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The aim of this paper is to examine the application of radial basis function (RBF)
network to realise the decision function of a symbol-decision equaliser for digital
communication system. The paper first study the Bayesian equaliser’s decision
function to show that the decision function is nonlinear and has a structure iden-
tical to the RBF model. To implement the full Bayesian equaliser using RBF
network however requires very large complexity which is not feasible for practi-
cal applications. To reduce the implementation complexity, we propose a model
selection technique to choose the important centres of the RBF equaliser. Our
results indicate that reduced-sized RBF equaliser can be found with no significant
degradation in performance if the subset models are selected appropriately.
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1 Introduction

The transmission of digital signals across a communication channel is subjected to
noise and intersymbol interference (ISI). At the receiver, these effects must be com-
pensated to achieve reliable data communications[1, 2]. The channel, consisting of
the transmission filter, transmission medium and receiver filter, is modelled as a fi-
nite impulse response (FIR) filter with a transfer function H(z) = S-%e-t a(i)z~".
The effects on the randomly transmitted signal s(k) = s = {£1} through the
channel is described by

Ng—1

r(k) = #(k) +n(k) = D s(k —d)a(i) + n(k) (1)

=0
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where r(k) is the corrupted signal of s(k) received by the equaliser at sampled
instant time k, #(k) is the noise-free observed signal, n(k) is the additive Gaus-
sian white noise, a(¢) are the channel impulse response coefficients, and n, is
the channel’s memory length[l, 2]. Using a vector of the noisy received signal
r(k) = [r(k), -+, r(k —m + 1)]7, the equaliser’s task is to reconstruct the trans-
mitted symbol s(k — d) with the minimum probability of mis-classification, Pg.
The integers m and d are known as the feedforward and delay order respectively.
The measure of an equaliser’s performance Pg, or more commonly expressed as
the bit error rate (BER), BER = log;,Pg, in communication literature [1], is ex-
pressed with respect to the signal to noise ratio (SNR) where the SNR is defined
by

BRG] oA (i) S (i
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€
where 02 = 1 is the transmit symbol variance and ¢? is the noise variance.

The transmitted symbols that affect the input vector r(k) is the transmit
sequence s(k) = [s(k),---,s(k —m — ny + 2]7. There are Ny = 27+~ possible
combinations of these input sequences, i.e. {s;},1 < j < N[2]. In the absence of
noise, there are N corresponding received sequences t;(k),1 < j < N, which are
referred to as channel states. The values of the channel states are defined by,

c; =1;(k)=Fls;], 1<j<N,, (3)

where the matrix F' € Rm*(m+na—1) jg

a(0) a(l) ... a(ng—1) 0 0
B 0 a(0) a(l) a(ng—1) 0 ... .. L. 0
- : : 0
0 coooa(0) a(l) ... oalng—1)

(4)
Due to the additive noise, the observed sequence r(k) conditioned on the channel
state #(k) = ¢; is a multi-variable Gaussian distribution with mean at c;,

p(x(k)le;) = (2ma?) ™ Pexp(—|e(k) — ¢jl*/(202)). (5)

The set of channel states Cy = {Cj}éyzsl can be divided into two subsets according
to the value of s(k — d), i.e.

t(k)|s(k —d) = +1)}, (6)
v(k)[s(k —d) = =1)}, (7)

where the subscript d in C; denotes the equaliser’s delay order applied.
To minimise the probability of wrong decision, the optimum decision function

i =1
i’ =1
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is based on determining the maximum a posteriori probability P(s(k — d) =
slr(k)) [2] given observed vector r(k), i.e.,

$(k—d)=sgn( P(s(k—d)=+1r(k))— P(s(k—d)=—1r(k)) ) (8)

where §(k — d) is the estimated value of s(k — d). It has been shown in [2] that
the Bayesian decision function can be reduced to the following form,

Folx(k)) = > exp(=lle(k) —¢;[1*/(202)) = > exp(=lr(k) — exl*/(202)) (9)

CJEO&H ckEOé_)

It is therefore obvious that f;(.) has the same functional form as the RBF model [2,

3] frbf(r)v N

Fenf(r) = D wid(|lr — ]| /a) (10)
=1
where N is the number of centres, w; are the feedforward weights, ¢(.) are the
nonlinearity, ¢; are the centres of the RBF model, and « is a constant. The RBF
network is therefore ideal to model the optimal Bayesian equaliser [2].

Example of decision boundary

As an example, the Bayesian decision boundaries realised by a RBF equaliser with
feedforward order m = 2 for channel H(z) = 0.5 + 1.027! is considered. Fig la
lists all the 8 possible combinations of the transmitted signal sequence s(k) and
the corresponding channel states ¢;. Fig. 1b depicts the corresponding decision
boundaries for the different delay orders. Note that the decision boundary is
dependent on the channel state positions and delay order parameter.

2 Selecting subset RBF model

The implementation of the full RBF Bayesian equaliser requires the use of all
N; channel states. Such implementation however may be impractical if Ny is
large. In some cases, the complexity may be reduced by using a subset of the
N; channel states to generate the RBF decision function. For example, it is
obvious that the decision boundary using delay d = 1 for H(z) (Fig. 1b) can
be realised approximately by a RBF network using {es,c4,cs5,c6} as centres. If
the realised decision boundary using the subset RBF equaliser is very similar to
the full Bayesian equaliser, the classification performance of the two equalisers
would also be very similar. That is, the implementation complexity of the RBF
equaliser is reduced by using only the important channel states that define the
decision boundary.

To understand how centres affect decision boundary, we analyse the effects
of centre positions on boundary position when . — 0. Let rg be the set of all
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Figure 1: (a) Transmit sequences and channel states for channel H(z),
(b) Corresponding Bayesian decision boundaries for various delay orders.

boundary points. Le., fy(rg) equals to 0. Therefore, if r(k) € ro, Eq. 9 becomes

>, exp(=llro—eil?/(202)) = Y exp(—lro — exl/(202). (1)

s crec

When o, — 0, the sum on the L.h.s. of Eq. 11 becomes dominated by the closest
centres to rg, i.e.

= min {lro—c,ll} (12)

c;eCy

This is because the contribution from the terms exp(—|lro—c;||?/(202)) for centres
c; ¢ U;' converges much more quickly to zero when o, — 0 than terms for centres
belonging to U;'. Similarly, the sum on the r.h.s of Eq. 11 becomes dominated by
the closest terms for centres belonging to U, , where U, = minckecgl_){Hro —cl }-

At very high SNR, the asymptotic decision boundaries are hyper-planes between
pairs of channel states belonging to {U}} and {U; } [4].

However, not all channel states of {Uj, U, } are required to define the decision
boundary. This can be observed from the example illustrated in Fig. 1b for deci-
sion boundary realised using delay order d = 2. By visual insepection (Fig. 1b), it
is obvious that {c3,c7} € U;' and {c4,cg} € U; . The decision boundary formed
using centres {c3,c4} and {c7,cg} are however the same. Therefore, in this case,
only 1 pair of channel states, either {cs,c4} or {c7, es}, is sufficient to approximate
that region of decision boundary.
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To find the set of important centres {U;;, U,,} for the subset RBF equaliser,
we propose the following algorithm,

Algorithm 1 : Finding U}, U,

For c; € Cc(l-l—)
For ¢j, € Cc(l_)
= o+ (F5)
Jo(r7,) = 0 and

if cj = minciecglJr){Hro —¢;||} and
fs(x5,) # 0
C; — U;;, Cp — Ud_s
next cg,
next c;.

where fs(.) = RBF model formed using the current selected channel states from
{UF, U5} as centres and fy(.) is the full RBF Bayesian equaliser’s decision func-
tion.

2.1 Subset model selection : some simulation results

Simulations were conducted to select subset RBF equalisers from the full model.
The following channels which have the same magnitude but different phase re-
sponse were used,

H1(z) = 0.8745+0.43722~' — 0.20982 2 (13)
H2(z) = 0.2620 — 0.66472"' — 0.69952 > (14)

The feedforward order used was m = 4, resulting in a full model with N, =
2mtna=l — 64 centres. Using SNR condition at 16dB, simulations were conducted
to compare the performance of the subset RBF and full RBF equalisers for the
two channels. The results are tabulated in Table la and 1b respectively; The
first column of each table indicates the delay order parameter, the second column
indicates the number of channel states selected to form the subset model while
the third and fourth columns list the BER performance of the two equalisers and
the last column indicates if the channel states belonging to the different transmit
symbol, i.e. CC(I-I_) and Cc(l_)7 are linearly or not-linearly separable. Our results
show that reduced size RBF equaliser with performance very similar to the full
model’s performance can usually be found for equalisation problem that is linearly
separable.
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Subset | Subset | Full-model Decision Subset| Subset | Full-model Decision
DAY Sze | tog(Pe) | log(Pe) Boundary P Gz | logPe)|  loo(Pe) Boundary
0| 56 | -4.09 | -4.09 Linear Sep. o| 56| -0.80 | -130 Not-Linear Sep.
1| 57 | -414 | -414 Linear Sep. 1| 46| -299| -299 Linear Sep.
2| 32 | 411 -412 Linear Sep. 2| 38| -338| -3.38 Linear Sep.
3| 32| -411 | -412 Linear Sep. 3| 56| -343| -343 Linear Sep.
41| 48 | -191 | -191 Not-Linear Sep. 4| 55| -332| -332 Not-Linear Sep.
5| 64 | -097 | -0.97 Not-Linear Sep. 5| 64| -341| -341 Not-Linear Sep.
Tablea: Channel H1(z) Tableb : Channel H2(2)

Table 1: Comparing the performance of the full-size (64 centres) RBF' equaliser,
subset RBF equaliser for Channel H1(z) (Table la) and Channel H2(z) (Table
1b) at SNR=16db.

3 Conclusions

This paper examined the application of RBF network for channel equalisation.
It was shown that the optimum symbol-decision equaliser can be realised by a
RBF model if channel statistic is known. The computational complexity required
to implement the full Bayesian function using the RBF network is however con-
siderable. To reduce implementation complexity, a method of model selection to
reduce the number of centres in the RBF model is proposed. Our results indi-
cate that the model size, and hence implementation complexity, can be reduced
without significantly compromising classification performance in some cases.
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