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Abstract — An efficient model identification algorithm for a large class of linear-in-the-
parameters models is introduced that simultaneously optimizes the model approximation abil-
ity, sparsity and robustness. The derived model parameters, in each forward regression step, are
initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new
gradient descent learning algorithm based on the basis pursuit that minimizes the I' norm of the
parameter estimate vector. The model subset selection cost function includes a D-optimality de-
sign criterion that maximizes the determinant of the design matrix of the subset to ensure the
model robustness and to enable that the model selection procedure automatically terminates at a
sparse model. The proposed approach is based on the forward OLS algorithm using the modified
Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the
model selection criterion, based on the D-optimality that is effective in ensuring model robustness,
are integrated with the forward regression. As a consequence, the inherent computational efficiency
associated with the conventional forward OLS approach is maintained in the proposed algorithm.

Illustrative examples are included to demonstrate the effectiveness of the new approach.

1 Introduction

Associative memory networks (such as B-spline networks, radial basis function (RBF) networks and
support vector machines (SVM)) have been extensively studied [1, 2, 3, 4]. A main obstacle in non-
linear modelling using associative memory networks or fuzzy logic has been the problem of the curse
of dimensionality [5]. This factor applies to all lattice based networks or knowledge representations
such as fuzzy logic (FL), RBF, Karneva distributed memory maps, and all neurofuzzy networks (e.g.
adaptive network based fuzzy inference system (ANFIS) [6], Takagi and Sugeno model [7], etc.).

For these systems it is essential to use some model construction procedures to overcome the obstacle



by deriving a model with an appropriate dimension. For general linear in the parameter systems,
an orthogonal least squares (OLS) algorithm based on Gram-Schmidt orthogonal decomposition
can be used to determine the significant model elements and associated parameter estimates, and
the overall model structure [8]. Regularization techniques have been incorporated into the OLS
algorithm to produce a regularized orthogonal least squares (ROLS) algorithm that reduces the
variance of parameter estimates [9, 10]. To produce a model with good generalization capabilities,
model selection criteria such as the Akaike information criterion (AIC) [11] are usually incorporated
into the procedure to determinate the model construction process. Due to the fact that AIC or other
information based criteria are usually simplified measures derived as an approximation formula that
is particularly sensitive to model complexity. The use of AIC or other information based criteria,
if used in forward regression, only affects the stopping point of the model selection, but does not
penalize regressors that might cause poor model performance, e.g. too large parameter variance
or ill-posedness of the regression matrix, if this is selected.

In optimum experimental design [12], it is common that the models are also in the form of linear-
in-the-parameters. For these models, the design criteria are defined as function of the eigenvalues
of the design matrix, hence quantitatively measure the model adequacy. In recent studies [13, 14],
the authors have outlined efficient learning algorithms, in which composite cost functions were
introduced to optimize the model approximation ability by using the forward OLS algorithm [8],
and simultaneously the model adequacy by using an A-optimality design criterion (i.e. minimizes
the variance of the parameter estimates), or a D-optimality criterion (i.e. optimizes the parameter
efficiency and model robustness via the maximization of the determinant of the design matrix).
It was shown that the resultant models can be improved based on A- or D-optimality. These
algorithms lead automatically to an unbiased model parameter estimate with an overall robust and
parsimonious model structure. Combining a locally regularized orthogonal least squares (LROLS)
model selection [15] with D-optimality experimental design further enhances model robustness
[16]. It has been shown [16, 17] that the parameter regularization is equivalent to a maximized
a posterior pdf (MAP) of parameters from Bayesian viewpoint by adopting a Gaussian prior for
parameters.

The regularization [9, 10] uses a penalty function on {2 norms of the parameters. Alternatively
the model sparsity can be achieved by a novel concept of the basis pursuit or least angle regression
[18, 19] that aims to obtain a model by minimizing the I' norm of the parameters. The Bayesian
interpretation for basis pursuit method is simply by adopting an exponential prior for parameters
(see Section 2.1). The advantage of the basis pursuit is that it can achieve much sparser models
by forcing more parameters to zero, than models derived from the minimization of the /P norm, as
most [P norms will produces parameters small, but nonzero, values. Compared to method of the
regularization [9, 10], the basis pursuit method, however, will not generally be computationally
efficient, because by simply changing from [? norm to I' norm in the cost function, this effectively
changes a quadratic optimization problem with a simple solution into a more sophisticated problem
for which a convex, nonquadratic optimization is generally required[18, 19].

In this paper, a new model identification technique is introduced by using forward regression
with basis pursuit and D-optimality design. Based on the previous work [13], we incorporate the
concept of basis pursuit to tune the parameter estimates as derived from the orthogonal least

squares method. A gradient descent parameter learning method is initially introduced with proven



convergence, followed by its application to the parameters tuning in the modified Gram-Schmidt
algorithm. It is shown that parameter tuning by basis pursuit, following the initialization of least
squares inherent in the Gram-Schmidt procedure will enforce model sparsity, yet fit well in the
procedure automated by the D-optimality model selective criterion. In the proposed algorithm,
the gradient descent of the basis pursuit contributes as a tuning procedure, rather than the main
optimization method, so the computational efficiency of the method due to the forward OLS
regression maintains.

This paper is organized as follows. Section 2 introduces the current work on forward regres-
sion based on the modified Gram-Schmidt algorithm as a modelling approach. Section 3 initially
introduces a new gradient descent method based on basis pursuit cost function, followed by the
proposed algorithm itself that incorporates the basis pursuit optimization with the modified Gram-
Schmidt algorithm. Numerical examples are provided in Section 4 to illustrate the effectiveness of

the approach and Section 5 is devoted to conclusions.

2 Preliminaries

A linear regression model (RBF neural network, B-spline neurofuzzy network) can be formulated
as [1, 2]

M
y(t) = > or(x(1))6s + £(t) 1)

k=1
where t =1,2,---, N, and N is the size of the estimation data set. y(t) is system output variable,

x(t) =[y{t—=1),---,y(t—ny),u(t — 1), -, u(t —n,)]" is system input vector with assumed known
dimension of (ny + n,). u(t) is system input variable. py(e) is a known nonlinear basis function,
such as RBF, or B-spline fuzzy membership functions. £(¢) is an uncorrelated model residual

sequence with zero mean and variance of o2. Eq.(1) can be written in the matrix form as

y=PO+E (2)
where y = [y(1),---,y(N)]T is the output vector. @ = [6,---,0x]T is parameter vector, E =
[£(1),---,&(N)]T is the residual vector, and P is the regression matrix

p(1) p(1) - pm(1)
p_| 2@ 2 - pu2)
n(N) p(N) pm(N)

with py,(t) = pr,(x()). Denote the column vectors in P as py, = [pr (1), -, pe(N)]T, k=1,---, M.
An orthogonal decomposition of P is
P = WA (3)

where A = {a;;} is an M x M unit upper triangular matrix and W is an N x M matrix with

orthogonal columns that satisfy
WTW = diag{k1, -, km} (4)

with
ka:Wng, k=1,--- M (5)



so that (2) can be expressed as

y = (PA1)(A®) +E = WT +

[
=

where T' = [y1,--+,vu]T is an auxiliary vector.

2.1 The modified Gram-Schmidt algorithm, parameter regularization

and basis pursuit

Clearly for the orthogonalised system (6), the least squares estimates is given by

T
7]5;0): “;Fya k:177M (7)
Wi Wi
The original model coefficient vector © = [fy, - -,GM]T can then be calculated from A© =T

through back substitution.

The modified Gram-Schmidt procedure, described below, can be used to perform the or-
thogonalization of (3) and parameter estimation (7). Starting from k¥ = 1, the columns p;,
k+1 < j < M are made orthogonal to the kth column at the kth stage. The operation is repeated

for 1 < k < M — 1. Specifically, denoting pgo) =p;, 1<j<M,thenfork=1,---,M -1

W = Psck_l)
wlpF—1
on = M k+1<j<M
Wk Wi
pgk) = ng_l) —apjwg, k+1<j<M (8)

where ay;’s are components of the upper triangular matrix A. The last stage of the procedure

is simply wpr = ps\y_l). The elements of the auxiliary vector I' are computed by transforming

y(©® =y in a similar way. For 1 <k < M

© _ wiyt*
RO wlwyg
y® = yE Oy, 9)

It can be easily verified that fy,go) as derived from (9) is equivalent to (7). Geometrically the system

output vector y, at step k, is projected onto a set of orthogonal basis vectors, {wy,...wi}. The
model residual is decreased by projecting the system output vector y onto a new basis wy, at this
step. Effectively, (9) can be regarded as a linear fitting of y(*~1 by using a single variable w(*),
and to derive the new model residual y*), and so on. This observation will be explored further in
Section 3.1 for the development of the proposed algorithm in Section 3.2.

For better model parameter estimation bias/variance tradeoff, the regularization can be applied.
If the regularization is performed to the parameters in orthogonal space, v, then (9) is simply
replaced by the following

T
W= oy kebLeM

I A (10)



where A\ > 0, are regularization parameters, which can be optimized by being treated as hyper-
parameters in Bayesian approach [16]. The above results are obtained by setting parameter opti-

mizer as

V(r) _ 1E 2 aa 2
= 5 ElE° ()] +) i

Because the regularization term is given as the {2 norm, the closed form parameter estimates
solution given by (10) is available as solution to a quadratic form optimization.
Alternatively the basis pursuit method is simply given by changing the [?> norm into ' such
that
v = SEE]+ AT, )

where XA = [A1, o, An )T, [Tl = [l s [1me [T, @nd ng < M denotes the size of parameter vector
of T with nonzero parameters. A; > 0, are basis pursuit parameters. Note that only nonzero
parameters that are actually included in the model are penalized, because a regressor with zero
parameter does not influence model performance.

The basis pursuit method tends to produce model with greater sparsity than that of I param-
eter regularization. Because the solution of (11) is a nonquadratic optimization problem, there
is no readily available closed form solution as simple as (10). In general, the basis pursuit will
not be computationally efficient, since this is a more sophisticated problem for which a convex,
nonquadratic optimization is required [18]. The objective of this paper is to tackle this prob-
lem by introducing some simple model identification algorithm using the idea of basis pursuit, as

introduced in Section 3.

Bayesian regularization and basis pursuit

The regularized parameter estimator by optimizing V(") is equivalent to a maximized a posterior

pdf (MAP) of parameters in a Bayesian approach [17, 16]. By Bayesian Theorem
p(I'|Dn) o< p(T)p(Dw,T) (12)

It can be assumed that & ~ N(0,0%), and observations are independent, so

N
1 1
p(Dn,T) = @ro?)N exp[— 292 Z (13)

whose maximization leads to maximum likelihood (ML) parameter estimator, which is equivalent
to least squares estimator for linear-in-the-parameters models. The prior p(T') serves as a solution
to the inadequacy of ML estimator by using prior knowledge of p(I') that controls superfluous

parameters for improved generalization. If the prior p(I") for the parameters is Gaussian
p(T) = exp(~— LS )y (14)
k=1

where Zl(f) is a normalizing coefficient. The MAP estimator can be derived via minimizing V(")

[1, 17, 16]. Clearly for basis pursuit estimator, the prior p(I") is simply set as

p(T) = exp(= 5 AT IT1h)/ Zr (15)



where Zr is a normalizing coefficient. This means that, from Bayesian viewpoint, the basis pur-
suit method can be regarded as adopting a multivariable exponential distribution as a prior for

parameters.

2.2 Model structure selection by D-optimality

A significant advantage due to orthogonalisation is that the contribution of model regressors to
the model can be evaluated. The forward OLS estimator involves selecting a set of ng variables
pr = [ps(1), -, pe(N)]T, k = 1,---,ng, from M regressors to form a set of orthogonal basis wy,
k=1,---,ng, in a forward regression manner. As the orthogonality property wiw; =0 for i # j
holds, if (6) is multiplied by itself and then the time average is taken, the following equation is

eagily derived

1 1 & 1
T, __ 2_..T =T=
—Ny y= I ,;_1 VW Wy + No = (16)

The Error Reduction Ratio [ERR], which is defined as the increment towards the overall output
variance E[y?(t)] due to each regressor or input variable py(t) divided by the overall output variance

is computed through [8]
T

[ERR]k:ﬁ‘”Tikw’“, k=1,---,M (17)

y'y
The most relevant ng regressors can be forward selected according to the value of the error reduction
ratio [ERR)]. At the kth selection, a candidate regressor is selected as the kth basis of the subset
if it produces the largest value of [ERR)], from the remaining (M —k+1) candidates. By setting an
appropriate tolerance p, which can be found by trial and error or via some statistical information
criterion such as Akaike’s information criterion(AIC) [11] that forms a compromise between the

model performance and model complexity, the variable selection is terminated when

ng

1-> [ERR]x <p (18)
k=1
This procedure can automatically select a subset of ng regressors to construct a parsimonious

model. Equivalently, this procedure can be expressed as
_ 1
JE = &0 — Syt (19)

where J@® = yTy. At the kth forward regression stage, a candidate regressor is selected as
the kth regressor if it produces the smallest J*). (19) can be modified to form an alternative
model selective criterion to enhance model robustness. D-optimality based cost function is one of
robustness design criterion in experimental design criteria [12]. The D-optimality criterion is to
maximize the determinant of the design matrix defined as W1 W, where Wj, € RV>" denotes

the resultant regression matrix, consisting of ng regressors selected from M regressors in W.
ne
max{Jp = det(W} W}) = H Kk} (20)
k=1

It can be easily verified that the selection of the a subset of Wy from W is equivalent to the

selection of the a subset of ny regressors from P [14]. In order to include D-optimality as a model



selective criterion for improved model robustness, construct an augmented cost function as

1_q 1
= —5TE 4 alog(—
J N +a og(JD)
1 i i 1
= —O"y =) visr) +a ) log[—] (21)
N E=1 k=1 Kk

where a is a positive small number. Note that this composite cost function simultaneously min-
imizes (19) and maximizes (20) [14]. Eq.(21) can be directly incorporated into the forward OLS
algorithm to select the most relevant kth regressor at the kth forward regression stage, via

J® = k-1 _ l’)/zlik + alog[i] (22)

N Kk

At the kth forward regression stage, a candidate regressor is selected as the kth regressor if it
produces the smallest J*) and further reduction in J®*~1. Because log(%) is an increasing
function if k; < 1, which is true for some k > K, the selection procedure will terminate if
J®) > J&=1) at the derived model size ngy if an proper a is set. This is significant because
this means that the proposed approach can detect a parsimonious model size in an automatic
manner. The D-optimality based model selective criterion will be applied in the proposed new

model identification algorithm introduced in next section.

3 Model identification algorithm using Forward Regression

with Basis Pursuit and D-optimality

3.1 Parameter estimation by basis pursuit function’s gradient descent

Before the introduction of the proposed algorithm, we initially introduce a general concept (algo-
rithm) of parameter estimation by basis pursuit function’s gradient descent, followed by the basic

idea as how to incorporate this algorithm in the modified Gram-Schmidt orthogonal procedure.

Theorem 1: Suppose that the dynamics underlying data set Dy can be described by

y(t) = f(x(8),0) +£(¢) (23)
where functional f(e) is given as appropriate. If the following parameter learning law is applied

O(t-+1) = 0(1) +né(1) g2 —n A" sgn(6(1) (2)

where the operator (o) denotes the time averaging, and sgn(©) = [sgn(6y), ..., sgn(f)]7, in which,

1 if u>0
sgn(u) = 0 if u=0 (25)
-1 if u<0
7 is an arbitrarily small positive number, then
(i) lim V() —ec (26)

t—+4co

(i) t_l)lgloo [|©(t) —©(t —k)|| =0 for any finite k



where the basis pursuit cost function V(¢) = 1€2(t) + AT||O|[1, and [|O]|1 = [[81], -, |Bne[]” is
constructed based on a subvector of © with nonzero parameters (see also (11)). ¢ = min V' (¢) is
the lower bound of V (¢).

Proof. Consider V(t) = $€2(¢) + AT)10|l1 > 0 as a Lyapunov function. For an arbitrarily small
neighborhood around a current parameter estimate O(¢) = [61(¢),...0p (£)]7, by the first order of

Taylor series expansion of V(t)

201 no)

= (€0 5L+ XT sgn(0()) A O (27)

where AG(t) = Ot +1) - 0(%), AV(E+1) =V(t+1) - V(¢). When the learning law of (24) is

applied, we have

AV (2)

Q

AV(0) = ~nfE(t) 52— X" sgn(O(1)}" {£(t) 5 ~ A" sen(©(1)) <0 (28)

that is, V' (¢) is non-increasing with a lower bound. Hence

im AV(£) =0 (29)

t—+4co

Hence property (i) is established.

lim AV(@E) = nAOT(E) AO®F)

t—+o00
= qlle@) -oe@ -1 (30)
yielding
Jim [/0(2) - 0~ 1)) =0 (31)
for a finite k
k
o) - e¢-kI* = > _O¢t—i+1)-0-i)l?
i=1
k
= Y le¢t—-i+1)—0—di|> -0 (32)
i=1
so property (ii) follows;
O

In the proposed algorithm of Subsection 3.2, the above gradient descent of basis pursuit error
function is combined with the modified Gram-Schmidt algorithm of Section 2.1 to derive a new
model identification procedure. The basic idea is introduced here. Consider (9), which can be
regarded as a linear fitting of y(*~1) by using a single variable w(¥) with the least squares method.
The derived model residual vector Z is then set as y(¥). This observation suggests that for each step
k in the modified Gram-Schmidt algorithm, the parameter estimates, calculated by (9) can be fur-
ther tuned by learning algorithm of (24) that optimizes the basis pursuit’s function given by (11).
Following (9), denote y*—1) = [y(*=1) (1), 4*=1(2), ..., y =D (N)]” and wy, = [w (1), ..., wr(N)]7T.

The tuning process is an extremely simple case based on Theorem 1, as illustrated by the following



Theorem.

Theorem 2: If the learning law given by (24) is applied to a special case of one dimensional linear

system
yF I (8) = ywn (t) + £(2) (33)

with the parameter estimates -, initialized as the least square parameter estimate fy 7é 0, given

by (9), and if A\x < W|Wk y|, then the final converged parameter estimate 7y,

© Il < W2 (34)

(i) sgn(y) = sgn(1”)

Proof: (i) The learning law given by (24), when applied to the system (33), can be rewritten as

Ye(t + 1) = v (t) + n€(B)wi (t) — nAk sgn(v(t)) (35)

The least squares solution means that $€2(¢,v) > 1€2(¢, 7(0)), and V() = $&2(8) + el is

non-increasing, with an initial value as 552( )+ )\kh/k )|, so for t — o0,

voz—euvw+awu< euva+aw@| (36)

yields |ys| < |fyk0)| Hence (i) follows.

(ii) For an arbitrary small learning rate 7, it can be assumed that the parameter changes in
arbitrary small range per time step. Initially it is assumed that v change sign at a time step
denoted as ¢/, i.e., the parameter trajectory needs to pass zero at a point ¢, v;(t') = &, where

€ & 0, and by the property that V(t) is non-increasing, yields

V() = —62(75 £) + Aelel = [y(’“ D(t) — ewg(8)]? + Axle| = N[ y DTy Y
1 1 _ _
< 38 + bl = Sy ® Ty * D — O Pwl e + Ab®] (37)
So
1 _ _ 1 _ _
W[y(k 1)]Ty(k D < W[y(k 1)]Ty(k 1) _ 2N[7I(90)] w) Wk+)\k|’)’k0)| (38)
M| 2 s P wi (39)
and by applying the least square solution 7(0) %, yields
-1y _ 1 1
Ak > —IW YUl = oWyl (40)

This is contradictory to the assumption for Ax. Therefore v should not change sign throughout
conditional on A\; < ﬁ|wkTy|, hence property (ii) follows.
O

The significance of Theorem 2 is that by setting the basis pursuit parameters A; below a

certain value, for each step k, the overall effect of the tuning process is that the parameters 7



is pulled towards 0. In forward regression, as model size k increases, the parameter estimates 7,
as initialized by least squares algorithm with very small magnitudes, followed by basis pursuit
gradient tuning, will shrink below some threshold value, and can therefore be obtained as zero, to

achieve model sparsity. For a sufficiently small A, the optimality condition can be derived as

E()wr(t) — Ap, sgn(ve(t)) =0 (41)

or

wly=1 — NXsgn(ys)

Ye =
whwy,

Ngsgn(r”)

= 49 (42)

W{Wk

3.2 The new algorithm using combined modified Gram-Schmidt algo-
rithm, basis pursuit and D-optimality

In this section a new algorithm is introduced that combines the modified Gram-Schmidt algorithm

with the basis pursuit gradient tuning for new parameter estimation. The model selective criteria

by D-optimality of Section 2.2 [14] is applied in the proposed algorithm. The algorithm is intro-

duced as follows, in which, the basis pursuit parameters are assumed to be predetermined.
The modified Gram-Schmidt algorithm combining basis pursuit and D-optimality:

The Gram-Schmidt orthogonalisation scheme can be used to derive a simple and efficient algo-

rithm for selecting subset models. Introducing the definition of P(*~1) ag

P(k_l) = [Wh o, Wh1, p;;;k_l)a T 7p5\’;_1)] (43)

(k=1) | aPS\I;_l)

If some of the columns p; 7/, in P(=1) have been interchanged, this will still be

referred to as P*~1) for notational convenience. The kth stage of the forward regression selection

procedure is given below

1. For k < j < M, compute

(p )Ty k1)

@ _
Yk = — — (44)
(P TpY
® _ g0 _ L 020 4 g loel L 4
J] J N[,Yk ] K’k +a Og[ﬁsg)] ( 5)
2. Find
J® = J® = min{J®, k<j< M} (46)

Then the jith column of P*~1 ig interchanged with the kth column of P%*~1  and the
jrth column of A up to the (k — 1)th row is interchanged with the kth column of A. This
effectively selects the jith candidates as the kth regressor in the subset model. Then set

7,20) _ ,Ylgjk) )

10



3. Perform the orthogonalization as follows

wy = py Y
wlptF—1
agj = %, k+1<j<M
Wi Wi
pgk) = pgk_l) —opiwg, k+1<j<M (47)

to transform P*~1 into P*) and derive the kth row of A. Update k.

4. With ,Y’(;O) # 0 as initialized parameter estimates, the optimal solution of learning law (35) is

given by (42), and is rewritten here

N)gsgn 7(0)
=) — =Tk ) (48)
Wi Wi
where Ay < 5 |wiy*—1).
5. Update y*~1 into y(® by
y(k) - y(k—l) — eWp (49)
and update . .
(k) — g=1) _ — 2 il
J J N kR T log[ﬁk] (50)

6. The selection is terminated at the ngth stage where a subset model containing ng significant

regressors by the D-optimality model selective criteria J® achieves a minimum.

Note that the assumption ,Y’(;O) # 0 in Theorem 2 is actually true for the selected regressors
before the model achieves sufficient approximation. By (50) of step (5), it is clear that if v, = 0,
the procedure terminates. In forward regression selection, each regressor is selected from Step
(2), characterized by the largest reduction in J (®) | hence 7,(90) # 0, before the current model
residual y*~1) becomes white. Clearly, as model size k increases, if the parameter estimates are
initialized with very small magnitudes from least squares estimates, the basis pursuit gradient
tuning procedure in Step (4), will pull it even more towards zero by Theorem 2. If an arbitrary
small threshold was set for zero, the parameter 7 is obtained as zero. J® will then increase to
terminate the selection procedure, at a sparser model than that of without basis pursuit gradient

tuning procedure.

A method of choosing A

The identification algorithm introduced above uses a predetermined basis pursuit parameters A,
which reflects a tradeoff between modelling errors and the I' norm of parameter vector. An inap-
propriate choice of X (too large) will cause the term representing the modelling error in V' of (11) to
become insignificant in deriving parameter estimates and result in poor model approximation. By
the general principle in data modelling of that a model with generalization is preferred, the choice
of A may be derived based on the commonly used method of cross-validation. In the following,
we introduced a simple method of choosing A by the basic principle of cross-validation. i.e. using
two data sets, one for training and another for testing. This method however is only a heuristic

approach, while other optimization methods of A are still under investigation. For simplicity a

11



single global basis pursuit A is used, that is, Ay = A2 = ... = A. By using the constraints of
Ak < 3% |wiy|, a feasible initial choice of A is determined as A = 2N|w (0)y| where n( ) is the
size of the model derived with the D-optimality selective criterion, by settlng a arbitrarily small,
without using basis pursuit [14]. In order to derive a model with excellent generalization, the
complete modelling procedure of iterating the proposed algorithm, by incrementally increasing A

from zero in a controlled manner, is given as follows.

The iterative procedure of the proposed algorithm including choosing basis pursuit parameters

1. Initialization. Set an arbitrarily small a, applying the modelling procedure of [14] to derive

(0)

a model with size ny’. (This is equivalent to the proposed algorithm with A = 0.) and set

A= ﬁ""’:g’)y" Set a counter for iteration j = 1;

2. Applying the proposed algorithm with the new A, to derive a model with the size of n(j)
(j . Set a new A = 2N|w (])y| for next iteration of this step, while the mean squares

errors (MSE) of the test data set is monitored; j = j + 1;
3. Step 2 is terminated when the MSE of the test data set achieves a minimum.

Note that heuristically, for each step j, A « |anj) |. By the property of forward regression that
selects the term with the largest reduction of modelling error. It can be assumed that |w;| > |w;],
for ¢ > j. This means that \y = A = 2N|W (])y| < s |wiy®=b|, for k < n(]) As the iteration
step j increases, the effect of basis pursuit cost functlon (shrinking the small parameters to zero)

would derive at the smaller size n((,] )

compared to previous iteration step. Because a smaller model

size means a larger value of |Wn(j) |, A increases gradually with the iteration, which is terminated
6

at a proper stage via it performance over the test data set. Alternatively, A can be set as a very

small value for general improvement in model sparseness.

4 Modelling examples

Ezample 1: Consider the benchmark Henon time series given by
2(t) =14 - 22t — 1)+ 0.32(t — 2) (51)

1000 data points were generated with an initial condition y(0) = 0,y(1) = 0. The data set was
then added a very small noise e(t) N(0,0.0012) to form a noisy data set y(t) = 2(t) + e(¢). The
input vector is set as x(t) = [y(t — 1), y(t — 2)]7. 498 data samples from ¢ = 1 ~ 500, were used as
estimation set, and 500 data samples ¢t = 499 ~ 1000 were used as test data. The Gaussian radial
basis function was used to construct a full model set by using all the data in the estimation data
set as centers ¢;, ¢ = 1,...498, and p;(x(¢t)) = exp{—“ﬂ%”i}, with o; = 1, V i. The modelling
starts with A = 0, and a = 10~8 (an arbitrarily small coefficient for D-optimality). The iterative
procedure of the proposed algorithm was applied. The model was automatically terminated at a 30
centers networks. The final basis pursuit parameter was derived at A = 1.77 x 1078, The modelling
MSE for the test data set is derived at 4.7841 x 1073, Equivalently 99.97% output variance of the
test data has been explained by the model. The modelling results for test data set is shown in

Figure 1.
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Figure 1: Modelling results for Example 1.

Ezample 2: Consider the chaotic two dimensional time series, Ikede map [20], given by

21
y(t)

with r=04

14 0.9[z(t — 1) cos(r) — y(t — 1) sin(r)]
0.9[z(t — 1) sin(r) + y(¢ — 1) cos(r)]
6.0
T 1422t -1 +y2(t—1)

(52)

1000 data points were generated with an initial condition z(1) = 0.1,y(1) = 0.1. Two models
were constructed to model z(#) and y(t) respectively. For both models, the input vector is set as
x(t) = [z(t — 1),y(t — 1)]T. 498 data samples from ¢ = 1 ~ 500, were used as estimation set, and
500 data samples t = 499 ~ 1000 were used as test data. The Gaussian radial basis function was
used to construct full model sets by using all the data in the estimation data set as centers c;,
i =1,...498, and p;(x(t)) = exp{—ﬂﬂ%”i}, with o; = 0.5, V i.

For the first model that models x(t), the modelling starts with A = 0, and a = 1078 (an
arbitrarily small coefficient for D-optimality). The iterative procedure of the proposed algorithm
was applied. The model was automatically terminated at a 63 centers networks. The final basis
pursuit parameter was derived at A = 7.7x 1078, The modelling MSE for the test data set is derived
at 3.13 x 1075, Equivalently 99.81% output variance of the test data has been explained by the
model. For the second model that models y(t), the modelling starts with A = 0, and a = 1078 (an
arbitrarily small coefficient for D-optimality). The iterative procedure of the proposed algorithm
was applied. The model was automatically terminated at a 66 centers networks. The final basis
pursuit parameter was derived at A = 1.7 x 1073, The modelling MSE for the test data set is
derived at 1.36 x 1075. Equivalently 99.94% output variance of the test data has been explained

by the model. To illustrate the overall performance of the model in capturing the underlying

13



system dynamics, the modelling results for both estimation and test data set is shown in Figure 2.

5 Conclusions

This paper has introduced a novel model identification algorithm for linear-in-the-parameters mod-
els. The proposed approach is based on the forward orthogonal least square algorithm using the
modified Gram-Schmidt procedure. The approach aims to simultaneously optimize the model ap-
proximation ability, sparsity and robustness by combining the modified Gram-Schmidt algorithm
with basis pursuit and D-optimality design. The main contribution is to tune the model param-
eters, in each forward regression step, with the basis pursuit that minimizes the I' norm of the
parameter estimates vector. The D-optimality design criterion is used for model selection to ensure
the model robustness and automatically terminates at a sparse model. The choice of basis pursuit
parameters is discussed and a simple iterative procedure of the proposed algorithm is introduced
to obtain a model with good generalization. Both the parameter tuning procedure, based on basis
pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring

model robustness, are integrated with the forward regression to maintain computational efficiency.
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