this paper is organized as follows. In Sec-
tion II, we specify the system model and define the objective
of the cooperative positioning problem. Section III presents
the our proposed parametric message representation method
and highlights the closed-form expressions for each message.
Section IV and Section V develop the GNN enhanced mes-
sage refinement approach and the EKF based a posteriori
distribution refinement approach, respectively. In Section VI,
we present the computational complexity analysis for vari-
ous positioning algorithms considered. Thereafter, simulation
results and discussions are provided in Section VII. In Section
VIII, we draw the conclusions of this paper.
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II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a distributed wireless network composed of N
agents and A anchors. The transmission time of the network
is slotted. Let U denote the set of agents, A! and U’ denote
the set of anchors and the set of particular agents, from
which agent i receives signals at time slot 7, respectively. Let
xl =[x, yf]T and v} be the position and velocity vectors of
agent i at time slot ¢, respectively, where (-)T stands for the
transpose operation. Then s! = [(wf)T, (vﬁ)T}T denotes the
state vector of agent i at time slot 7. At time slot 7, agent i
can receive spatial (external) ranging measurement from node
j(j € ALUTY), and temporal (internal) ranging measurement
based on its hardware. The LoS* noise-contaminated spatial
ranging measurement by agent i from node j at time slot 7 can
be expressed as

t t t
Zji = |z — x;ll2 + ej—i, (1
where || - ||2 represents the Euclidean norm, e;_,; ~
N (0, JJZ _,i) is the Gaussian noise with zero-mean and vari-
ance 0]2- _,;- The temporal ranging measurement of agent i from
time slot ¢ — 1 to time slot ¢ is given by

Zf,am = ”mi - m§_1”2 + €4int, 2)
where e in ~ N (0,07;,). We denote all the noisy ranging
measurements (both external and internal) obtained by agent
i at time slot ¢ as zi In this work, we assume that the
underlying communication protocols, such as medium-access
control (MAC) and physical layer techniques, effectively
manage packet collisions and channel randomness to ensure
reliable data transmission. This assumption is reasonable given
the widespread use and near-Shannon-limit performance of
these protocols in modern wireless communication systems.
As such, our framework focuses primarily on achieving pre-
cise DCP based on the ranging and positional information
exchanged between nodes, assuming the communication layer
provides sufficient reliability. In addition, the probability of
correctly receiving messages from distant agents may decrease
in practical applications.

Based on the aforementioned system model, our goal is to
obtain the a posteriori distribution of the position concerning
agent i (i € U) at any time slot f, given only these noisy
measurements, i.e., to acquire p (z! | 2¢).

III. HIGH-PRECISION PARAMETRIC MESSAGE
REPRESENTATION

In the message passing procedure, the probabilistic position
information of nodes is exchanged and computed through
messages that flow on the probabilistic graphical model.
The message representation employed for transmission and
computation is the determining factor for the computational
complexity and positioning performance of DCP. In this
section, we propose a high-precision parametric message rep-
resentation method which enables efficient computation of the
message passing step.

4The NLoS/LoS mixed environment was considered in our previous work

[S].
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P <sct | wt 1) P ( 2 int | :ct y f) Factors in the gray dashed box are local
to agent i. The blue arrows represent the messages flow.

We first create an FG network by factorizing the a posteriori
distribution of the position vector and mapping the spatial-
domain and temporal-domain operations of nodes onto the FG.
The factorization of p (x! | z!) satisfies [31]

p(x} | 2) o< p(a}) p (2 imlech, 1) p (af]} 1)
X H p(aﬁllw ;)7 3

JEALUU!

and the corresponding FG has the structure illustrated in Fig.
1. For each factor, we create a vertex (drawn as a rectangle),
and for each variable we create an edge (drawn as a line).
When a variable appears in a factor, we connect the edge to
the vertex. When a variable appears in more than two factors,
an equality vertex, i.e., “=", is created. Then we exploit the
iterative SPAWN to infer the a posteriori distribution of x!,
ie., p(x! | 2!), which satisfies

p(x! | z!) = by, (z})

OC fhptit=1_ gt H P fi ity ()

JEULUA?L

where bgmax( t) denotes the belief of x! at iteration £p,ax,
lmax 18 the maximum number of iterations, [y oo is

—x!
tit— 1

the temporal message passed from factor f; to variable
x!, and Flpax. fi—i—at Tepresents the spatial message passed
from factor f;_,; to variable a;f at iteration /... The temporal

Message fi ele-1_, ., satisfies
K2 K3

Bopriea e = / b (2271) f Nt (5)

where the belief of the position concerning agent i at time slot
t — 1 satisfies’

L1 i1 Ty -1 t—1
5(% ;) m?—l(wi

?

t—1 At—1
b ) e ~al™)
(6)
Lt it—1 ~t—11T
where a:t = [:cf L f 1} denotes the mean vector of the
position concerning agent i at time slot ¢ — 1, xt Land j At !

5Standard BP and SPAWN can operate on unnormalized beliefs [1], [13].
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and yt 1

satisfies

are the estimates of xf

covariance matrix of x!~

, respectively, and the
1

2
5 0 i 0
t—1 = N
T 0 0'2*;71
Y

i

= dlag (02;71,05(,71) . (7)

According to (2), which represents the temporal ranging
. te—1 . .
measurement of agent i, the factor f; is given by

oot—1
T AR

,int

t|t—1
fil =

27T0i,int

However, (5) involves integral and it is difficult to obtain the
closed-form expression due to the nonlinear function®

t t—1\ & t t—1
d(@g, @i ') £ [|lof — =7, ©)
We invoke the second-order TP of d(x!, x!™') at points
st—1 _ [at—1 »t—17T _ : :
x; = [% ' Y; ] and :ci = [zi,yi] to approximate it.

Hence the temporal message is approximated by

Mf;\‘*lﬁmz ocexp{a?wi}, (10)
where
T
a; = [ap, i, iz, ia] (11)
T
wi: [_(xDQa_(yf)Q?wanﬂ 3 (12)
with
iy = 1B =z
' || 2|| 7.1erH3 27
Tllo — Zi,imtT]
Q0 =
' 2 ’LlI'l[H’r‘H3 ’
o3 = & (13)
i3 =
[rll2”
o — Ztirz
T ol )
r=[r,r)" = [ -2 o -0

The spatial message received by agent i from anchor k € A!

at time slot ¢ and iteration /, i.e., Lot fi_y;—at» Satisfies

ot iy —at X /fkmbe—l(wi)dw% (14)

where by_1(z}) = 6 (xf, — &},), 6(-) is Dirac delta function.

According to (1), the factor fir_,;, which represents the
likelihood function of z‘}C _,;» satisfies

1 2 — =t —at,)’

fk—>i _ exp 7( k—i H 21 kHQ) (15)

V 271'0'%_”. QUkﬂi
By substituting by—1(z},) and (15) into (14), we obtain®
¢ ALK

Zj,_,; —d(x;, &

e, fr—y;—at X EXP —( ki 5 2( k)) (16)

Olk—i

This nonlinearity and the resulting intractability of the integral, are the
fundamental reasons why approximation methods needs to be adopted.

7We note that using the second-order TP strikes a good balance between
the computational complexity (see Table I and Table II) and the performance
(see Fig. 5, etc.). Hence, without loss of generality, only the closed-form
expression using the second-order TP is presented here.

8The positions of anchors are known constants during the iterations.
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By substituting the second-order TP of d(x!,Z;) at the first

L . X T . N
point &}, , = [&!, ;,9¢,_,] in (16), where 2!, ; and
9t,_, are the estimates of z! and y! at iteration ¢ — 1,
respectively, the parametric representation of fu g, |, qt is

given by

e, fr. i —at X CXP {/65,21/’1} 5 (17
where
T
Br.e = [Br1.e: Brz,es Brses Brae] (18)
with
o0, = el ~ i3
I 9
207 ,,llell3
_ lells — zx—ie
Bra, = 202 el
Uk%iHeQZ 24t o 34t
3 :Zk—n@l||e||2—Zk—>i€2$k+zk—>i€1€2yk+H€||233k
k)?),l , 0_27%1“6”12), y 3 y b
3 _ Zk—iczlell3 —zr—ieTly, t 2h—ic1e2®y, + [ ell37;
o o7 lel? ’
e=[e1,e] = [535,54 - 9:”2,33;1%—1 - ZQH
(19)

At time slot ¢ and iteration ¢, the spatial message received
by agent i from agent j € UL, i.e., o, —ats> 18 given by

t t o)) 2
(Z' i_d(‘”ww‘))
I’Leyfjaig)ws oc/exp —= 202 ! bé—l(mz’)dw;‘a
j—)l
(20)
where
t Loy Lt —1 it
bg,l(mj) o exp _i(mj — I —1) ZEE (:cj z; —1) (>
21
At At ot T
i1 =[50 1950] 22)
and
Ewg = dlag (052)‘@_1, 0'5}@_1) 5 (23)

: : 2 2 : t t
in which Ot -1 and Tyt o1 are the variances of z; and y;

at iteration [ — 1, respectively, while 1233-7471 is the estimate of
:n§ at iteration ¢ — 1. Again, we utilize the second-order TP of
. . . . T . . T
d(mf, azﬁ) at points [5”;@—1’ yf7z_1] and [xié_h y?e_l] to
approximate it. Upon substituting (21) and this second-order
TP into (20), the spatial message (¢, ., St is approximated
by
T

fa g, —at X XD {7V 0}, (24)
where
:I T

Y0 = [V Vizes Vizes Viae] (25)
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with
= lell3 — zj—ic3
T 007 el
in = lell3 — zj—ict
= 203291‘”0”3 ’
yigg = —IA 26)
G2 el
Yial = i
k) b
! 032‘—>i||c||2
C = [Cl, CQ]
R . . N T
= [555,271 - x;,zq,yf,z& - y;—,z&] .

Here :E’; ,—; and g)f ., are the estimates of z! and y! at
iteration £ — 1, respectively. Agent i can determine if ¢—1 and
gjf ¢—1 by taking the mean value involved in its belief function
at iteration ¢ — 1 [1], [14], [16].

When iteration ¢,,,, is reached, upon substituting (10), (17),
and (24) into (4), the a posteriori distribution of the position
of agent i at time slot 7 can be expressed as

CHER

1 _
xexp 3 (@l ~E{ellath T, (el-Blatli} @

where
t t ZkeAi ﬁk?’a[max + Z]€U§ vjsyemax + Q3
E{wi|z;} = )
2 <Zk€1&x§ Br buma T 2 jert Vit e T an)
2okt Bratma T 20 jcut Vit buax T id
9
2 (ZkeA; Br2. b + 225t V52 bmax T Oéiz)
(28)
and
-1
Stz = diag| | D Bt + D Vit T i1 |
kEA? Jeu;
—1
D Bt T Y Vi + Q2 , (29)

kel jeut

Algorithm 1 TP-SPAWN
Require: p(x! !
Ensure: p(z!|z!).
for agent : € U do
compute the temporal message according to (10).
for iteration £ = 1 to .« do
broadcast by—1 ().
receive by (xf).
compute the corresponding spatial messages accord-
ing to (17) and (24).
update its belief by(x!).
end for
compute the a posteriori distribution of its position
according to (27).
end for

2570, 20
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m/“}i

(@ Q)

Fig. 2. (a) Visual representation of the local FG of agent i at time slot 7. (b)
The equivalent representation of the FG in GNN (referred to as GNN graph
in what follows). The temporal message based a priori distribution of agent
i is treated as node attribute vector of agent i in the GNN graph.

The resulting TP-SPAWN is presented in Algorithm 1. At
each iteration /, distributed agent i only needs to broadcast
its own position i, ,,9;, , and the position variances
o, £—1 UQ’ £—1

Note that SPAWN does not guarantee to obtain the cor-
rect a posteriori distribution, due to the fact that it applies
approximate beliefs in order to reduce computational com-
plexity for distributed implementation. In addition, due to
the consideration of the covariance matrix of the cooperative
agents’ position, our TP-SPAWN may degrade the confidence
level of the spatio-temporal messages [14], and may result
in accumulation of positioning errors. In the next section, we
consider how to improve the parametric SPAWN based spatial
messages.

IV. GNN BASED MESSAGE REFINEMENT

Based on the MPNN framework of [20], this section
presents a model- and data-driven hybrid inference approach,
called GNN-STMP, to fine-tune the parametric message repre-
sentations obtained in Section III, and obtains more accurate a
posteriori distribution of agents’ positions by exploiting GNN-
generated messages. Fig. 2 illustrates the comparison of a
typical local FG of agent i and the corresponding graph in
GNN.

A. MPNN Procedure

MPNN:Ss are a class of neural networks designed for process-
ing graph-structured data. They operate by passing messages
between nodes of a graph and updating the node states based
on these messages, allowing for the incorporation of the
structural information of the graph into the learning process.
The MPNN procedure consists of a message passing phase
and a readout phase [20].

In the message passing phase, agent i first aggregates the
GNN-generated messages passed from its neighbor nodes on
the corresponding graph of the locally FG by

§ mj%iv

JEALUUY

(30)
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FG-based GNN
a;, a4 m;,;
a;_,;
. —— —
— TP-SPAWN Refinement [—
by (xf) @j ®;

b XiT)

Fig. 3. The graphical illustration of GNN-STMP.

where the GNN-generated messages from j to i satisfy

m;_; = 01 (hj, h;, a'j—n') . 3D
Here o1 (-) is the message function, h; is the node embedding
vector that contains the abstract features, and a;_,; represents
the edge attribute vector from j to i. Then agent i updates its
node embedding vector by

h; = 0y (hi,m;), (32)

where o2(+) is the update function of agent i.

After several rounds of message passing and state updates,
a readout function is applied to aggregate node states into
a graph-level representation, which can be used for graph
classification, node classification, or other tasks [20], [23],

[24], [25].

B. GNN-STMP

The overall GNN-STMP structure, as shown in Fig. 3,
is explained below. Using the TP-SPAWN module, we first
obtain the closed-form representations of individual messages
passed on the FG. Then, these high-accuracy message rep-
resentations are treated as the inputs of the FG-based GNN
module. Subsequently, the refinement module leverages the
GNN-generated messages my,_,; ¢ and m;_,; ¢, to enhance the
vector-form parametric message representations 3y, , and v, 4,
respectively, which are passed on the FG. As a result, the a
posteriori probability of agent i’s position is fine-tuned and
its closed-form expression is obtained. The above procedure
is repeated recursively for £,,,x iterations.

1 ) TP-SPAWN Module: With the inputs E{x!~*|z!~"} and

2% i agent i first computes the parametric representation of its
temporal message by using (13) before activating the iteration
process. Building on the beliefs received from neighbors at
iteration ¢ — 1, i.e., by (x}) and by, (x},), as well as the
spatial ranging measurements, i.e., z5 ,; and zj_,,, agent i
computes and outputs the parametric representations of each
spatial message at iteration £ by using (19) and (26).

2) FG Based GNN Module: Corresponding to its local FG,
agent I creates a distinct node embedding vector for each node
on the GNN graph at iteration ¢ by

hit=g1(a;.), (33)
where a;, = [ T, l,yM 1’02W 1702,[ J denotes the
node attribute vector. Meanwhile, the edge embedding vector
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for each edge on the GNN graph, which corresponds to agent
i’s local FG, satisfies

(34
(35)

hjsie=g2(aj5iz),
hiie = g2 (@r—ie),

where a;_,;¢ and a;_,;, are the edge attribute vectors of
dimension 4 and are set as a;_,; ¢ = Ve and aj_; ¢ = ,Bkyg,
respectively. The GNN-generated messages sent from node :cz
and node z, to node x! are given by

mj_i0=9g3(hjsieohjg), (36)

and

Mi—ie = g3 (hksieohie), 37

respectively, where o denotes the element-wise multiplication.
All of the mapping functions ¢ (-), g2(-) and g5(-) are train-
able GNNS.

Algorithm 2 GNN-STMP
Require: p(z!~'|z!71), 2L
Ensure: p(x}|z!).
for agent ©+ € U do
obtain the representation of its temporal message
according to (10).
for iteration ¢ = 1 to £, do
broadcast by (x!).
receive by (xf).
obtain the representations of its spatial messages
according to (17) and (24).
compute the GNN-generated messages upon using
(36) and (37).
compute the refined spatial message upon using (40)
and (41).
update its belief by (x?).
end for
compute the a posteriori distribution of its position
upon using (42).
end for

3) Refinement Module: Agent i exploits {m;_,;,} and
{my_i ¢} to refine the spatial SPAWN message representa-
tions. The refined parametric spatial message representations
are given by

G0 = [Dj1,0, Bi2e: Djse, Dja

]T

=094 (M i 0) + g5 (Mjie) (38)
T
Grp = [Ok1,0, Pr2,0, P30, Preae]
= Br.09s (Mi—ip) + g5 (Myie), (39

where g4(-) and g5(-) are GNNs with trainable parameters.
Specifically, g4(-) outputs a positive scalar and g5(-) outputs
a vector of dimension 4. The corresponding refined spatial
messages satisfy

T
Cotyimy < exp {S1 201
Ct,fmss—rat OC XD {‘7’5,@%} :

(40)

(41)
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By substituting (10), (40) and (41) into (4), the a posteriori
distribution of agent i’s position at time slot ¢ satisfies

CHED)

cexp{- 5 @t~ Ballz)) T2 (ol -Batlzt))} @2
where
B2} [ Dokl Ph3,bmax T 2o jcut P, bmax T i3

2 (Zke&xg D1 bna T+ Zjem’; 1l T ail)

Dokt Pha b T 2o jeut Pid,bmas + id
2 <Eke&x§ P2 bmax T 2o jct P2 bumae T 04i2)

?

)

(43)

and
-1

D Okl T D Bt F @i |
-1

kcAl JEU!
) . (44)

At any time slot ¢, each agent can determine the minimum
mean squared error (MMSE) estimate of its own position by
taking the mean value involved in p(z!|z!). Our GNN-STMP
is presented in Algorithm 2.

Emﬁl% = diag (

Z Ph2, b T Z B2, 0 T 2

keAl JEU!

C. Loss Function

The training loss is computed from the estimated positions
&} and the ground truth &! according to:

Loss(©) = £ (2{,&!) + R, (45)

where © represents the all the trainable parameters of the
GNN. We apply the mean squared error loss for £(-), and
the regularization term R is chosen as

1
Z Hg4 (mzaz) ||17

R=n—— (46)
jEAtUU!

ATUT]
which encourages the refined messages to be closer to the
standard BP messages [13], helps avoid overfitting, and further
enhances the model’s generalization ability. In (46), 7 is
the regularization parameter, |Af UU!| denotes the cardinal
number of set A! UTU!, and || - ||; denotes the L;-norm.

V. THE EKF-GNN-DCP FRAMEWORK

The positioning capability of mobile wireless networks can
be significantly degraded by agents lacking sufficient spatial
ranging measurements, a phenomenon that is particularly acute
in networks with sparsely distributed agents. This section
presents a universal framework, dubbed EKF-GNN-DCP, to
address this issue. The proposed EKF-GNN-DCP integrates
GNN-STMP with the EKF based agents’ state prediction and
refinement, which ensures that agents can obtain reliable posi-
tional estimates in the challenging sparsely distributed mobile
wireless networks, through both enhancing the accuracy of
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4
. GNN-STMP ]
bo(x)

By (XET)
E{x]|z{}
ng‘zt

Stlt-1
X

Htlt—1
R

At-1]t-1
S

Prediction Refinement

Ht-1]t-1 t-1lt—1

= ptlt
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Fig. 4. The schematic diagram of EKF-GNN-DCP, where §§:1|t71 denotes
ot—1t— A t—1[t—1
the rest parameters in st et other than mt HE=1 and P, ! denotes

—1|t— t— 1|t 1

the rest parameters in P other than R

message representation and leveraging the state constraints
of agents. Our EKF-GNN-DCP consists of three stages: 1)
prediction, 2) GNN-STMP, and 3) refinement. The schematic
diagram of EKF-GNN-DCP is illustrated in Fig. 4.

A. Prediction

In this step, agent i first provides a coarse prediction of its
state at time slot 7. Let s! be the state of agent i at time slot
t. We consider a common state transition model as

st =Fsi™! +w!, (47)
where F' denotes the state transition matrix given by
| Iy ATI,
F_|:02 I ], (48)

in which Is and O, represent the 2 x 2 identity matrix and
zero matrix, respectively, and AT is the duration of a single
time slot, while w! represents the state transition noise that
is modeled by the 4-dimensional Gaussian vector with zero
mean and covariance matrix Q.

Hence, given the estimated mean and covariance of the state

. At—1[t—1 ~t—1]t—1 .
or again i at time t — 1, §; and P, , the predicted
mean and the covariance of the state for agent i are given by

é§|t—1 _ FA;—nt—l (49)

R 3 R L (50)

At\t 1 £tlt—1 . .
respectively. § and P, constitute the mean and covari-

ance of the a prlorl distribution for the next step.

B. GNN-STMP

In this step, agent i utilizes GNN-STMP to fuse the nonlin-
ear soft information.
t|t—1

First, based on the predicted mean and covariance, §;

~ t|t—
and P,

at time slot ¢ is given by x! ~ N

~tlt—1 Atlt—1 ~t|t—17T "

:cil = [z! yil ] denotes the position components’
tlt—

in 8, , an

; d R, = diag ((Atlt )? ,(&f];fl)2>, with

(Erf_li_l) and (6; ﬂt "2 being the (1,1)th and (2,2)th ele-
’ tt—

1 . . -
, the a priori distribution of agent i’s position
. tlt—1

Lt|t—1
:vl R,

K2 ’ (2

), where

)
At]t—1

ments of Pi , respectlvely.

9The velocity components are not involved in the message passing proce-
dure.
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Then we run the iterative GNN-STMP procedure based on
the FG of p (x! | 2!), obtaining parametric representations of
each kind of FG messages and fine-tuning them by exploiting
the GNN-generated messages. Next, we obtain the enhanced
mean vector E{x}|z}} and covariance matrix ..

C. Refinement

In this step, agent i uses the update step of EKF to refine
its a posteriori distribution. Consider the observation model

for agent i given by
E{z!|z!} = Hs! + v, 5D

where H = [I 5 02] is the observation matrix, and IJ’Z§ is a
Gaussian observation noise with zero mean. The measurement
residual Am/! and its covariance matrix C? are given by

Am! = E{z!|z!} - Hé;‘t_17
tlt—1
Ci=HP, H"+3,.,,

(52)
(53)

respectively. Thus the near-optimal Kalman gain is given by

. tlt—1

ngp.

(2

H" (C)™", (54)
and the marginal state distribution is refined by weighting its

mean and covariance with the measurement residual:

gt = ! 4 K'Am!, (55)
S t|t o tlt—1 T
P, =P, -K.C! (K} (56)

Algorithm 3 EKF-GNN-DCP

at—1lt—1 pt—1lt=1
Require: §; | , P, , 2L,

7
At|t St
Ensure: 5", P, .

for agent i = 1 to N do
compute the predict distribution according to (49) and
(50).
obtain the representation of its temporal message
according to (10).
for iteration £ = 1 to .« do
broadcast by (x!).
receive by_1(z!) and b, (x},), and obtain the rep-
resentation of the corresponding spatial messages
according to (17) and (24).
compute the GNN-generated messages upon using
(36) and (37).
compute the refined spatial messages upon using
(40) and (41).
update its belief b, ().
end for
compute the a posteriori distribution upon using (42).
refine the a posteriori state upon using (55) and (56).
end for

In conclusion, the resulting EKF-GNN-DCP algorithm is
summarized in Algorithm 3. Furthermore, the iterative nature
of the BP ensures that our framework is robust to occasional
message loss or communication errors. Since BP relies on
iterative updates, if a message is lost during one iteration,
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TABLE I
ANALYSIS OF COMPUTATIONAL COMPLEXITY

Genre Computational Complexity Representative Algorithms
Parametric SPAWN O(Neel) SPA-TE [15], EKF-STDF [7], TP-SPAWN, GNN-STMP, EKF-GNN-DCP
Particle-based SPAWN O(NZNy) SPA-EKF [17], NEBP [21], STOC-EKF [19], GSPAWN [14]

Particle-based BP O(NZNZ)

particle-based standard BP [32], [33]

TABLE I

COMPARISON OF BASIC ARITHMETIC OPERATIONS ACROSS DIFFERENT TAYLOR APPROXIMATION STRATEGIES WHEN APPROXIMATING THE NONLIN-
EAR TERM D ONCE, FOR A SINGLE MESSAGE, A SINGLE NEIGHBOR AND A SINGLE ITERATION

Strategy Addition | Subtraction | Multiplication | Division | Square Root
First-order 1 2 4 2 1
Second-order 5 8 14 6 1
Third-order 12 19 26 10 1

subsequent iterations will incorporate new information from
neighboring nodes to mitigate this. This feature helps maintain
the overall accuracy of DCP despite communication uncertain-
ties.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS

We first analyze the computational complexity of the main
classes of message passing based DCP algorithms available so
far, i.e., the parametric SPAWN, the particle-based SPAWN,
and the particle-based BP, in Table I. We use N; and Ny
to denote the number of particles and neighbors, respectively.
Given that this paper focuses on distributed schemes, only the
computational complexity of a single agent in a single iteration
is considered. The computational complexity of the afore-
mentioned message passing schemes primarily stems from
message representation and message multiplication [14]. For
parametric SPAWN, message representation requires only a
limited set of parameters, and message multiplication typically
yields closed-form expressions of beliefs. In contrast, the
particle-based SPAWN methods have to represent messages
with a large number of particles and their associated weights,
entailing extensive computations during both message repre-
sentation and message multiplication. The particle-based BP
methods need to represent and compute different messages for
individual neighbors, which results in higher computational
complexity than the particle-based SPAWN methods. Notably,
our proposed TP-SPAWN, which utilizes vectors for mes-
sage representation, allows its corresponding GNN enhanced
scheme, i.e., GNN-STMP, to maintain high computational
efficiency in message multiplication and obtain closed-form
expression for the a posteriori distribution of agents’ positions.
This has not been fulfilled by the existing GNN enhanced
message passing algorithms [13], [21], [22]. Furthermore, if
the existing representative parametric methods [6], [7], [14],
[15] could be integrated with GNN, they would still rely
on particle-based approaches to compute the a posteriori
distributions in message multiplication, which results in the
lack of closed-form expressions.

Next, we consider the number of basic arithmetic operations
required when using different orders of the TP strategy. Given
that this study focuses on a distributed scheme, we only
account for the process of approximating the nonlinear term

d during a single iteration of information processing by an
individual agent. Table II lists the number of basic arith-
metic operations required for each TP strategy. We observe
that the third-order TP significantly increases the number of
subtractions, multiplications, and divisions compared with the
first- and second-order TPs. It is important to note that in
DCP tasks, each agent must use a TP to update its position
estimate for every message at each time step and iteration.
Specifically, the third-order TP requires a total of 68 basic
operations per iteration, whereas the second-order TP requires
only 34 operations, effectively halving the computational load.

VII. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide numerical results to evaluate
our proposed DCP algorithms in mobile wireless networks,
by using several representative state-of-the-art DCP schemes
as benchmarks. In general, the experiments conducted involve
two different mobile network configurations. In the first set-
ting, it is rare for any particular agent to lack a sufficient
number of neighbors in a long period, thus the occurrence
of loopy network topologies is scarce. Conversely, in the
sparse node distribution scenario, agents may often experience
a shortage of neighbor nodes during their movements. We also
investigate the impact of agents’ mobility on the positioning
performance, and analyzed.

To verify the effectiveness of our proposed high-precision
message representation method, GNN-based message refine-
ment, and EKF-GNN-DCP framework, we selected several
representative baseline algorithms. These algorithms encom-
pass both parametric and particle-based DCP methods, which
are applicable to different network conditions. Firstly, Particle-
based SPAWN [1] and Particle-based BP [8] are classical
particle-based DCP methods that perform well in scenarios
with sufficient neighbors. Among them, Particle-based BP
offers higher positioning accuracy compared to Particle-based
SPAWN, albeit at the cost of higher computational complexity
and communication overhead. Both methods perform excel-
lently when agents have sufficient neighbors, particularly with
the use of thousands of particles. However, neither method
provides strategies for addressing scenarios with insufficient
neighbors. Secondly, GSPAWN [32] and SPA-TE [15] repre-
sent advancements in parametric methods. These methods also
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TABLE III
DETAILS OF THE GNN STRUCTURES

91() 92() 93(") 94() 95()

Input 4x1 Input 4x1 Input 16 x 1 Input 16 x 1 Input 16 x 1
Linear+ReLU | 64 x 1 | Linear+ReLU | 64 x 1 | Linear+ReLU | 32 x 1 | Linear+ReLU | 16 x 1 | Linear+ReLU | 16 x 1
Linear+ReLU | 32 x 1 | Linear+ReLU | 32 x 1 | Linear+ReLU | 32 x 1 Linear 1x1 Linear 4x1
Linear+ReLU | 16 x 1 | Linear+ReLU | 16 x 1 | Linear+ReLU | 16 x 1

perform well when agents have sufficient neighbors, with the 0-95 Particle-based SPAWN (4000)
: H : Particle-based SPAWN (5000)
b'eneﬁt of re.latlvely low computational comple;x1ty. However, 0.9 Particlo. based BP (5000)
like the particle-based methods, they lack solutions for scenar- 0.85 —A—SPA-TE
. o . . . - GSPAWN (5000
ios with insufficient neighbors. Thirdly, LSTM-MPNN [30] s — The pmpos(ed T&,SPAWN (2nd-order TP)
ing- - e - — o The proposed TP-SPAWN (3rd-order TP)
and NEBP [21] are deep learning-based DCP methods pro £ o LeTioRN
posed in recent years. Notably, NEBP enhances the accuracy N
of message passing using GNN and is currently the best- 2
performing algorithm in sufficient-neighbor scenarios, except @

for our proposed methods. However, these methods also do not
offer solutions for scenarios with insufficient neighbors. Lastly,
to validate the effectiveness of our EKF-GNN-DCP framework
in scenarios where agents have insufficient neighbors, we
selected STOC-EKF [19], SPA-EKF [17], and EKF-STDF
[7] as baselines. These methods integrate EKF techniques to
effectively predict and refine agent states. In particular, SPA-
EKF and EKF-STDF represent particle-based and parametric
approaches, respectively.

A. Mobile Networks Where Agents Have Sufficient Neighbors

1) Training Dataset and Training Settings: We consider a
wireless network composed of 30 agents and 5 static anchors
in a [0, 300] mx[0, 300] m area. Agents are uniformly scattered
across a [30, 270l mx[30, 270] m plane. The ranging radius is
set to 90 m. The variance of the ranging noise is 0.5 m?. The
maximum number of iterations ¢, is set to 20. Each time
slot is assumed to be one second. At time slot #, each agent
moves a distance d! ~N(2,1) in a direction 6!~ (0, 27),'°
where U(0, 27) denotes the uniform distribution between 0
and 27. We collect 600 realizations of the agents’ trajectories
for 20 time slots as the training data. All the GNNs have
input layer, one or two hidden layers and output layer, while
the activation functions of g1(-), g2(-), g3(*), g4(-) and g5()
are mainly rectified linear units (ReL.Us). The regularization
parameter 7 is set to 0.5. Adam optimizer [34] is employed
to train GNN with batch size of 1. The learning rate declines
from 1072 to 10~° with 10~! decay rate for every 10 epochs.
The details of GNN structures are shown in Table III

2) Experimental Results and Discussions: To verify the
generalization of our models, we conduct evaluation exper-
iments with a different scale wireless network. Specifically,
the network covers an area of [0, 900] mx [0, 900] m with 13
static anchors, while 50 agents are uniformly scattered across
an area of [100, 800] mx [100, 800] m. The ranging radius to
perform external measurements is set to 180 m. The variance
of the ranging noise is 3 m?. At time slot ¢, each agent moves a
distance d! ~ N (v, 1) in a direction 8% ~(0, 27). To maintain
a constant number of agents in the network, we replace a new

10Typically agents do not know in which direction they move, but they do
know the distance they travel by internal ranging measurements.

3 8 13
v (m)

Fig. 5. The probability that the average positioning error (i.e., RMSE) of
agents is less than 3m under different values of v, namely the distance moved
by agents per time slot.

agent whenever an existing agent has left the considered area.
The positioning performance is characterized by the root mean
squared error (RMSE) and the average is obtained by Monte-
Carlo simulations.

In the first experiment, we aim to validate the message rep-
resentation accuracy of the proposed TP-SPAWN algorithm.
Since TP-SPAWN is a foundational algorithm designed for
scenarios where agents have sufficient neighbors and does
not involve any accuracy refinement operations, we have
selected the most representative baseline algorithms, all of
which also do not include any accuracy refinement mech-
anisms. Specifically, we compare the second-order (labelled
as “The proposed TP-SPAWN (2nd-order TP)”) and third-
order TP-SPAWN (labelled as “The proposed TP-SPAWN
(3rd-order TP)”) against particle-based SPAWN [1], particle-
based standard BP [32], [33], SPA-TE [15], GSPAWN [14],
and LSTM-MPNN [30], under different values of the distance
moved by agents per time slot (denoted by parameter v,
ranging from 3m to 13m), with £« set to 20. Fig. 5 presents
the RMSE performance comparison between the proposed TP-
SPAWN and these baseline algorithms. We provide temporal
ranging measurement to all the algorithms. The curves labeled
“particle-based SPAWN (5000)”, “particle-based BP (5000)”
and “GSPAWN (5000)” denote the performance of particle-
based SPAWN, particle-based BP and GSPAWN with 5000
particles, respectively. We have the following observations.
Firstly, standard BP with 5000 particles outperforms the
others. Unlike standard BP where each node sends an exact
message to every neighbor, in SPAWN, each agent broadcasts
an approximate standard BP message to its neighbors to reduce
computational complexity. Therefore, SPAWN offers lower
computational complexity than BP, at the cost of slightly
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Fig. 6. CDFs of the positioning error (i.e., RMSE) for our TP-SPAWN, GNN-
STMP and EKF-GNN-DCP, as well as for particle-based SPAWN, particle-
based BP, and NEBP, given the number of agents N = 60.

inferior performance. Secondly, the positioning performance
of both second-order and third-order TP-SPAWN is superior
to those of SPAWN, SPA-TE, and GSPAWN, while slightly
inferior to BP with 5000 particles. This observation indicates
that our TP-SPAWN is a competitive algorithm in DCP. Con-
sidering that the computational complexity of parameter-based
approaches is orders of magnitude lower than that of particle-
based approaches, our TP-SPAWN has a significant advantage
in practical DCP applications by offering dramatically lower
computational complexity than BP with 5000 particles, only
at the cost of slight performance loss. Thirdly, while the
positioning performance of the third-order TP is better than
that of the second-order TP, the improvement is marginal.
Considering the distributed nature of the system, where each
agent typically has limited computational resources, and the
real-time requirements of the positioning task, the additional
computational burden introduced by the third-order TP is sig-
nificant. Therefore, using the second-order TP strikes a good
balance between computational efficiency and approximation
accuracy, ensuring timely and effective updates during the
positioning process.

We next evaluate the -effectiveness of the proposed
GNN-STMP and EKF-GNN-DCP to improve on our TP-
SPAWN when agents have sufficient neighbors. Given that
Particle-based SPAWN and Particle-based BP are the two best-
performing methods without accuracy refinement, and NEBP
is the only advanced method with GNN-based refinement,
we selected these three algorithms as the baseline methods.
In this experiment, the number of agents is set to N = 60,
fmax =20 and v=23. Fig. 6 shows the cumulative distribution
functions (CDFs) of the position error, which is defined as the
average RMSE between the estimated position and the true
position, for our TP-SPAWN, GNN-STMP, and EKF-GNN-
DCP,!' as well as particle-based SPAWN, particle-based BP
and NEBP [21]. The curve labeled “NEBP (5000)” denotes
the performance of NEBP with 5000 particles. It can be seen
that our TP-SPAWN is slightly inferior to BP and SPAWN

Unless otherwise specified, the curves labeled “The proposed TP-
SPAWN?”, “The proposed GNN-STMP”, and “The proposed EKF-GNN-DCP”
in all the figures of this paper represent results obtained using the second-order
TP approximations.
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0.25 Particle-based SPAWN (5000)
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Fig. 7. The p value of our TP-SPAWN and GNN-STMP, as well as that of
the particle-based SPAWN and NEBP, under different numbers of agents.

with 5000 particles, which again confirms the results of Fig. 5.
Observe that NEBP with 5000 particles and our GNN-STMP
outperform the others. Specifically, for NEBP and our GNN-
STMP, 80% of agents achieve the position error smaller than
3 m, while this is increased to more than 3.5 m for the other
three methods. Our GNN-STMP has an added advantage of
imposing significantly lower computational complexity than
NEBP. The results of Fig. 6 also clearly verify the effectiveness
of the proposed GNN based message refinement to improve on
our proposed parametric SPAWN. In addition, we observe that
when there are sufficient neighboring nodes, the improvement
in positioning accuracy from EKF-based state constraints is
minimal, while the improvement from GNN-based message
refinement is more significant. The result is consistent with
intuition, as the EKF-based state prediction and refinement
are designed to help the agent with positioning when there
are insufficient neighboring nodes.

Also, the overall accuracy-consistency-confidence of various
algorithms considered is investigated by using the normalized
estimation error squared (NEES) metric [21]:

NEES = (] — E{x{|2}) T2, (= — B{xi|2{}).

(57)

For an effective estimator, the value of average NEES
(ANEES) should approach the dimension of the estimate
vector, i.e., the degree of freedom. For the sake of convenience,
we define

p = | ANEES — 2, (58)

where 2 is the degree of freedom of «!. It is imperative to note
that for a given estimator a smaller p value signifies enhanced
consistency'? and proper confidence level that is neither overly
confident nor overly conservative.'> However, we note that

12 An estimator is considered to be consistent if its estimation error matches
its own reported uncertainty (i.e., error covariance). The ideal ANEES value
should be close to its theoretical value or degrees of freedom, which indicates
that the estimated uncertainty matches the actual observed error, i.e., the
estimator is not only accurate, but also reliable in its own assessment of
accuracy.

I31f the ANEES value is much lower than the theoretical value, it may
indicate that the estimator is overly conservative, i.e., its reported uncertainty
is larger than the actual observed error; if the ANEES value is much higher
than the theoretical value, it may indicate that the estimator is overly confident,
i.e., its reported uncertainty is smaller than the actual observed error.
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Fig. 8. Convergence of RMSE for the proposed GNN-STMP and TP-SPAWN
against SPAWN and NEBP in terms of iterations.

when ANEES approaches the degree of freedom, i.e., p
approaches zero, it does not indicate a high accuracy, because
smaller error is usually indicated by lower values of ANEES.
Fig. 7 illustrates the value of p for our TP-SPAWN and GNN-
STMP as well as the particle-based SPAWN and NEBP, under
different numbers of agents (20 ~ 50), £, =20 and v =3.
We have the following observations. Firstly, the consistency
and confidence of all the above algorithms improve with the
increase of the number of agents. This observation aligns
with our expectations, since agents lacking a sufficient number
of neighbors in the mobile network can adversely affect the
consistency and confidence of the position estimate. Secondly,
NEBP and our GNN-STMP outperform the particle-based
SPAWN and our TP-SPAWN. This observation demonstrates
that our GNN-STMP achieves a commendable consistency
and confidence level between the estimation errors and the
uncertainty of the estimates. The aforementioned advantages
can be primarily attributed to the robust learning capabilities
of the GNN, the internal temporal information and the high
accuracy second-order TP based approximation.
Subsequently, we evaluate the convergence performance of
our proposed GNN-STMP, where the convergence is char-
acterized by the RMSE values as a function of the number
of iterations. Fig. 8 shows the RMSE convergence for the
proposed GNN-STMP and TP-SPAWN against SPAWN and
NEBP in terms of iterations. The curves “SPAWN (4000)”
and “NEBP (4000)” denote SPAWN and NEBP with 4000
sample points, respectively. We observe that the algorithms
utilizing GNN for message correction on factor graphs, i.e., the
proposed GNN-STMP and NEBP, demonstrate a rapid decline
in RMSE within the first 6 iterations, after which the error sta-
bilizes. In contrast, the degraded versions of these algorithms,
TP-SPAWN and SPAWN, converge after 10 iterations and
show minimal performance improvement beyond 20 iterations.
This indicates that incorporating GNN can accelerate the
convergence of belief propagation-based algorithms, albeit at
the cost of increased computational complexity per iteration.
It is worth noting that the additional complexity introduced
by GNN correction in NEBP is significantly higher than in
GNN-STMP. This is because, in NEBP, the weight of each
sampling point needs to be relearned, whereas in GNN-STMP,
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Fig. 9. RMSE performance of an agent with insufficient number of neighbors,
when using various DCP schemes.

only a few parameter values require learning. Furthermore,
the performance of GNN-STMP surpasses that of the NEBP
algorithm with 4000 particles, further demonstrating the high
approximation accuracy of the second-order TP and the effec-
tiveness of using GNN for parametric message correction.

B. Mobile Networks With Sparsely Distributed Agents

In the scenario of mobile networks with sparsely distributed
agents, we first evaluate the effectiveness of our proposed
EKF-GNN-DCP framework and the impact of temporal infor-
mation. We use SPA-EKF with 5000 particles and EKF-STDF
as benchmarks in this experiment due to their effectiveness in
scenarios with insufficient neighbors, as SPA-EKF and EKF-
STDF are the representative particle-based and parametric
algorithms, respectively. The number of agents is set to
N = 30, fpax = 20, and each agent moves a distance
dt ~N(3,1) in a direction 0! ~U(0, 27). More specifically,
we consider a single agent that has insufficient spatial ranging
measurements, i.e., insufficient number of neighbors, to gain
insight. Fig. 9 illustrates the RMSE performance of such an
agent achieved by our TP-SPAWN, GNN-STMP and EKF-
GNN-DCP as well as EKF-STDF [7] and SPA-EKF with
5000 particles [17]. The curve labeled “TP-SPAWN (nti)”
denotes the performance of our TP-SPAWN without temporal
information, while temporal information are provided for the
other cases. The black line in Fig. 9 indicates the number of
neighbors that the agent has during the observation time slots.
More specifically, the agent has 3 neighbors at time slot 1,
2 neighbors at time slot 2, 1 neighbor at time slots 3 and 4,
and 3 neighbors at the subsequent time slots. Observe that
the performance of our TP-SPAWN, TP-SPAWN (nti) and
GNN-STMP degrade considerably when the agent does not
have sufficient spatial ranging measurements. In particular, the
performance gap between TP-SPAWN (nti) and TP-SPAWN
is quite large when the number of neighbors is 2 or 1.
This indicates that the internal ranging measurement based
temporal information can be utilized as the useful supplement
of external ranging measurement based spatial information for
agents to improve performance. In addition, the performance
of our GNN-STMP is considerably superior to that of our TP-

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 15,2025 at 12:19:21 UTC from IEEE Xplore. Restrictions apply.



CAO et al.: DISTRIBUTED COOPERATIVE POSITIONING IN MOBILE WIRELESS NETWORKS

—F The proposed EKF-GNN-DCP (3rd-order TP)
—B&—The proposed EKF-GNN-DCP (2nd-order TP)
14+ SPA-EKF (5000)

EKF-STDF

S — o The proposed GNN-STMP

12 < —A—NEBP (5000)

N
_ N
€10 N
- N
w N
g RN
Z s O
\\
6
4 TE -
» ‘ ‘
30 40 50 60

Number of agents

Fig. 10. RMSE positioning performance as the function of the number of
agents, when using various DCP schemes.

SPAWN. This verifies that the data-driven GNN is capable of
refining the accuracy of SPAWN messages, and consequently
improves the positioning performance. However, using only
GNN based messages refinement does not make up for lack
of neighbors, and the performance of our GNN-STMP is still
quite poor in the case of just one neighbor. By contrast, the
performance of our EKF-GNN-DCP, EKF-STDF and SPA-
EKF are much more robust to the deficiency of spatial ranging
measurements. This is because the prediction operation of
EKF is useful to improve the accuracy of the agent position
estimation, and the high-precision prior values used in message
passing procedure can reduce the ambiguity of the agent posi-
tion estimation. Furthermore, the proposed EKF-GNN-DCP
outperforms EKF-STDF. This is because EKF-STDF considers
the SPAWN messages as Gaussian distributions, which reduces
the accuracy of the message representation inevitably. By con-
trast, our EKF-GNN-DCP exploits a more accurate message
representation method and apply GNN-generated messages to
further refine the spatial SPAWN message representations.
Then we investigate the impact of the number of agents on
positioning performance in scenario where the agent moves
faster. Consider an area of [0, 2000] m x [0, 2000] m. Agents
are uniformly scattered across an area of [200, 1800] m x
[200, 1800] m. The ranging radius to perform external mea-
surements is 400 m, and the variance of the ranging noise
is 6 m2. At time slot #, each agent moves a distance d;? ~
N (25, 5) in a direction 6! ~ U(0, 27), and lpax is set to
20. Fig. 10 depicts the RMSE performance as the functions
of the number of agents, when using our GNN-STMP and
EKF-GNN-DCP as well as EKF-STDF, SPA-EKF with 5000
particles and NEBP with 5000 particles. The curve “The
proposed EKF-GNN-DCP (2nd-order TP)” and “The proposed
EKF-GNN-DCP (3rd-order TP)” denote our EKF-GNN-DCP
with second-order TP and third-order TP, respectively. By
comparing the numerical results under different values of the
number of agents, e.g., under N = 30 and N = 60, we
conclude that the positioning performance of mobile networks
is substantially compromised by agents lacking adequate spa-
tial ranging measurements. In addition, our EKF-GNN-DCP
consistently achieves the best performance, and SPA-EKF
has the second best performance except when the number
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Fig. 11. CDFs of the positioning error (i.e., RMSE) for our TP-SPAWN,
GNN-STMP and EKF-GNN-DCP, as well as for STOC-EKF, SPA-EKF and
NEBP in the scenario of mobile networks with sparsely distributed agents,
given the number of agents N = 30.

of agents is larger than 50, further demonstrating the role
of EKF-based state constraints when agents have insufficient
neighbors. When the number of agents is larger than 50, SPA-
EKF becomes slightly inferior to NEBP and our GNN-STMP,
which indicates that, as the number of neighbors increases,
the message refinement based on GNN outperforms the EKF-
based state constraints. Also, our GNN-STMP outperforms
NEBP when the number of agents is smaller than 50, while for
more than 50 agents, the former becomes slightly inferior to
the latter, further validating the role of temporal information in
GNN-STMP for positioning when agents lack sufficient neigh-
bors. In addition, it can be observed that the improvement with
the third-order TP over the second-order TP in EKF-GNN-
DCP is minimal. Considering approximation accuracy, the
computational complexity in Table II, and numerical results
for distributed agents, employing a second-order TP strategy
is adequate for achieving satisfactory positioning accuracy in
DCP tasks.

Next we assess the performance of our approaches against
several representative algorithms. Fig. 11 depicts the CDFs
of the position error for our TP-SPAWN, GNN-STMP and
EKF-GNN-DCP with second-order TP as well as STOC-EKF
[19], SPA-EKF [17] and NEBP [21], where the number of
particles for SPA-EKF and NEBP are 5000. Fig. 11 presents
the simulation results with the experimental parameters being
consistent with those used in Fig. 10. Given that EKF-STDF
performs worse than SPA-EKF with 5000 particles, we have
omitted the numerical results of EKF-STDF to keep Fig. 11
concise. Observe that our EKF-GNN-DCP achieves the best
performance. Specifically, 80% of agents in our EKF-GNN-
DCP achieve the position error smaller than 6m, compared
to 7 m and 8.8 m in STOC-EKF and SPA-EKF, respectively.
This superior performance of our EKF-GNN-DCP is attributed
to its exploitation of the internal measurements based tempo-
ral information and GNN based messages refinement. Also,
STOC-EKF approximates the nonlinear system model as a
linear one around the selected linearization points, which
degrades the positioning accuracy inevitably. In this sparsely
scenario, the performance of our TP-SPAWN and GNN-STMP

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 15,2025 at 12:19:21 UTC from IEEE Xplore. Restrictions apply.



6456

as well as NEBP are inadequate. However, our GNN-STMP
outperforms NEBP considerably, owning to its ability of
effectively exploiting temporal information. Specifically, 60%
of agents in our GNN-STMP achieve the position error smaller
than 12 m, compared to 14 m and 15.4 m in NEBP and our
TP-SPAWN, respectively.

C. Discussions on Future Work

A potential extension of this work may involve incorporat-
ing a probabilistic communication model, where the reliability
of signal transmission is affected by both the distance and the
channel fading between agents. By modeling message loss or
degradation as a function of variables that characterize the
channels, a more realistic representation of communication
dynamics in DCP systems can be offered to help improve
our proposed method. Additionally, our current framework
does not explicitly address communication errors arising from
time slot misalignment or channel contention. Therefore, it is
necessary to explore robust communication strategies, such as
dynamic time slot management or enhanced message redun-
dancy techniques, to further improve the resilience of our DCP
method in mobile wireless networks.

VIII. CONCLUSION

Conventional DCP approaches suffer from inadequate
accuracy of FG based messages and excessively high compu-
tational complexity in mobile wireless networks. To address
these problems, we have first presented a high-precision para-
metric message representation method, which employs the TP
to approximate the nonlinear spatio-temporal messages passed
on the FG. We have derived closed-form representations for all
types of messages involved and the a posteriori distribution of
agents’ positions based on second-order TP. Building upon this
message representation method, we have developed a model-
and data-driven hybrid inference approach, i.e., GNN-STMP,
which is capable of fine-tuning parametric messages passed
on FG and obtaining more accurate closed-form expression
for the a posteriori distribution of agents’ positions. Fur-
thermore, we have developed a universal framework, named
EKF-GNN-DCP, for the parametric message passing based
DCP, by integrating GNN-STMP with the EKF based agents’
state prediction and refinement. This framework significantly
reduces the positioning ambiguity caused by insufficient spa-
tial ranging measurements from neighbor nodes. Simulation
results and analysis have revealed that: 1) using the second-
order TP approximation is a preferred choice, as it strikes
an appealing balance between the computational complexity
and the approximation accuracy; 2) thanks to the proposed
high-accuracy parametric message representations, our TP-
SPAWN outperforms other parametric DCP algorithms or even
particle-based algorithms with 4000 particles, while incurring
modest computational complexity, given that the number of
neighbor nodes of the individual agents is sufficient; 3) the
refinement relying on GNN-generated messages significantly
improves the message representation accuracy on FG, hence
our GNN-STMP substantially improves the positioning accu-
racy of agents when they have sufficient neighbor nodes; and
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4) the proposed EKF-GNN-DCP framework achieves the best
positioning performance in the challenging sparsely distributed
mobile wireless networks among all the DCP algorithms
considered.
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